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Abstract: Airborne pandemics have caused millions of deaths worldwide, large-scale economic
losses, and catastrophic sociological shifts in human history. Researchers have developed multiple
mathematical models and computational frameworks to investigate and predict pandemic spread on
various levels and scales such as countries, cities, large social events, and even buildings. However,
attempts of modeling airborne pandemic dynamics on the smallest scale, a single room, have been
mostly neglected. As time indoors increases due to global urbanization processes, more infections
occur in shared rooms. In this study, a high-resolution spatio-temporal epidemiological model with
airflow dynamics to evaluate airborne pandemic spread is proposed. The model is implemented,
using Python, with high-resolution 3D data obtained from a light detection and ranging (LiDAR)
device and computing model based on the Computational Fluid Dynamics (CFD) model for the
airflow and the Susceptible–Exposed–Infected (SEI) model for the epidemiological dynamics. The
pandemic spread is evaluated in four types of rooms, showing significant differences even for a short
exposure duration. We show that the room’s topology and individual distribution in the room define
the ability of air ventilation to reduce pandemic spread throughout breathing zone infection.

Keywords: agent-based simulation; indoor pandemic; airborne pathogens; SEI model; CFD

MSC: 68U20; 65P99; 92F05

Humanity has suffered multiple pandemics during its history [1]. In just the last few
hundred years, pandemics caused significant mortality, economical crises, and political
shifts [2]. For example, tens of millions of individuals worldwide died due to the 1918
influenza pandemic [2]. Another example is the coronavirus (COVID-19) pandemic which
was declared by the World Health Organization (WHO) as a public health emergency of
international concern in 2020 and resulted in around six million deaths over the first two
years [3].

As such, policy makers are faced with the challenge of controlling the spread of the
disease. In particular, this challenge, becoming increasingly more relevant as urbanization
grows in the developing world, is bringing more people into denser neighborhoods, which
results in a higher infection rate at which new diseases are spread [4]. Indeed, Wu et al.
(2017) have shown that the overall globalization processes taking place in recent decades
have facilitated pandemic spread [5]. As a result of these and other social and economic
processes, infectious disease outbreaks are predicted to be almost constant in the near
future [1].

Pandemics take many shapes, such as sexually transmitted diseases (for example,
HIV) [6,7], social influenced behavior (such as alcoholism) [8,9], and airborne diseases
(such as influenza) [10,11]. Among the airborne pandemics are Lassa virus, Nipah virus or
poxviruses, COVID-19, influenza, and others. These are a cause for concern owing to their
infection rate and potential for global spread [12]. Consequently, pandemic intervention
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policies (PIPs) for airborne pandemics are known to be relatively more harmful to the econ-
omy and psychological state of the population relative to other types of pandemics [13–17].

Multiple models have been proposed to describe airborne pandemics [18,19], mostly
extending the Susceptible–Infected–Recovered (SIR) model proposed by [20]. Generally,
these models work well for large populations and for a relatively long period of time. They
predict the pandemic spread and the effect of a wide range of PIPs on average. However,
since these models focus on large populations and usually large-scale spatial locations such
as cities and countries, they provide less accurate predictions for small-sized populations
in small spatial locations which are often neglected.

In this work, we propose a high-resolution spatio-temporal epidemiological model
for a case of a single room with a small population. The model is inspired by the SIR
model and takes into consideration three-dimensional spatial dynamics with airflow. In
particular, individuals are infected by breathing pathogen particles from the air and infect
others by breathing out pathogen particles. Using the proposed model, one is able to better
approximate the airborne pandemic spread in small populations located in a room. The
novelty of the proposed model lies in the integration of a computational fluid dynamics
simulator for airflow with a spatio-temporal epidemiological model and the focus on a
population of limited size over a short duration.

The proposed model is evaluated for four types of rooms (classroom, conference room,
movie theater, and restaurant), revealing statistically different pandemic spread dynamics.
In addition, the influence of mask-wearing and artificial air ventilation (AAV) PIPs are
evaluated for each room type in a wide range of possible configurations. Compared to
AAV, wearing a mask inhibits pandemic spread in all types of rooms. We find that the
distribution of individuals in the room has a major influence on the efficiency of AAV,
mainly depending on the amount of breathing zone infections.

This paper is organized as follows. Section 1 outlines the current epidemiological and
air movement models and their simulation approaches. Section 2 introduces the proposed
mathematical model with computer simulation. Section 3 presents several simulations
based on the proposed model. In Sections 4 and 5, we discuss the results and offer
future work.

1. Background

Multiple studies show that mathematical models and computer simulations are pow-
erful tools for policy makers to investigate pandemic spread and different PIPs with their
outcomes in a fast, cheap, and controlled manner [18,19,21]. There are multiple modeling
approaches for epidemiological dynamics [22–24]. The leading approach is extending
the SIR model [20] with sociological [19], economic [25], biological [18], and clinical [26]
dynamics to name a few.

