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Abstract: Income modeling is crucial in determining workers’ earnings and is an important research
topic in labor economics. Traditional regressions based on normal distributions are statistical models
widely applied. However, income data have an asymmetric behavior and are best modeled by
non-normal distributions. The objective of this work is to propose parametric quantile regressions
based on two asymmetric income distributions: Dagum and Singh–Maddala. The proposed quantile
regression models are based on reparameterizations of the original distributions by inserting a
quantile parameter. We present the reparameterizations, properties of the distributions, and the
quantile regression models with their inferential aspects. We proceed with Monte Carlo simulation
studies, considering the performance evaluation of the maximum likelihood estimation and an
analysis of the empirical distribution of two types of residuals. The Monte Carlo results show that
both models meet the expected outcomes. We apply the proposed quantile regression models to a
household income data set provided by the National Institute of Statistics of Chile. We show that
both proposed models have good performance in model fitting. Thus, we conclude that the obtained
results favor the Singh–Maddala and Dagum quantile regression models for positive asymmetrically
distributed data related to incomes. The economic implications of our investigation are discussed in
the final section. Hence, our proposal can be a valuable addition to the tool-kit of applied statisticians
and econometricians.

Keywords: Birnbaum–Saunders distribution; Dagum distribution; income data and distributions;
fractile regression; Singh–Maddala distribution; statistical reparameterizations

MSC: 62J05

1. Introduction

Income modeling is essential in determining workers’ earnings and is an important
research topic in labor economics. Income data are often modeled using mean-based
regressions based on normality, but income is unequally distributed. Thus, this type of data
usually has an asymmetric behavior, and then the mean is not an appropriate centrality
measure. Hence, quantile regression is generally more helpful in this context [1–3]. Quantile
regression is a robust alternative to traditional mean-based models and is being widely
applied [4,5]. This is because instead of using the mean, these models are based on quantiles,
such as median [6]. The quantile approach provides flexibility in modeling, as it allows us
to consider the effects of covariates throughout the whole spectrum of the response. Thus,
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quantile regression also permits us to include the impact on the median, which is a measure
of central tendency better than the mean in an asymmetric framework.

Income modeling begins in [7], stating a law on how the income distribution works.
Then, this law suggested the well-known Pareto distribution. Such a distribution has set
a reference for other models, such as the log-normal and gamma distributions, to show
their potential when describing incomes [8,9]. Even though the Pareto, log-normal, and
gamma models [10,11] are the most used distributions to describe income data, because
of their abilities to describe this type of data, they have limitations. On the one hand, the
Pareto model is appropriate to describe only the upper tail of the distribution. On the
other hand, the log-normal and gamma distributions perform poorly in describing both
the upper and lower tails of the income distributions. Other income distributions, such as
the Dagum and Singh–Maddala models, have outperformed the Pareto, log-normal, and
gamma distributions when fitting real income data [12,13].

The Dagum distribution was proposed in [14,15] and is widely flexible [16]. This
distribution has strictly decreasing and unimodal probability density functions (PDFs),
and allows us to fit different types of income data well. The distribution obeys the weak
Pareto law, that is, it asymptotically approaches the Pareto distribution. The Dagum model
accommodates heavy tails well and it has other characteristics commonly found in income
data that are not shared by well-known distributions—such as the log-normal and Pareto
models [13,17,18]. The Singh–Maddala distribution was derived from the concept of hazard
rate, an approach widely used in the reliability literature [19]. The Singh–Maddala model
also obeys the weak Pareto law, and one of its advantages is that it is more flexible than
other income distributions. The Dagum and Singh–Maddala distributions are special cases
of the generalized beta distribution of the second kind; for more details on these models,
one may refer to the works presented in [17,20–22].

Several parametric quantile regression models have been proposed in the literature
considering diverse distributions [3,23–35]. The reader is referred to [36] for a full overview
of parametric quantile regressions, their applications and computational implementations,
which are helpful to model indexes, proportions, and rates. However, to the best of our
knowledge, parametric quantile regressions based on the Dagum and Singh–Maddala
distributions have not been considered until now. Therefore, the objective of this work is
to derive novel parametric quantile regressions based on the Dagum and Singh–Maddala
distributions. We first introduce reparameterizations of these two distributions by inserting
quantile parameters and then developing the new regression models. We demonstrate
that the proposed models outperform the recently proposed Birnbaum–Saunders quantile
regression [37,38] in terms of model fitting.

