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Abstract: Model predictive control (MPC) is a promising approach to the lateral and longitudinal
control of autonomous vehicles. However, the parameterization of the MPC with respect to high-level
requirements such as passenger comfort, as well as lateral and longitudinal tracking, is challenging.
Numerous tuning parameters and conflicting requirements need to be considered. In this paper, we
formulate the MPC tuning task as a multi-objective optimization problem. Its solution is demanding
for two reasons: First, MPC-parameterizations are evaluated in a computationally expensive simula-
tion environment. As a result, the optimization algorithm needs to be as sample-efficient as possible.
Second, for some poor parameterizations, the simulation cannot be completed; therefore, useful
objective function values are not available (for instance, learning with crash constraints). In this
work, we compare the sample efficiency of multi-objective particle swarm optimization (MOPSO), a
genetic algorithm (NSGA-II), and multiple versions of Bayesian optimization (BO). We extend BO
by introducing an adaptive batch size to limit the computational overhead. In addition, we devise
a method to deal with crash constraints. The results show that BO works best for a small budget,
NSGA-II is best for medium budgets, and none of the evaluated optimizers are superior to random
search for large budgets. Both proposed BO extensions are, therefore, shown to be beneficial.

Keywords: Bayesian optimization; metaheuristics; model predictive control; multi-objective optimization;
controller tuning; vehicle guidance

MSC: 93B45; 93C95; 68T07; 68W50

1. Introduction

In recent decades, automated and autonomous driving has become an important
topic in automotive technology. Particularly good results have been obtained in limited
operational design domains, such as highway driving and park scenarios. In this context,
numerous approaches to longitudinal and lateral control have emerged for driver-assistance
systems and automated driving functions (e.g., [1–6]).

As it became desirable to extend automation and assistance functions into unstructured
situations and more complex traffic scenarios, optimization-based approaches, especially
model predictive control (MPC), were established for vehicle guidance [7]. MPC allows for
us to define the resulting behavior of the vehicles using a cost function and a prediction
horizon. However, the optimization-based methods are accompanied by a high numerical
effort, especially for the nonlinear vehicle dynamics considered here. Therefore, efficient
methods for the treatment of such problems have been developed [8]. However, the
manual tuning of the MPC cost function is challenging for complex, high-level criteria such
as comfort.

As an alternative, numerous optimization approaches have been presented for single-
objective MPC tuning (e.g., [9–14]). This paper provides an example of how to formulate
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the tuning task as a multi-objective black-box optimization problem. Multi-objective
optimization allows for us to simultaneously address conflicting objectives such as comfort
and tracking accuracy. In order to assess an MPC parameterization on a meaningful driving
cycle, an expensive-to-evaluate, closed-loop simulation of the vehicle in its environment
is used. As an additional challenge, objective function values are unavailable for some
parameterizations due to failing simulations (crash constraints [15]). As the simulation
environment is a black box to the optimizer, objectives, tuning parameters, and models can
easily be exchanged with the presented approach.

For single-objective optimization and limited budgets, Bayesian optimization (BO)
has been shown to require less expensive simulations (i.e., it has a better sample effi-
ciency) than population-based metaheuristics for multiple control-related applications [16].
Therefore, multi-objective BO (MOBO) is a promising candidate for the multi-objective
tuning problem. MOBO has seen a fair amount of applications in the control and robotics
community (e.g., [17–20]). In our previous work [21], we also introduced MOBO to MPC
parameter tuning.

However, the choice of the acquisition function heavily influences the sample efficiency
and computational overhead of MOBO. Most of the previous work on MOBO for controller
tuning [17–19] used the so-called expected improvement of hypervolume (EIHV) acquisi-
tion function [22]. However, the expected improvement-matrix (EIM) criterion [23], as well
as Thompson sampling efficient multi-objective optimization (TSEMO) [24], were shown
to have a similar sample efficiency, with less computational overhead than EIHV [23,24].
In our previous work with EIM [21], the computational overhead quickly grew with in-
creasing objective function evaluations. In contrast to EIM and EIHV, TSEMO comes
with a straightforward heuristic for batch evaluations [24] and is, therefore, expected to
scale better.

Previous works on MOBO for controller tuning did not study which version of BO
is more sample-efficient than metaheuristics. Therefore, our work compares the sample
efficiency and the computational overhead of five different MOBO versions and two meta-
heuristics, Multiple Objective Particle Swarm Optimization (MOPSO) and Non-dominated
Sorting Genetic Algorithm II (NSGA-II), on the vehicle guidance task. Additional bench-
marks are random search and grid search. Furthermore, we extend TSEMO to address
crashing simulations and adaptive batch sizes.