Agarwal and Bhadauria [27] introduced a vaccinated (V) stage to the SIR model,
resulting in an SIRV model for the polio pandemic. The authors took into consideration
the spontaneous occurrence of strains during the pandemic. Bunimovich-Mendrazitsky
and Stone [28] proposed a two-age group extension for the SIR model, also for the polio
pandemic spread. The authors were able to explain the sharp increase in the number of
paralytic polio cases that emerged at the beginning of the 20th century using the separation
of children and adult age groups. For the influenza viruses, Dang et al. [29] developed
a multi-scale immuno-epidemiological model which takes into consideration direct and
environmental transmission of the pathogen. Using their model, the authors showed that
two time-since-infection structural variables outperform classical SIR models for the case of
influenza. Marquioni and de Aguiar [30] fitted a multi-strain stochastic SIR model onto the
COVID-19 pandemic in China. The authors showed that their extended model provides a
more accurate prediction of pandemic spread over a longer period of time.

More often than not, these models obtain relatively poor results for medium and
long prediction periods. One explanation for this shortcoming is the assumption that the
population is well mixed which is known to be false even for small population sizes and
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spatial locations [31–36]. Indeed, Cooper et al. (2020) used the SIR model on the COVID-19
pandemic while relaxing the assumption that the population is mixing homogeneously,
showing a fair fitting on six countries with improved results compared to the classical SIR
model [37]. Due to statistical fluctuations, long time periods are difficult to predict.

To tackle this challenge, several models introduced spatial dynamics to the spread
of a pandemic which can be divided into two main groups: graph-based and metric
space. Graph-based models take an abstract approach to modeling the locations in which
individuals can be located. Usually, it is assumed that each node in the spatial graph
represents a physical location (such as a room, street, city, or even a country) and that
the population is well-mixed in each node [21,33]. This approach more often than not
ignores the physical properties and dynamics that occur in the location represented by the
graph’s nodes. For instance, Lazebnik et al. (2021b) proposed a two-age-group extended
SIR model with a three-node graph representing a school, a home, and a workplace, such
that the individuals move between them according to their age group and time of day [38].
Moore and Newman (2000) studied several models of disease transmission in small-world
networks, in which either the probability of infection by a disease or the probability of its
transmission is varied, or both [39]. The authors conducted a numerical analysis which
results in similar behavior to the reported data by [32]. Klovdahl et al. (1994) defined and
explored the stochastic SIR model on a graph of interactions to represent the pandemic in
a cattle trade network with epidemiological and demographic dynamics occurring over
the same time scale [34]. The authors used real data on trade-related cattle movements
from a densely populated livestock farming region in western France and epidemiological
parameters corresponding to an infectious epizootic disease, obtaining fair prediction
accuracy. Additionally, Lazebnik and Alexi (2022) proposed a graph-based extended SIR
model where each node represents a room in a building [31]. In their study, the authors
investigated the impact of different moving patterns of the population in different types
of buildings (homes, schools, offices, and malls) on the spread of pandemics and on the
optimal configuration of both spatial and temporal factors, such as mask-wearing and
vaccination. Nevertheless, the authors assumed that the population is well-mixed in each
room. As a result, their model produced noisy results for the case of home-type buildings,
where the population density is low.

On other hand, for the case of spatial models, it is assumed that the space is contin-
uous and people move in the space over time, representing a more physically accurate
representation of movement. For instance, Milner and Zhao (2008) proposed an SIR-based
model where susceptible individuals move away from the previous location of the infection,
and all individuals move away from overcrowded regions [40]. Fabricius and Maltz (2020)
developed a stochastic SIR model with global and local infective contacts [41]. Paeng
and Lee (2017) presented an SIR-based model where individuals are assumed to move
stochastically within a small fixed radius rather than a random walk [42]. The authors
proposed continuous and discrete SIR-based models that show spatial distributions. They
show that the propagation speed and size of an epidemic depend on the population density
and the infectious radius.

In the context of airborne pandemics, one can focus on the infection that occurs in a
room. To do so, one can track the airflow with the pathogen particles it carries between
the individuals in the room [43]. Wei and Li (2016) reviewed the release, transport, and
exposure of expiratory droplets because of respiratory activities in the context of a pandemic
indoors [44]. The authors concluded that droplets or droplet nuclei are transported by
airflow, which is sometimes affected by the human body plume. They suggested that the
usage of a face mask, as well as room air ventilation, can reduce the infection rate.

Air flow (or air movement) dynamics are vastly explored in multiple contexts such
as healthcare [45], mechanics [46], agriculture [47], and epidemiology [43]. In particular,
Peng et al. (2020) explored the pandemic spread of the airborne COVID-19 pathogen in
indoor settings using a combination of the box and Wells–Riley models [48,49]. The authors
derived an expression for the number of secondary infections. However, their model does
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not include a detailed and accurate representation of the room’s geometry. Moreover, the
box model used by the authors does not correctly represent common cases such as rooms
where clear directional flow or infection due to overlapping breathing zones. In this work,
we aim to tackle these challenges using more detailed airflow dynamics.