The rest of this article proceeds as follows. In Section 2, we describe the Dagum
and Singh–Maddala distributions and propose reparameterizations of these distributions
in terms of a quantile parameter. In this section, we also state some properties of such
distributions, including their modes and moments. In Section 3, we introduce the quantile
regression models, estimate their parameters using the maximum likelihood (ML) method,
and present residuals as a diagnostic tool. In this section, we also carry out a Monte Carlo
simulation study to evaluate the performance of the ML estimators and of the generalized
Cox–Snell (GCS) and randomized quantile (RQ) residuals. Section 4 applies the Dagum and
Singh–Maddala quantile regressions to income data from Chile. In Section 5, we present
some economic statements, conclusions, and future work.

2. Traditional and Quantile-Based Income Distributions

In this section, we describe the standard Singh–Maddala and Dagum distributions
along with the proposed quantile-based reparameterizations of these distributions, which
will subsequently be helpful for developing the parametric quantile regression models. We
also present properties for each model, including their modal values and moments.



Mathematics 2023, 11, 448 3 of 25

2.1. Singh–Maddala Distribution

If a random variable Y has a Singh–Maddala distribution with shape (a, q > 0) and
scale (b > 0) parameters, then we use the notation Y ∼ SM(a, b, q).

The Singh–Maddala PDF and cumulative distribution function (CDF) are given by

fSM(y; a, b, q) =
a q(y/b)a−1

b[1 + (y/b)a]1+q , FSM(y; a, b, q) = 1− [1 + (y/b)a]−q, y > 0, (1)

respectively. The Singh–Maddala distribution includes as special cases the Lomax distribu-
tion when a = 1, and the log-logistic distribution when q = 1. If Y follows a Singh–Maddala
distribution, then 1/Y follows a Dagum distribution, and vice versa. The τ-th quantile of
Y ∼ SM(a, b, q) is obtained by inverting the CDF given in (1), which yields

q(τ; a, b, q) = bc1/a
q , cq = (1− τ)−1/q − 1, 0 < τ < 1. (2)

2.2. Quantile-Based Singh–Maddala Distribution

From the quantile function stated in (2), we find that the most parsimonious way of
conducting the reparameterization is using the scale parameter b. Thus, we can write

b = γc−1/a
q ,

where γ = q(τ; a, b, q) > 0. Then, the quantile-based Singh–Maddala (QSM) PDF is
given by

fQSM(y; a, γ, q) =
aqcq(y/γ)a−1

γ[1 + cq(y/γ)a]1+q , y > 0,

and we employ the notation Y ∼ QSM(a, γ, q).
If Y ∼ QSM(a, γ, q), then the following properties hold:

(QSM1) Mode [20,39]: (
a− 1

a q + 1

)1/a

, a > 1.

(QSM2) Moments [20,39]:

E(Yr) =
qγr

cr/a
q

B(1 + r/a, q− r/a), −a < r < aq,

where B denotes the beta function.

(QSM3) Truncated moments [20]:

E(Yr1{Y>x}) =
aqγr(γ/x)aq−r

(aq− r)cq
q

2F1

(
1 + q, q− r

a
; q− r

a
+ 1;− (γ/x)a

cq

)
, aq > r,

where 2F1 denotes the Gauss hypergeometric function and 1 is the indicator function.

2.3. Dagum Distribution

The PDF and CDF of a random variable Y following a Dagum distribution with shape
(a, p > 0) and scale (b > 0) parameters, denoted by Y ∼ DA(a, b, p), are given by

fDA(y; a, b, p) =
ap(y/b)ap−1

b[1 + (y/b)a]1+p , FDA(y; a, b, p) =
[
1 + (y/b)−a]−p, y > 0,

respectively.
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Notice that fDA(y; a, b, p) = (y/b)a(p−1) fSM(y; a, b, p) and that when p = 1 both PDFs
coincide with the log-logistic distribution. The τ-th quantile of Y ∼ DA(a, b, p) is stated as

q(τ; a, b, p) = b ep
−1/a, ep = τ−1/p − 1, 0 < τ < 1.