The paper is structured as follows. After the introduction, we provide a more detailed
definition of the application-independent multi-objective MPC tuning problem in Section 2.
Afterwards, Section 3 describes and discusses the exemplary MPC tuning framework used
here. The investigated algorithms are presented in Section 4, followed by benchmark results
in Section 5. The results also highlight the practical applications of the presented approach.
After that, the paper concludes with a summary of the results (Section 6).

2. Problem Statement

We formulate the MPC tuning problem as a deterministic multi-objective optimization
problem

min
θ∈RN

J(θ) =[J1(θ), J2(θ), . . . , JM(θ)]

s.t. θmin ≤ θ ≤ θmax

l(θ) = 1.

(1)

with M ≥ 2 individual objective functions and a vector of N decision variables θ =
[θ1, θ2, . . . , θN ]. The individual objective functions Ji(θ) : RN → R, i ∈ {1, 2, . . . M} describe
several aims or targets of the overall control behavior, and the decision variables θi are
specific MPC parameters. The vectors of the upper and lower bounds of the decision
variables are denoted with θmax and θmin, respectively. The set

Θf =
{

θ ∈ RN | θmin ≤ θ ≤ θmax; l(θ) = 1
}

(2)
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is the feasible set of decision vectors representing the feasible domain in the decision space.
In addition to the objective function values, decision variables are also crucial to the

valuation of an MPC parameterization, and whether or not it causes the system to crash. To
formalize this criterion, we defined the function l(θ), which returns 1 in the positive case
and 0 in the crash case. The function is part of the equality constraint of the optimization
problem (1), termed the crash constraint, and thus has a direct influence on the feasible
domain Θf. In case of a system crash l(θ) = 0, objective function values are unavailable.
Note that, in general, there is no analytical description of the function l(θ) for the MPC
tuning problem. This setting is also known as learning with crash constraint [15].

In multi-objective optimization, there is usually no feasible solution that simultane-
ously minimizes all objective functions. Generally, if one objective is improved, other
objectives are degraded. Thus, the superiority of one solution over other solutions cannot
be determined by comparing their objective function values, as in the single-objective opti-
mization case. Therefore, the focus is on Pareto optimal solutions. Here, the goodness of a
solution is determined by its dominance. A feasible solution θa ∈ Θf is said to dominate
another solution θb ∈ Θf, denoted with θa ≺ θb, if, and only if,

∀i ∈ {1, 2, . . . , M} : Ji(θa) ≤ Ji(θb) and

∃j ∈ {1, 2, . . . , M} : Jj(θa) < Jj(θb). (3)

A solution θ∗ ∈ Θf is said to be Pareto-optimal if no other solution exist in the feasible
domain that dominates it. The set of all Pareto optimal solutions in the feasible domain,
denoted Θpo, is called the Pareto optimal solution set. It is defined as:

Θpo = {θ∗ ∈ Θf | ¬∃ θ ∈ Θf : θ ≺ θ∗}. (4)

The set of objective function vectors corresponding to the Pareto optimal solution set Θpo
is the Pareto front. It is defined as:

Jpo =
{

J(θ∗) = [J1(θ
∗), . . . , JM(θ∗)] | θ∗ ∈ Θpo

}
. (5)

This set is also known as the Pareto optimal frontier or Pareto equilibrium surface.
The result of solving the multi-objective optimization problem (1) is the Pareto optimal

solution set Jpo, which is a set of solutions that defines the best tradeoff between competing
objectives. Knowledge of the Pareto optimal solution set and its corresponding Pareto front
Jpo allows for specific MPC parameterizations to be set for specific use cases. Therefore, it
is necessary to decide which objectives are of particular importance for a specific use-case.

In general, solving such a multi-objective optimization problem is very time-consuming
and provides only an approximation of the Pareto front. Therefore, it is important to use a
suitable approach for this purpose, which provides a good approximation of the Pareto
front with low computational effort. The comparison of different methods for MPC tuning
is the main focus of this paper.

In this paper, one MPC parameterization θ is evaluated using a closed-loop simulation
of the vehicle in its environment. This poses two challenges for the multi-objective opti-
mization algorithm. First, an analytical description of the objective function is not available.
Instead, the optimizer can only query the simulation environment with the parameters
and record the responses. This setting is known as black-box optimization. Second, each
simulation takes a considerable amount of time. Therefore the sample efficiency, i.e., an
optimizer’s ability to approximately solve (1) with as few objective function evaluations as
possible, is of major importance.