There are various modeling approaches to predict the airflow within buildings such
as multi-zone models and zonal models. However, Computational Fluid Dynamics (CFD)
models are considered to be the most accurate for a single room [50,51].

The CFD models are numerical methods of solving fluid flow using the Navier–
Stokes (NS) equations [52]. These models use numerical algorithms to integrate the NS
equations over a given mesh by converting the integral equations to algebraic equations
(e.g., discretization) and then solving them iteratively [53]. In the context of building airflow
or even room-level airflow, the CFD modeling approach subdivides an individual room
into many space segments, and each one is treated as an atomic segment in which the NS
equations are computed [50]. There are three main types of CFD implementation for indoor
airflow dynamics: Reynolds-Averaged Navier–Stokes (RANS), Large Eddy Simulation
(LES), and Direct Numerical Simulation (DNS) [54].

The RANS equations take advantage of the Reynolds decomposition technique whereby
an instantaneous quantity is decomposed into fluctuating quantities and the average
value of some time duration. This technique provides approximations over time of the
NS equations, averaging the results on short periods [55]. DNS numerically solves full
Navier–Stokes equations using a very fine mesh to capture all the scales that are present in
a given flow. LES computes large-scale motions similarly to DNS but with a larger grid, and
sub-grid scale dynamics are solved using an averaging method such as the RANS approach.
While all three CFD computational approaches are able to provide accurate predictions for
airflow, the RANS approach is the most popular one for the indoor environment. This is
because the other two CFD approaches are significantly more computationally expensive
without a justified improvement in prediction accuracy for most cases [56].

Several CFD-based models and simulators have been developed for indoor context [57–59].
Hiyama and Kato [57] developed a 3D CFD model for close space with airflow in whole build-
ing settings. The authors integrated the outcomes of the CFD simulation with building energy
simulations to achieve a more accurate time-series analysis of building energy consumption
compared to conventional energy simulations [57]. Nahor et al. [58] proposed a 3D CFD
model to calculate the velocity, temperature, and moisture distribution in an existing empty
and loaded cool store. The authors validated their model with data from several experiments
and showed that the model was capable of predicting both the air and product temperature
with reasonable accuracy [58]. Smale et al. [59] reviewed the application of CFD and other
numerical modeling techniques to the prediction of airflow in refrigerated food applications
including cool stores, transport equipment, and retail display cabinets. The authors show
that given enough computation power, CFD-based models achieve high accuracy in all
these tasks.Cravero and Marsano showed that a CFD model can provide an accurate de-
scription of a breathing individual in a room. This description includes breathing dynamics,
air ventilation, and air diffusion [60]. Thus, CFD-based models accurately describe the air
movement dynamics across a wide range of environments in general and room types in
particular. As such, the CFD model implemented using the RANS method is used in this
research.

2. Model Definition

The proposed model is constructed from three main components: a population of
individuals, an environment (room) representing a three-dimensional space in which the
population is located, and the airflow dynamics taking place. A schematic view of the
model’s dynamics is shown in Figure 1 for the simplistic case of two individuals interacting.
As a result of exposure to airborne pathogen particles from the infected individual, the
second individual becomes infected by breathing in the particles. Formally, the model is
defined by a tuple M := (P, E) where P is a set (the population) of individuals, and E is the
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environment of the model representing the room and the airflow. The components of the
tuple are described below in detail.

Infected (I)
Susceptible (S)

F Finout

Figure 1. A schematic view of the model’s dynamics. Fout and Fin are the force of air getting out and
in (with the pathogen’s particles) during an individual’s breathing process.

2.1. The Environment E

The spatial component of the model is considered a three-dimensional continuous
space E ⊂ R3 with length, width, and height of L, W, and H, respectively. The space E is
discretized in all three dimensions with size δ represented by a matrix ME ∈ RL/δ×W/δ×H/δ.
Each cell (i, j, k) of the space matrix ME represents a cube with a center of mass at ((i +
0.5) · δ, (j + 0.5) · δ, (k + 0.5) · δ) and with a volume δ3.

The space E contains a set of objects and individuals. Formally, each location in the
space (i, j, k) ∈ E is either filled by an object (which can be an individual) or by air. If a
location is filled by an object, air is not presented and vice versa. We assume that all objects
in the space are static and therefore do not move over time. A location with air has four
properties: pathogen particles λ ∈ N, velocity v ∈ R3, acceleration a ∈ R3, and pressure
ρ ∈ R3. Furthermore, we assume that the air in the space is incompressible.

The air in the space is moving based on the incompressible Navier–Stokes equa-
tions [61]:

∂ϑ

∂t
+ u · ∇ϑ =

−∇ρ

ρ
+ µ∇2u + g, (1)

where ϑ = (u, v, w)T is the velocity vector, t is time, ρ is the uniform density of the
atmosphere, µ is the dynamic viscosity, and g is the gravity constant vector. The pathogen
particles are airborne and move with the air as a result. In addition, as pathogen particles
cannot survive outside the host for too long, the number of pathogen particles generated
by an infected individual in a single breath decays exponentially over time [62,63]. As such,
for each (i, j, k) ∈ E, the number of pathogen particles satisfies:

∂C
∂t

= C
(
∇τ −∇u− D

)
, (2)

where C(x, t) is the number of pathogen particles in location x at time t, τ is the tensor of
turbulent diffusivity, and D is the decay rate of the pathogen particle.