2.4. Quantile-Based Dagum Distribution

By observing the three parameters of the traditional Dagum distribution, isolating
the scale parameter according to the quantile produces the simplest form of the new
quantile-based Dagum distribution. For γ = q(τ; a, b, p) > 0, this form is represented as

b = γep
1/a.

Hence, we employ the notation Y ∼ QDA(a, γ, p) and PDF of Y can be written as

fQDA(y; a, γ, p) =
a p(y/γ)ap−1

γep p[1 + e−1
p (y/γ)a]1+p

, y > 0.

If Y ∼ QDA(a, γ, p), then the following properties hold:

(QDA1) Mode [39]:

γ e1/a
p

(
a p− 1
p + 1

)1/p

, ap > 1.

(QDA2) Moments [39]:

E(Yr) = γrer/a
p B

(
a +

r
p

, 1− r
p

)
, −a p < r < p.

(QDA3) Truncated moments:

E(Yr1{Y>x}) =
pγr(γ/x)a(1−ar)

(1− ar)e−p
p

2F1

(
1 + p, 1− ar; 2− ar;− (γ/x)a

e−1
p

)
, ar < 1.

Proof of Property (QDA3). If Y ∼ QDA(a, γ, p), then

E(Yr1{Y>x}) =
∫ ∞

x
yr a p(y/γ)ap−1

γep
p[1 + e−1

p (y/γ)a]1+p
dy.

Taking the change of variables z = e−1
p (y/γ)a and dz = ae−1

p (y/γ)a−1dy/γ, we obtain

E(Yr1{Y>x}) = p γr ear+p−1
p

∫ ∞

e−1
p (x/γ)a

zar+p−1

(1 + z)1+p dz.

Consider
∫ ∞

u xa−1(1 + bx)−νdx = ua−νb−ν(ν− a)−1
2F1(ν, ν− a; ν− a + 1;−1/(bu)),

for ν > a; see Eq. (3.194.2) in [40]. Then, we have that

E(Yr1{Y>x}) =
pγr(γ/x)a(1−ar)

(1− ar)e−p
p

2F1

(
1 + p, 1− ar; 2− ar;− (γ/x)a

e−1
p

)
, ar < 1,

and the proof follows.

2.5. Summary Table and PDF Plots

Table 1 presents the Singh–Maddala and Dagum distributions in their original and
quantile-based versions.
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Figure 1 displays PDF shapes of the quantile-based income distributions for different
combinations of parameters, considering scenarios where a, p, q, and γ are fixed. In the
Singh–Maddala model, we can see that a influences the kurtosis and skewness, while q
changes the kurtosis, as it decreases when q increases. In the Dagum model, we see a
similar pattern for a, changing both kurtosis and skewness, while p affects the kurtosis.
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Figure 1. Quantile-based Singh–Maddala (a–c) and Dagum (d–f) PDFs for the indicated values of the
parameters. Source: data and own elaboration of the authors.
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Table 1. PDF of the indicated income distribution for the traditional and quantile parameterizations.

Distribution Traditional PDF γ: τ-th Quantile Substitution Quantile-Based PDF

Singh–Maddala
aq(y/b)a−1

b[1 + (y/b)a]1+q γ = bcq
1/a b =

γ

cq1/a
a qcq(y/γ)a−1

γ[1 + cq(y/γ)a]1+q

Dagum
ap(y/b)ap−1

b[1 + (y/b)a]1+p γ = b ep
−1/a b = γ ep

1/a a p(y/γ)ap−1

γep p[1 + e−1
p (y/γ)a]1+p

3. Income Quantile Regression Models

In this section, we formulate income quantile regressions models as well as the es-
timation of their parameters and model diagnostics. Moreover, we present Monte Carlo
simulation studies for each reparameterized quantile model, considering different parame-
ters and sample size scenarios.