3. Simulation-Based MPC Tuning for Vehicle Guidance

This section introduces the paper’s specific MPC tuning case study as a special case
of the problem formulated in Section 2. The task is to optimize the parameterization of a
model predictive controller for the longitudinal and lateral guidance of vehicles using a
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simulation. The optimization procedure is repeated several times with each optimization
algorithm in Section 5 to generate statistically significant results. In this context, the test
case is designed so that the optimization time does not prohibitively increase. However,
the problem formulation in Section 2 encompasses a wide variety of alternative use-cases,
and the algorithms presented in Section 4 are not in any way restricted to the following
exemplary test case. Due to the black-box nature of the optimization algorithms, any
kind of simulation environment, vehicle model, objective functions, tuning parameter, and
parameter bounds can be optimized in principle. The practical viability of the optimizers
in more complex settings may be addressed in future work.

3.1. Controller Tuning Framework

To find the optimal MPC parameterizations, we propose a controller tuning framework,
as shown in Figure 1, which consists of two main parts: the parameter optimizer and the
simulation environment. Note that we used the framework for MPC parameter tuning, but
it can easily be adapted for any other type of controller parameter tuning.

Simulation Environment

Cost
Fun.

Pred.
Model

MPC

Pred.
Model

Cost
Fun.

Vehicle
Model

Environment
Model

θ

control
variables

motion
data

position
data

lane
data

Logging

lateral
distance,
desired
velocity

vehicle
states

Parameter Optimizer

PreprocessingDatabaseOptimization

simulation data

responses
Jk,i,Lk

data access

Figure 1. Controller tuning framework consisting of the simulation environment (depicted in blue)
and the parameter optimizer (depicted in orange). The parameter optimizer uses simulation data
from the simulation environment to produce a specific parameter vector θ, used in the MPC. For a
detailed view of the MPC implementation and the variables involved, see Figure 2.

The parameter optimizer handles the complete optimization process. This includes
preprocessing, database and optimization, which receive, store, and pre-process the sim-
ulation data (i.e., calculating the objective function values from the time domain data),
invoking the optimization algorithm with the stored data and querying the simulation
environment with a specific parameter vector θ. How often and in which order these
actions are performed depends on the multi-objective optimization algorithm that is used.
For optimization, we considered different multi-objective Bayesian optimizations (MOBO)
and two metaheuristics, Multiple Objective Particle Swarm Optimization (MOPSO) and
Non-dominated Sorting Genetic Algorithm II (NSGA-II); see Section 4 for details.

To evaluate the control performance of the MPC for a given parameter vector θ, the
simulation environment was utilized. For this purpose, the MPC was simulated in closed-
loop with a nonlinear plant. The plant consisted of two main parts: a vehicle model and an
environment model. The vehicle model was a combination of simple drive train model,
a steering actuator model and a bicycle model, as described in [25]. This determined the
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lateral and longitudinal behavior of the ego vehicle, depending on the control inputs and
the feedback from the environment model. Its outputs were the states of the ego vehicle,
such as its velocity, position, or orientation. Based on the states of the ego vehicle, the
environment model provides input data for the MPC controller. In our case, this was lane
data, obtained using idealized lane detection for a predefined virtual road with two lanes.
Furthermore, the simulation environment had appropriate interfaces with the parameter
optimizer to receive the input data and provide the simulation data.

The simulation environment was implemented using MATLAB/Simulink. As men-
tioned above, the simulation duration has a crucial impact on the overall tuning duration.
Therefore, we minimized the simulation duration by exporting the Simulink model as an
executable that runs fast, standalone simulations. This was achieved using the rapid simu-
lation (RSim) feature of Simulink and allowed for us to repeat simulations with varying
inputs without rebuilding the model.

3.2. MPC for Vehicle Guidance

The subject of our studies is the parameter tuning of the MPC realization presented
in [25]. This MPC realization is designed for longitudinal and lateral vehicle control and
is based on the so-called model predictive path-following control (MPFC) approach, a
nonlinear MPC approach presented in [26]. We will provide a brief overview of this MPC
realization in the following. For a more comprehensive description, refer to [25].

The main idea of this MPC realization is that the system, i.e., the ego vehicle, follows
a given geometric reference path (e.g., the coordinates of the driving lane center). The
reference path is given as a parametrized regular curve p : s ∈ [0, smax] 7→ R3, where s ∈ R
is the so-called path parameter. This reference path is defined as

p(s) =
[
xdes(s) ydes(s) ψdes(s)

]>, (6)

where xdes(s) and ydes(s) are cubic splines and ψdes(s) is calculated with

ψdes(s) = arctan

(
∂ydes

∂s

(
∂xdes

∂s

)−1
)

. (7)

Note that the splines xdes and ydes only describe the path for a limited horizon and, therefore,
are continuously updated online based on sensor data.