For the initial conditions, it is assumed that the entire air is without pathogen particles
and ∀x : u(x, 0) = 0 (i.e., the “static” state). The boundary conditions are defined to be the
boundary cells of the space matrix ME and all locations that contain an object. Namely,
open boundary conditions (stress-free boundary conditions) are specified at the outlet.
No-slip boundary conditions are provided in all four boundary directions [62].

2.2. The Population P
The model considers a constant population P with a fixed number of individuals

N ≡ |P|. Each individual belongs to one of three groups: susceptible (S), exposed (E),
or infected (I), such that N = S + E + I. Individuals in the susceptible group have no
immunity and are susceptible to infection. When an individual in the susceptible group (S)
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is exposed to the pathogen, the individual is transferred to the exposed group (E) at a rate
β. The individuals stay in the exposed group (E) for ξ time steps. This duration is mainly
defined by the pathogen and its interaction with the immune system. After ξ time steps,
the individuals are transferred to the infected group (I).

The epidemiological state of the population follows the equations:

dS(t)
dt = −β(t)I(t)S(t), dE(t)

dt = β(t)I(t)S(t)− ξE(t), dI(t)
dt = ξE(t). (3)

This SEI model is a private case of the SEIR model, such that ∀t : R(t) = 0. This case
better suits short-duration pandemic spread at the beginning of the pandemic, where there
is still a small (or even neglected) number of recovered or vaccinated individuals, such as
the one of interest in this model.

Formally, let P be a non-empty set of individuals, such that each individual p ∈ P is
defined by a tuple p: = (l, b, ν, c), where l = (lx, ly, lz, lα, lβ) is the location and orientation
of the individual’s face, such that (lx, ly, lz) ∈ E is the three-dimensional location in the
environment, and lα ∈ [0, 2π], lβ ∈ [0, π] are the angles in the xy and xz plans, respectively;
b = (φδ, φr, φg) are the breathing-related properties, such that φδ is the minimal number of
pathogen particles needed to be inside the individual’s body to cause infection, exposing a
susceptible individual to the pathogen; φr is the natural reduction rate of the pathogen particle
for susceptible individuals; φg is the amount of pathogen particle the individual generates
during breathing out when infected; ν ∈ {s, e, i} is the individual’s current epidemiological
state; c is the number of pathogen particles currently found in the individual’s body.

At each point in time, each individual in the population is either breathing in, out,
or neither. During the inhaling phase, a force Fin originated at (lx, ly, lz) is manifested.
The Fin force influences the air movement as well as the pathogen particles in its close
proximity. In particular, the pathogen particles that are located at a distance γ from (lx, ly, lz)
during the inhaling are removed from the environment and inserted into the individual’s
body. In a similar manner, during an exhaling phase, a force Fout originated at (lx, ly, lz)
is manifested. If the individual is infected (i.e., ν = i), then φg pathogen particles are
generated at each breath and added to the environment in an exponentially decaying
distribution as a function of the distance from (lx, ly, lz) with weights ωx, ωy, and ωz for the
x, y, and z axis. Individuals follow a breathing pattern as follows: inhaling, not breathing,
exhaling, and not breathing. This pattern is repeated for each individual during the entire
model’s dynamics.

A susceptible individual (ν = s) becomes exposed (ν = e) if c > φδ. During the
time an individual belongs to either the exposed or infected epidemiological states, the
change in the number of pathogen particles in the body (c) does not have any effect on its
epidemiological state.

The population component (P) is implemented using the agent-based simulation
method to allow a heterogeneous population [64–66] where each individual in the popula-
tion has unique values of inhaling and exhaling duration and volume as well the number
of pathogen particles needed to make it infected. For a more detailed implementation
description, see [38].

2.3. Model Implementation

The proposed model is implemented as a computer simulation using the Python
programming language (version 3.7). The environment E is represented by a 3D tensor,
such that each node represents a space segment with a volume of δ3. At the beginning
of the simulation (i.e., t = 0), the individuals that occupy the environment are set in
the environment, such that each individual is allocated a unique inhaling and exhaling
duration and volume values from a pre-defined distribution. In a similar manner, a number
of pathogen particles needed to infecty an individual are randomly sampled from a given
distribution and set to each individual. Afterward, at each step in time, five computational
steps take place. First, based on the individuals’ stage in the breathing cycle (inhaling,
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exhaling, neither), a force (Fin, Fout, none) is allocated to the corresponding location of
the individuals’ face (see Section 2.2). Moreover, if an infected individual is exhaling, φg
pathogen particles are introduced to the room at (lx, ly, lz). Second, an adaptive mesh for the
CFD model is computed using the method proposed by [62], such that at least a single node
of the mesh is located in each node in the ME matrix in order to ensure a lower boundary
of the size of the geometry’s resolution. Third, the air movement in a single step in time is
calculated by using the RANS method [55] for the CFD model (practically approximating
Equation (1) for the mesh’s nodes’ location at a specific point in time). Fourth, using the∇u
value computed on the geometry’s mesh from the previous step, Equation (2) is computed,
and the number of pathogen particles that enter individuals’ bodies are updated. Finally,
the epidemiological state of each individual in the population is updated based on the
number of pathogen particles in its system and its current epidemiological state. This
process repeats itself for T time steps. A schematic view of the simulator’s process is
presented in Figure 2.