3.1. Formulation

Let Y1, . . . , Yn be independent random variables such that each Yi, for i ∈ {1, . . . , n},
has PDF given by some reparameterized income distribution defined in Table 1, for a fixed
(known) level τ ∈ (0, 1) associated with the quantile of interest. Then, in the formulation of
the Singh–Maddala and Dagum quantile regression models, the parameter γ of Yi assumes
the functional relation stated as

g(γi) = x>i β(τ), (3)

where β(τ) = (β0(τ), . . . , βk(τ))
> is the vector of the unknown regression coefficients,

which are assumed to be functionally independent, with β(τ) ∈ R(k+1) and k + 1 < n. In
addition, we have that xi = (xi1, . . . , xil)

> are the values of l covariates, for i ∈ {1, . . . , n}.
Furthermore, we assume that the design matrix X = (x1, . . . , xn)> has rank l. The link
function g: R+ → R defined in (3) must be strictly monotone, positive, and at least twice
differentiable, with g−1 being the inverse function of g. Here, we work with the logarithm
function as the link structure since it is widely used and more flexible in our simulation
studies.

3.2. Estimation

Consider a sample of size n, Y1, . . . , Yn say, such that Yi ∼ QSM(a, γi, q), with i ∈
{1, . . . , n}. Then, the corresponding likelihood function for θ = (β(τ)>, a, q)> is ex-
pressed as

L(θ) =
n

∏
i=1

aqcq(y/γi)
a−1

γi[1 + cq(y/γi)a]1+q , (4)

where γi is given in (3). By applying logarithm in (4), we obtain the log-likelihood func-
tion as

`(θ) =
n

∑
i=1

{[
(a− 1) log(aqcq(y/γi))

]
−
[

log(γi) + (1 + q) log(1 + cq(y/γi)
a)
]}

. (5)

Now, consider a sample of size n, Y1, . . . , Yn say, such that Yi ∼ QDA(a, γi, p), with
i ∈ {1, . . . , n}. Then, the corresponding likelihood function for θ = (β(τ)>, a, p)> is
established as

L(θ) =
n

∏
i=1

ap(y/γi)
ap−1

γiep p[1 + e−1
p (y/γi)a]1+p

. (6)

By applying logarithm in (6), we obtain the log-likelihood function as

`(θ) =
n

∑
i=1

{[
(ap− 1) log(ap(y/γi))

]
−
[
p log(epγi) + (1 + p) log(1 + e−1

p (y/γi)
a)
]}

. (7)
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To obtain the ML estimate of θ, it is necessary to maximize the log-likelihood functions
defined in (5) and (7). Therefore, we need to differentiate the log-likelihood functions
to find the score vector ˙̀(θ) and then equate it to zero, providing the likelihood equa-
tions. They are solved using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
method [41]. This method is implemented in the R software. Under some regularity
conditions [42] and when n is large, the asymptotic distribution of the ML estimator
θ̂ = (β̂(τ)>, â, q̂)> (QSM) or θ̂ = (β̂(τ)>, â, p̂)> (QDA) is asymptotically multivariate
normal, that is, θ̂ ∼̇Nk+3(θ, Σ−1(θ)), where ∼̇ means ‘approximately distributed’ and Σ(θ)
is the expected Fisher information matrix, which is given by Σ(θ) = E[−∂`(θ)/∂θ∂θ>]. A
consistent estimator of Σ(θ) is the estimated observed Fisher information matrix, given by
K(θ̂) = −∂`(θ)/∂θ∂θ>|θ=θ̂. Then, we can approximate Σ(θ) by K(θ̂).

3.3. Diagnostics

Departures from regression model assumptions and goodness of fit are often assessed
utilizing residual analysis. Particularly, we use the GCS and RQ residuals defined as
r̂GCS

i = − log(1 − FY(yi; θ̂)) and r̂RQ
i = Φ−1(FY(yi; θ̂)), for i ∈ {1, . . . , n}, where FY is

quantile-based Singh–Maddala or Dagum CDF, and θ̂ is the ML estimate of θ. If the model
is correctly specified, the GCS residual is asymptotically standard exponential distributed,
while the RQ residual is asymptotically standard normal distributed. With both residuals,
graphical techniques, such as quantile–quantile (QQ) plots with simulated envelope, can
be used to assess the adequacy of the distribution assumption.

3.4. Simulations

Next, we present Monte Carlo simulations for each reparameterized quantile model,
considering different parameters and sample size scenarios. The first part of the study
evaluates the performance of the ML estimation of the model parameters, while the second
one assesses the empirical distribution of the GCS and RQ residuals. Both studies consider
simulated data generated from the Singh–Maddala and Dagum quantile regression models
according to γi = exp(β0(τ) + β1(τ)x1i + β2(τ)x2i), for i ∈ {1, . . . , n}.

The Monte Carlo simulation experiments were performed using the R software; see
www.r-project.org, accessed on 9 January 2023. The simulation scenario considers the
following settings: sample sizes n ∈ {50, 100, 150, 250, 600}, regression coefficients β(τ) =
(1, 0.5, 1.5)>, quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}, (a, q) = (5, 1) for the Singh–Maddala
model, and (a, p) = (1, 0.5) for the Dagum model, with 500 Monte Carlo replications for
each sample size. Covariate values x1i, x2i are obtained from a uniform distribution in the
interval (0, 1). To study the ML estimators, we compute the relative bias (RB), root of the
mean square error (RMSE), and coverage probability (CP). We expect that, as the sample
size increases, the RB and RMSE reduce, and the CP approaches the 95% nominal level.
The empirical RB, RMSE, and CP are computed from the Monte Carlo replications as

R̂B(θ̂) =

∣∣∣∣∣ 1
m ∑m

i=1 θ̂(i) − θ

θ

∣∣∣∣∣, R̂MSE(θ̂) =

(
1
m

m

∑
i=1

(θ̂(i) − θ)2

) 1
2

, ĈP(θ̂) =
1
m

m

∑
i=1

1{θ∈S},

where S ≡ [L(i)
θ̂

, U(i)
θ̂
], θ and θ̂(i) are the true parameter value and its respective i-th ML

estimate, m is the number of Monte Carlo replications, 1 is as mentioned the indicator
function taking the value 1 if θ ∈ [L(i)

θ̂
, U(i)

θ̂
], and 0 otherwise, where L(i)

θ̂
and U(i)

θ̂
are the

i-th lower and upper limits of the 95% confidence interval, respectively.
Empirical RB, RMSE, and CP values based on Monte Carlo simulations for the Singh–

Maddala model parameters with a = 5 and q = 1 are shown in Figures 2–4, whereas
Figures 5–7 display these values for the Dagum model parameters with a = 5 and p = 0.5.
Note that the simulations produced the expected outcomes. As the sample size increases,
the RB and RMSE decrease, and the CP tends to 95%. The figures present results similar to
those found for both Singh–Maddala and Dagum models.

http://www.r-project.org


Mathematics 2023, 11, 448 8 of 25

100 200 300 400 500 600

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

n

R
B

β
^

0
(τ = 0.1)

β
^

0
(τ = 0.25)

β
^

0
(τ = 0.5)

β
^

0
(τ = 0.75)

β
^

0
(τ = 0.9)

100 200 300 400 500 600

0
.0

0
0

0
.0

1
0

0
.0

2
0

n

R
B

β
^

1
(τ = 0.1)

β
^

1
(τ = 0.25)

β
^

1
(τ = 0.5)

β
^

1
(τ = 0.75)

β
^

1
(τ = 0.9)

100 200 300 400 500 600

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

n

R
B

β
^

2
(τ = 0.1)

β
^

2
(τ = 0.25)

β
^

2
(τ = 0.5)

β
^

2
(τ = 0.75)

β
^

2
(τ = 0.9)