Initinalize the
geometry’s 

configuration and 
populate it with
the individuals

t = 0

Add the Fin and 
the Fout fources 
according to the 
breathing status

of each individual

Compute the best
mesh for the CFD
using the method

proposed by 
Zheng et al. (2021)

Make a single step
in time using the 

CFD model, based 
on Eq. (1)

Compute the 
pathogen particles
spatial distribution, 

based on Eq. (2) 
and the breathing 

dynamics

update the epidemioligical 
state of the individuals 
based on the number of 

pathogen particles in 
their system

Compute the SEI
distribution of 
individuals over

time

t < T

t = T

CFD model

Agent-based with 

breathing dynamics 

SEI model

Figure 2. A schematic view of the simulator’s process, including the integration of the agent-based
with the breathing dynamic.

3. Simulations and Results

We evaluated the model on four types of rooms: classrooms, conference rooms, movie
theaters, and restaurants. We picked these types of rooms for three reasons: First, most of
the individuals in the room are not moving most of the time. We tried to avoid movement
as it influences the pandemic spread significantly [31,44,67] and not in the scope of the
proposed model. Second, the room types should have a unique and distinguished topology.
Third, the rooms should involve at least several individuals in order to allow a pandemic
spread signal to be noticeable. Since classrooms, conference rooms, movie theaters, and
restaurants fulfill these conditions [68,69], we used them. Furthermore, each one of the
room types has a unique topology and distribution of the population inside the room.
These differences are shown in a schematic 2D projection of each room type into a top,
side, and front view of the 3D structure of the room in Figure 3. Other researchers also
investigated pandemic spread inside buses [70], workshop rooms [70], homes [31], and
gyms [71]. However, these do not satisfy at least one of our requirements as individuals
are moving quite frequently in buses, workshop rooms, and gyms. The population size in
homes is usually too small to efficiently evaluate pandemic spread.

The rooms’ topologies were obtained using a 3D LiDAR-based scanning (using the
technology available in the iPhone 12) device with the RoomScan LiDAR application. of
the room and mapped it into its 3D geometry [72]. In particular, the LiDAR program
captures a 3D cloud point which is later processed to a mesh [73]. The obtained mesh’s
resolution is one cubic centimeter. This mesh is used as the boundary condition of the
geometry. For each room, we obtained the places where individuals are located (sit) based
on the chairs’ locations and added 0.8 meters on the z-axis for their faces’ location. Each
individual occupies a box in space with 170 cm height, 55 cm width, and 40 cm length. In
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addition, each individual starts the breathing cycle in a random time between t = 0 and
t = FT

in + FT
out.

Top view Side view Front view

Classroom
Conf. room

M
ovie theater

Restaurants

Figure 3. Schematic 3D projection views of the four room types.

Moreover, for the epidemiological properties, we simulated the COVID-19 pandemic
with data from 1 March 2020 to 1 September 2020 in Israel, obtained from the WHO. This
date range was chosen since, except for a single lockdown, no significant PIPs were used,
no vaccination was issued, and only one strain dominated the population. Thus, this period
in Israel best suits the SEI dynamics and, as such, yields as realistic an epidemiological
value (e.g., exposure to infection duration) as available.

We assume only one individual (e.g., the index individual) is infected at the beginning
of each simulation. As such, the other individuals are susceptible. Formally, the initial
condition of the simulator is assumed to be: S(0) = N − 1, E(0) = 0, I(0) = 1. Namely,
our initial conditions consider only a single infected individual which is taken randomly
from one realisation to another.

A summary of the used model parameters’ values is provided in Table 1. In addition,
a summary of the room types with a qualitative description of the population and the size
of the room is provided in Table 2.

Table 1. The model’s parameters with their default values. DPS stands for differing per simulation
which means the value is dependent on the specific instance of the simulation computed.

Parameter Notation Value Source

Population size [1] N DPS -

Exposed to infected transformation rate in minutes [ 1
t ] ξ 1.01 · 10−4 [31]

Simulation’s step in time (in seconds) [t] ∆t 0.02 [50]

Number of simulation steps [1] T 270,000 -

Average decay rate of the pathogen particles in air in
minutes [ 1

t ] D 5.5 · 10−3 [62]
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Table 1. Cont.