100 200 300 400 500 600

0
.0

0
0
.0

5
0
.1

0
0
.1

5

n

R
B
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Figure 2. Plots of the empirical RB based on Monte Carlo simulation results for the indicated τ

and Singh–Maddala model parameter with a = 5 and q = 1. Source: data and own elaboration of
the authors.
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â(τ = 0.1)
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Figure 3. Plots of the empirical RMSE based on Monte Carlo simulation results for the indicated τ

and Singh–Maddala model parameter with a = 5 and q = 1. Source: data and own elaboration of
the authors.
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Figure 4. Plots of the empirical CP based on Monte Carlo simulation results for the indicated τ

and Singh–Maddala model parameter with a = 5 and q = 1. Source: data and own elaboration of
the authors.
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Figure 5. Plots of the empirical RB based on Monte Carlo simulation results for the indicated τ and
Dagum model parameter with a = 5 and p = 0.5. Source: data and own elaboration of the authors.
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Figure 6. Plots of the empirical RMSE based on Monte Carlo simulation results for the indicated
τ and Dagum model parameter with a = 5 and p = 0.5. Source: data and own elaboration of the
authors.
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â(τ = 0.25)
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Figure 7. Plots of the empirical CP based on Monte Carlo simulation results for the indicated τ and
Dagum model parameter with a = 5 and p = 0.5. Source: data and own elaboration of the authors.

Next, we analyze the performance of GCS and RQ residuals with the sample mean,
median, standard deviation (Sd), coefficient of skewness, and coefficient of kurtosis.
Figures 8–11 show empirical statistical indicators based on Monte Carlo simulations of the
GCS and RQ residuals of the Singh–Maddala and Dagum models. The reference values of
mean, median, Sd, skewness, and kurtosis are 1, 0.69, 1, 2, and 6, respectively, for the GCS
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residuals, and 0, 0, 1, 0, and 0, respectively, for the RQ residuals. From these figures, note
that, as the sample size increases, the values tend to the expected results for each τ. Then,
we will use both residuals to verify the fit of our models to income data.
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Figure 8. Plots of the listed statistical indicator based on Monte Carlo simulations of the GCS residuals
for the Singh–Maddala model with a = 5, q = 1, and the indicated value of τ. Source: data and own
elaboration of the authors.
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Figure 9. Plots of the listed statistical indicator based on Monte Carlo simulations of the RQ residuals
for the Singh–Maddala model with a = 5, q = 1, and the indicated value of τ. Source: data and own
elaboration of the authors.
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Figure 10. Plots of the listed statistical indicator based on Monte Carlo simulations of the GCS
residuals for the Dagum model with a = 1 and p = 0.5, and the indicated value of τ. Source: data
and own elaboration of the authors.
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Figure 11. Plots of the listed statistical indicator based on Monte Carlo simulations of the RQ residuals
for the Dagum model with a = 1 and p = 0.5, and the indicated value of τ. Source: data and own
elaboration of the authors.
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4. Application to Income Data

In this section, we model income real data via parametric quantile regressions.

4.1. Data Set and Variables

We use the 2016 Chilean household income data set, provided by the National In-
stitute of Statistics in Chile (available at www.ine.cl/estadisticas/sociales/ingresos-y-
gastos/encuesta-suplementaria-de-ingresos, accessed on 9 January 2023), to illustrate
the proposed parametric quantile regression models. This data set was also used in [37],
which introduced the Birnbaum–Saunders quantile regression model. While the Birnbaum–
Saunders model is not a distribution commonly used for income data [43–47], the Singh–
Maddala and Dagum distributions are. Then, we assess if these models can produce better
fits than the Birnbaum–Saunders model.

The household income is the response variable (Y). In contrast, the covariates are the
total income due to salaries (X1), the total income due to independent work (X2), and the
total income due to retirements (X3). The original dataset contains 107 variables, including
those mentioned above. The variables were selected based on economic and statistical
criteria concerning the response and descriptive analysis conducted in [37]. Moreover,
all incomes are expressed in thousands of Chilean pesos (see www.bcentral.cl for their
equivalence in American dollars, accessed on 9 January 2023).