Parameter Notation Value Source

CFD’s mesh’s single volume element size in cubic
centimeters [m3] δ 1 [74]

Inhaling duration in seconds [t] Fτ
in 1.42± 0.25 [75,76]

Exhaling duration in seconds [t] Fτ
out 2.28± 0.47 [76,77]

No breathing duration in seconds [t] - 0.39± 0.04 [76,78]

Inhaling volume in cubic centimeter [m3] |Fin|/Fτ
in 304± 71 [76]

Exhaling volume in cubic centimeter [m3] |Fout|/Fτ
out 198± 41 [76]

Average distance of pathogen particle influenced by
inhaling in meters [m] γ 0.34 [79]

Average decay rate of pathogen particles in host in
minutes [ 1

t ] φr 6.6 · 10−4 [79]

Average number of pathogens particles needed to infected a
susceptible individual [1] φδ 108 [80]

Average number of pathogens particles generated by
infected individual at each exhaling [1] φg 1.3 · 107 [80]

Table 2. The different room types used in the experiments with a qualitative description of the
population size and the room’s dimensions in meters.

Name Population Size Room Size [m] Density [1/m3]

Classroom 1 N = 33 L = 10.00, W = 6.00, H = 2.60 0.211

Classroom 2 N = 28 L = 8.00, W = 5.63, H = 2.88 0.215

Classroom 3 N = 27 L = 7.80, W = 7.70, H = 2.61 0.173

Classroom 4 N = 31 L = 9.00, W = 7.00, H = 3.04 0.164

Classroom 5 N = 36 L = 8.77, W = 14.25, H = 3.20 0.090

Restaurant 1 N = 19 L = 12.12, W = 8.25, H = 2.75 0.069

Restaurant 2 N = 23 L = 25.00, W = 14.00, H = 2.83 0.023

Restaurant 3 N = 37 L = 26.25, W = 20.00, H = 3.63 0.019

Restaurant 4 N = 48 L = 21.88, W = 16.00, H = 3.00 0.046

Restaurant 5 N = 67 L = 13.87, W = 10.95, H = 4.40 0.100

Movie theater 1 N = 240 L = 22.89, W = 18.00, H = 11.25 0.052

Movie theater 2 N = 112 L = 12.72, W = 10.00, H = 7.00 0.126

Movie theater 3 N = 270 L = 24.72, W = 19.44, H = 12.15 0.046

Movie theater 4 N = 400 L = 18.94, W = 14.80, H = 9.30 0.153

Movie theater 5 N = 720 L = 36.00, W = 28.30, H = 17.68 0.040

Conference 1 N = 9 L = 6.50, W = 4.00, H = 3.12 0.110

Conference 2 N = 11 L = 7.98, W = 3.76, H = 2.79 0.131

Conference 3 N = 16 L = 10.00, W = 4.09, H = 2.90 0.135

Conference 4 N = 17 L = 11.84, W = 5.20, H = 2.91 0.095

Conference 5 N = 24 L = 11.21, W = 6.70, H = 2.81 0.114

3.1. Baseline Model Dynamics

In order to evaluate the airborne pandemic spread dynamics in the different types of
rooms, we computed the pandemic spread for 90 min for each room, each time picking
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a different infected individual in a uniform distribution. We repeated the simulation
100 times. The results of the simulation are shown in Figure 4, where the x-axis is the time
passed in minutes from the beginning of the pandemic, and the y-axis indicates the portion
of the population in each epidemiological state where S, E, I, and R stand for susceptible,
exposed, infected, and recovered, respectively.
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(c) Movie theater.
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(d) Restaurant.

Figure 4. The SEI over time for each type of room, shown as mean ± standard deviation. The results
are computed as a result of 100 realisations for each room and 5 rooms for each room type (n = 500).

3.2. Pandemic Intervention Policies

PIPs are all the actions of individuals that aim to control the pandemic spread. In-
deed, policy makers use multiple types of PIPS, such as lockdowns [81] and artificial job
separations [25]. For airborne pandemics, mask-wearing PIP is considered efficient and
was used for the COVID-19 pandemic [82] and the influenza pandemic [83] to name a few.
However, in practice, masks differ in their effectiveness and the portion of the population
that wears them [81,82,84]. Hence, we define the mask-wearing PIP using two parameters
η ∈ [0, 1] and κ ∈ [0, 1] that stand for the portion of the population that wears a mask and
the portion of the pathogen particles filtered by the mask, respectively. The reduction of
the mask’s effectiveness over time is neglected due to the short-horizon duration of the
simulation [84].