4.2. Exploratory Data Analysis

Table 2 reports descriptive statistics for the household income. Figure 12 shows the
histogram along with usual and adjusted box plots [48]. Note that these income data have
unimodal and right-skewed behavior, which is the needed scenario to use asymmetric
distributions. Figure 13 shows scatterplots (with correlation) between the income Y and
the covariates X1, X2, and X3. We observe that correlations are reasonable and significant
when testing H0: ρ = 0, where ρ is the correlation coefficient and r is the sample correlation.
Meanwhile, the covariates have almost no linear correlation with each other.

Table 2. Descriptive statistics for the household income data (in thousands of Chilean pesos).

Mean Median Sd Coefficient
of Variation

Coefficient
of Skewness

Coefficient
of Kurtosis Minimum Maximum n

698.80 938.10 837.52 0.89 2.45 11.03 70 5369.90 100
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Figure 12. Histogram and boxplots for the household income data (in thousands of Chilean pesos).
Source: data and own elaboration of the authors.

https://www.ine.cl/estadisticas/sociales/ingresos-y-gastos/encuesta-suplementaria-de-ingresos
https://www.ine.cl/estadisticas/sociales/ingresos-y-gastos/encuesta-suplementaria-de-ingresos
http://www.bcentral.cl
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Figure 13. Scatterplots, sample Pearson correlations (r), and p-values of correlation (ρ) tests H0: ρ = 0
between variables Y, X1, X2, and X3. Source: data and own elaboration of the authors.

4.3. Modeling

We then analyze the household income data using the Singh–Maddala and Dagum
quantile regression models, with link structure expressed as (we use this specification to
compare the results of the proposed models with those of the Birnbaum–Saunders quantile
regression model)

γi = β0(τ) + β1(τ)x1i + β2(τ)x2i + β3(τ)x3i, i ∈ {1, . . . , 100}.

The proposed models are fitted using the function IncomeReg.fit, implemented in
the R software [49] by the authors. The codes are available upon request.

Table 3 presents the ML estimates, computed by the BFGS quasi-Newton method,
standard errors (SEs) and Akaike (AIC) and Bayesian information (BIC) criteria values, for
the Singh–Maddala and Dagum quantile regression models with τ = 0.50. As mentioned
earlier, the results of the Birnbaum–Saunders quantile regression are also presented. Table 3
reveals that the proposed Singh–Maddala and Dagum models provide better adjustments
than the Birnbaum–Saunders model based on the values of log-likelihood, AIC, and BIC.
Remarkably, the Singh–Maddala model has the minimum AIC and BIC values.
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The estimated parameters of the Birnbaum–Saunders, Dagum, and Singh–Maddala
models across τ are shown in Figure 14. From this figure, we observe that the estimates
associated with all the covariates tend to increase as τ increases, as expected.

The QQ plots with a simulated envelope of the GCS and RQ residuals for the models
considered in Table 3 confirm the results presented in Table 3; see Figure 15. Similar results
are obtained when considering τ ∈ {0.10, . . . , 0.90}.

Figure 16 shows 95% prediction intervals from the Birnbaum–Saunders, Dagum, and
Singh–Maddala quantile regression models for the household income data. The predictions
were performed 20 steps ahead. Therefore, a total of 20 observations were not included in
the estimation. From Figure 16, we observe that 95% of the observations are within the limits
of the prediction interval for all the Birnbaum–Saunders, Dagum, and Singh–Maddala
models. Therefore, all the models provide values closer to the nominal 95% level.
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Figure 14. Plots of estimates for the indicated parameter (a–d) and listed model across τ for the
income data. Source: data and own elaboration of the authors.
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Figure 15. QQ plot and its envelope for the indicated model and residual (a–f) for the income data
(τ = 0.50). Source: data and own elaboration of the authors.



Mathematics 2023, 11, 448 22 of 25

Table 3. ML estimate (with estimated SE in parenthesis) of the indicated parameter and model for
the listed fitting measures using the income data.

Parameter Birnbaum–Saunders
(τ = 0.50)

Dagum
(τ = 0.50)

Singh–Maddala
(τ = 0.50)

β0 198.0903 * 150.8307 * 137.8478 *
(22.3166) (3.0771) ( 3.2826)

β1 1.0440 * 1.1173 * 1.1252 *
(0.0870) (0.0636) (0.0569)

β2 1.1090 * 1.2424 * 1.2805 *
(0.1502) (0.1172) (0.1103)

β3 1.0865 * 1.1562 * 1.1730 *
(0.1759) (0.1395) (0.1382)

α 0.3646 *
(0.0087)

a 4.3720 8.3380
(0.5692) (1.4720)

p or q 2.2100 0.4034
(1.0290) (0.1144)

Log-likelihood −692.8373 −686.9182 −685.2337
AIC 1395.675 1385.836 1382.467
BIC 1408.701 1386.740 1383.371

* significant at a level of 5%.
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Figure 16. 95% prediction intervals (20-steps-ahead) from the indicated model for the household
income data. Source: data and own elaboration of the authors.

5. Concluding Remarks
5.1. Economic Statements

Quantile regression models permit a better analysis of household income, which can
have different effects on socio-economic strata. Note that the covariates affect positively
the household income, as expected. Note that the effects of all the covariates increase
with the household income (higher quantiles) in our quantile regression model. For
example, an increase of one thousand Chilean pesos in salaries (X1), increases the 50th
percentile (q = 0.50) of the household income by an amount of $1,125,200 Chilean pesos. As
mentioned, see www.bcentral.cl (accessed on 9 January 2023) for the equivalence between
Chilean pesos and American dollars. Note also that the estimated coefficient for the total
income due to independent work (X2) in our quantile regression model for q = 0.5 is 1.2805.
This suggests that an increase of one thousand Chilean pesos of income due to pensions
provides an average increase of $1,280,500 in household income. Observe that the increase
would not be substantial for most of the population. Similarly, the estimated coefficient for
the total income due to retirements (X3) in our median regression model is 1.1730, which
is greater than the corresponding estimated coefficient in the mean regression model. In
general, we can conclude that economic analyses are more informative using quantile
regression. In the present application, our quantile regression model provided a thorough
tool to analyze income data.

http://www.bcentral.cl
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5.2. Concluding Remarks

As mentioned, several parametric quantile regression models have been proposed in
the literature considering diverse distributions [3,23–35]. The reader is referred to [36] for
a full overview of parametric quantile regressions, their applications, and computational
implementations, which are helpful to model indexes, proportions, and rates. However,
to the best of our knowledge, parametric quantile regressions based on the Dagum and
Singh–Maddala distributions were not considered until now.

In this article, we have proposed parametric quantile regression models based on
the Singh–Maddala and Dagum distributions. The proposed models employed reparam-
eterizations of the original distributions by including the quantile as a parameter. The
maximum likelihood method was used to estimate the model parameters. Monte Carlo
simulation studies were conducted to evaluate the estimators’ performance and the em-
pirical distribution of the generalized Cox–Snell and randomized quantile residuals. The
results empirically showed that the estimators had an excellent performance, and the
residuals presented a good agreement with their reference distributions. We applied the
proposed models to a real data set by modeling the household income as a function of the
following covariates: total income due to salaries, total income due to independent work,
and total income due to retirement. The results were compared to the Birnbaum–Saunders
quantile regression model. We showed that both Singh–Maddala and Dagum models have
a better fit to data than the Birnbaum–Saunders model, with the Singh–Maddala model
also showing a slightly superior performance than the Dagum model. Therefore, the results
favored the use of the Singh–Maddala and Dagum quantile regression models.

5.3. Further Investigation

Covariates may have an effect on the quantiles as well as on the shape parameter.
Based on [50], the joint effect that the covariates may have on both quantiles and the shape
parameter in a regression modeling should be studied. In addition, we plan to analyze
formulations of the model derived in the present investigation under multivariate, spatial,
temporal, and partial least squares structures [44,51–58]. Furthermore, econometrical
formulations may be assumed for the quantile regression model analyzed in the present
study [59–61]. Moreover, the use of censored data and reliability models can also be of
interest to be analyzed [38,45] as well as control charts for quantiles based on covariates [62].
We are planning to conduct studies on these issues in the future.
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