In addition, air ventilation is also considered an effective PIP for airborne pan-
demics [44,48,85]. Unlike other PIPs, air ventilation is highly affected by the room’s
topology in directed and undirected ways. For example, the location of a window, along-
side its size and the outdoor air temperature can alter the pandemic spread. Thus, we
defined a simplified version of air ventilation, assuming a centralized air ventilation system
that removes a portion χ of the pathogen particles from the air in the room in a uniform way
and occurs in a discreet manner every ζ time steps. This definition is identical to mixing
the air in the room with fresh air at a proportional portion in a uniformly distributed way.
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Figure 5a–h present the model sensitivity for both the mask-wearing and air-ventilation
PIPs, divided into the four room types. For the mask-wearing PIP, the x-axis shows the rate
of the average quality of mask-wearing in reducing infection rate, and the y-axis shows
the portion of the population that wears masks. Similarly, for the air-ventilation PIP, the
x-axis shows the portion of the pathogen particles that are removed in each ventilation
χ, and the y-axis shows the rate in minutes that the air-ventilation occurs ζ. The heat
maps present the average portion of exposed individuals out of the population after 90
min which is computed from 500 realisations (100 realisations for each room, 5 rooms for
each room type). For each realisation, the infected individual is chosen randomly as are the
individuals that wear masks.
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(b) Classroom—air ventilation.
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(c) Conference—masks.
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(d) Conference—air ventilation.
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(e) Movie theater—masks.
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(f) Movie theater—air ventilation.
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(g) Restaurant—masks.
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(h) Restaurant—air ventilation.

Figure 5. The influence of mask-wearing and air-ventilation PIPs on the number of infected individu-
als over a period of 90 min (an h and a half). The results are shown as the average value of all the
rooms from the same type.

3.3. Model Sensitivity Analysis

The proposed model is evaluated above for the case of COVID-19, as indicated by
Table 1. These values would change for different pathogens and therefore the obtained
results as well. In order to evaluate the sensitivity of the proposed model to the parameter
values, we tested two properties of the model: the number of pathogen particles needed
to infect an individual and the mask efficiency. We chose these two parameters as one
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is associated with the infection rate (commonly denoted by β in extended SIR models)
and therefore a property of the pathogen, and the latter indicates the efficiency of a PIP
to the pandemic spread which also changes during the course of the pandemic due to
technological developments. We assumed 12% of the population wears masks, following
measurements from the beginning of the COVID-19 pandemic (March 2020) in the US [82].
Figure 6 presents the result of this analysis, where the average portion of exposed individ-
uals out of the population after 90 min for n = 200 realisations (10 realisations for each
room in Table 2) is used as the evaluation metric. In order to analyze the results shown in
Figure 6 analytically, we utilized the SciMED symbolic regression tool [86], obtaining:

E(t = 90) ≈ 5.31 · 10−1 − 2.72 · 10−9(φδ − ln(φδ))− 4.75 · 10−2κ − 7.57 · 10−4κ2, (4)

with a coefficient of determination R2 = 0.628.
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Figure 6. A sensitivity analysis of the infection rate as a function of the mask’s efficiency and the
number of pathogens needed to infect an individual. The results are shown as the average value of
all the rooms in Table 2 with 10 realisations each.

4. Discussion

We have explored the airborne pandemic spread for a small size population sharing a
room. We used a combined CFD and SEI model for airflow and epidemiological dynamics,
respectively. We evaluated the pandemic spread in four types of rooms: classroom, confer-
ence room, movie theater, and restaurant, using high-resolution spatial data obtained by a
LiDAR and by simulating the air movement dynamics with a relatively small step in time
to accurately capture all temporal dynamics.

We found that the spread dynamics between the four different room types are statisti-
cally different with a p-value of (0.0014) using Levene’s test [87]. Moreover, we computed
a pair-wise Welch’s t-test showing that each pair of room types has statistically different
dynamics with a worse p-value of 0.046 [88]. Thus, the pandemic spread dynamics have
a consistent relationship with the distribution of the population in the room and its ge-
ometrical configuration, as shown in Figure 4. In particular, the population distribution
has more influence on the pandemic spread than the overall density of the population.
This is limited to scenarios similar to the ones examined in this study. For instance, the
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average restaurant’s density is 0.054 [person/m3] with 0.033 standard deviation, while
movie theaters’ density is 0.063± 0.046 [person/m3], as shown in Table 2. Despite this,
the pandemic spread in both cases is statistically significantly different with a p-value of
0.024 (obtained from a two-sided paired t-test). Hence, the well-mixed assumption does
not hold for density-related approximations even for a short duration as had been believed
before [89,90]. Nevertheless, for the case of a relatively large population of a few hundred
individuals found in the movie theater, our model predicts a similar pandemic spread rate
as found by [48,91]. This can be explained by the influence of breathing zone infection
versus indirect infection [92]. One can see from Figure 3 that individuals in the confer-
ence room are facing each other and the intersection of the breathing zone is much larger
compared to the movie theater where individuals are facing a screen, and there is enough
distance between any two individuals. As a result, as presented in Figure 4, the portion of
exposed individuals in the conference room is much higher on average compared to the
movie theater for the same duration. That said, these results provide an upper boundary to
the realistic pandemic spread in restaurants and movie theaters as these have ventilation
systems that reduce the infection rate.

When introducing mask-wearing or artificial air ventilation (AAV), we show that
mask-wearing consistently outperforms AAV in reducing the pandemic spread over all
four room types, as shown in Figure 5. Nonetheless, the mask-wearing PIP requires the
participation of the population which is known to be harder to obtain over long periods of
time [93–95]. On the other hand, even a low level of air ventilation, such as a replacement
of 20% of the air in the room every 30 min, results in 7.25 percent improvement compared
to a room without any air ventilation and can be controlled more easily than mask-wearing.
These results agree with the outcomes proposed by [96].

A sensitivity analysis of the pathogen’s infection rate, as indicated by the number
of pathogens required to infect an individual, and the mask’s efficiency as presented in
Figure 6 and Equation (4) reveal a sub-linear connection between the pathogen’s infection
rate and the number of infected individuals on average. Similarly, there is mostly a linear
correlation between mask efficiency and the number of infected individuals.

Our analysis shows that PIPs to limit shared room airborne pandemic spread are
needed in most indoor spaces whenever COVID-19 is spreading in a community. These
results are even more relevant with more contagious pathogens such as measles [97,98].
The proposed model may be useful in the design and renovation of building systems. In
particular, one can integrate it into graph-based spatio-temporal epidemiological models
of buildings, such as those proposed by [31], in order to obtain more accurate pandemic
spread dynamics. In this work, we studied only mask-wearing and AAV measures to
reduce pandemic spread, but other measures, such as avoiding intense physical activities,
shortening the duration of occupancy, social distancing, and additional virus removal
through ventilation should be considered when evaluating pandemic spread at a room-
level and planning intervention policies. The combination of several PIPs is already
used [38,99,100], showing promising outcomes. The simultaneous usage of multiple PIPs
in a single room is expected to have similar outcomes.

Of note, the values reported in the analysis are based on the first (source) strain of the
COVID-19 pandemic. Later strains of COVID-19 are known to be more aggressive with a
higher infection rate (as reflected in the number of pathogen particles infectious individuals
generate and how susceptible individuals become infected) which might significantly alter
the results. In addition, the computation of the CFD model is considered computationally
expensive and therefore not feasible for large-scale models handling cities and countries.
For this research, we used a server with four GTX 1080 Ti (Nvidia) GPUs and 16-Core (Intel
Xeon) LGA 3647 CPU that computed for 147 h to obtain the simulation outputs due to the
high spatial and temporal resolution used in the simulations. Future research could study
the trade-off between simulation accuracy and computational efficiency for the different
spatial grids and time-step sizes. In addition, these results obtained by the proposed model
and simulator are not validated on empirical data. While the CFD and SEI models were
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validated separately multiple times in the past, their combination in general and in the
context of breathing individuals in a room is not. That said, complete validation of the
proposed model is not feasible as one would need to populate a room with individuals and
sample the number of infected individuals over time. However, an experiment that aims to
infect individuals with a pathogen is unethical (for a good reason), and thus the experiment
required to validate the model is impossible. One can argue that just simulating the airflow
alone without the pandemic model can be sufficient. However, the novelty of the proposed
model lies in breathing dynamics and their influence on the infection rate. This influence
is not captured by such a validation, so it is deemed insufficient. A potential solution
to this issue is the usage of a machine that mimics the breathing pattern of individuals.
Nevertheless, the use of such a machine raises another validation issue, since one must
demonstrate that the proposed machine accurately reproduces human breathing patterns.
Moreover, one would need to sample the dynamics multiple times (due to the stochastic
behavior of individuals) with machine populations that include several dozens to hundreds
in order to reproduce the proposed results (see Table 2). This, by itself, would be extremely
expensive and unreachable for most academic labs.

5. Conclusions

The model developed in this study integrates a highly detailed 3D geometrical con-
figuration of a room obtained using a LiDAR scanning device with a spatio-temporal
pandemic spread model that is constructed from an SEIR-based epidemiological model
with a CFD-based airflow model. The proposed model allows us to examine the influence
of different room types on an airborne pandemic spread. In addition, the influence of
mask-wearing and air ventilation at the room-level with relatively small populations and
time duration on pathogen spread is analyzed.

The proposed model is implemented for the COVID-19 outbreak. These spatio-
temporal interactions allow one to explore the reciprocal effects of both spatial and temporal
PIP on the spread of the pandemic during different social activities. An example is the
effect of mask-wearing in a movie theater, as shown in Figure 5e. The inclusion of these
interactions provides a highly detailed representation of how airborne pathogens move
from one host (individual) to another. Thus, these improve the accuracy of the model’s
forecasts and allow for multidimensional analysis of the impact of PIPs.

Our results indicate that policy makers need to consider the unique interactions of
individuals in enclosed spaces population when considering optimal PIPs which involve
different policies for different spaces such as restaurants and classrooms. We found that
the population distribution in a space influences AAV primarily through the amount
of breathing zone infections. Thus, given mask-wearing and AAV configurations, one
can further control pathogen spread by controlling breathing zone infection using social
distancing and other methods.

The proposed model assumes that individuals are not moving, the AAV is affecting
all air in the room at once, and the temperature is constant. In future work, we can relax
these assumptions in order to obtain a more realistic representation of the airborne spread
dynamics. Moreover, an investigation of a multi-strain and multi-mutation pandemic at
the room-level is also a promising research direction, following recent studies on larger
scales [29,101–105].
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