The behavior of the ego vehicle is modeled as a continuous-time nonlinear system,
as described in [25]. The control input u = [aset, ωset]> consists of the target acceleration
aset and the steering wheel target angular velocity ωs,set. Furthermore, the output vector
y = [xf, yf, ψ]> includes the coordinates of the middle of the front axle xf and yf, as well
as the vehicle yaw angle ψ. The state vector x = [xCG, yCG, ψ, ωz, β, v, vset, δs, δs,set]>

contains the vehicle states, i.e., the coordinates of the center of gravity xCG and yCG, the
yaw angle ψ, the yaw rate ωz, the side slip angle β, the velocity v, the target velocity vset,
the steering wheel angle δs and the steering wheel target angle δs,set. The general structure
of the controller is shown in Figure 2.

The task of the MPC controller is to simultaneously determine the control input u(t)
and time evolution of the path parameter s(t) in such a way that the ego vehicle follows the
reference path as closely as possible. To solve this path-following problem, a sampled-data
MPC strategy is used.
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Figure 2. MPC implementation for longitudinal and lateral vehicle control based on a model predic-
tive path-following control (MPFC) approach. Based on a specific parameter vector θ, the reference
path p(s) and the desired velocity vdes the MPFC yields the target acceleration aset and the steering
wheel target angular velocity ωs,set (and subsequently the steering wheel target angle δs,set) used as
an input to the vehicle model.
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Figure 2. MPC implementation for longitudinal and lateral vehicle control based on a model predic-
tive path-following control (MPFC) approach. Based on a specific parameter vector θ, the reference
path p(s) and the desired velocity vdes the MPFC yields the target acceleration aset and the steering
wheel target angular velocity ωs,set (and, subsequently, the steering wheel target angle δs,set), which
are used as an input to the vehicle model.

The control input u(t) was obtained via the repetitive solution of an optimal control
problem in a receding horizon fashion. The cost-functional C to be minimized at every
discrete sampling time instance tk = k Ts is given by

C(x(tk), s(tk), u(·), vs(·)) =
tk+Tp∫

tk

∥∥∥∥
e(τ)

alat(τ)

∥∥∥∥
2

Q
+

∥∥∥∥
u(τ)

vs(τ)− vs,des(τ)

∥∥∥∥
2

R
dτ

+

∥∥∥∥
e(tk + Tp)

alat(tk + Tp)

∥∥∥∥
2

P
(8)

where the initial state and path parameter conditions are denoted by x(tk) and s(tk), respec-
tively. In addition, Tp is the prediction horizon and alat(t) = v(t)ωz(t) is an approximation
of the lateral acceleration of the ego vehicle. Since we want to minimize the deviation of
the system output y (which contains the orientation of the vehicle) from the reference path
p, Equation (6), the deviation from the path e(t) = y(t)− p(s(t)) is included in the cost
function. Note that s is also a virtual state, which is part of the MPC prediction model and
cost function. Consequently, when solving the optimal control problem, the timing s(·) is
optimized. This also determines when to be where on the path.

Consequently, the controller minimizes the path deviation and lateral acceleration
while trying to minimize the error between the desired path velocity vs,des and the path
velocity vs(t) = ṡ(t) actually driven. The desired path velocity vs,des is determined prior
to MPC optimization based on current and future speed limits. The path velocity vs(t)
describes how fast the path parameter changes and, thus, also describes the dynamics
of the geometric reference point (xdes, ydes) that the vehicle should follow. If the vehicle
follows the path exactly, then v(t) = vs(t). Otherwise, the ego velocity v(t) can deviate
from vs(t); for example, when cutting a curve.

As is common in model predictive control, Q and R indicate the stage cost-weighting
matrices, and P is the terminal cost-weighting matrix. The weighting matrices are chosen
as follows:

Q = diag(qx, qy, qψ, qa),
P = diag(px, py, pψ, pa),
R = diag(ra, rω, rv),

(9)
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where qx, qy, qψ and qa are the weighting factors for x-, y-, yaw deviations and the lateral
acceleration, respectively. The factors px, py, pψ and pa represent the same as the latter but
for the terminal cost. In addition, ra and rω indicate the weighting factors for the control
input u(·), i.e., the target longitudinal acceleration and the steering wheel target angular
velocity, respectively; rv is the weighting factor for the path velocity error.

3.3. Multi-Objective Optimization Problem Formulation

In this paper, we focus on tuning the weighting factors (9) of the MPC cost functional (8).
However, other parameters, such as the control horizon, can be similarly optimized [13].
The cost functional has eleven different weighting factors. If each factor is considered as a
separate decision variable, this leads to a complex optimization problem that prohibitively
increases calculation time in the context of a statistically significant benchmark of different
optimizers (cf. Section 5). Therefore, we performed various simplifications to reduce the
solution time for the problem. First, the weights in Q and P were set to be equal to reduce
the number of decision variables. We did not expect a substantial benefit by differentiating
between terminal and stage costs. Second, we weighted the deviation from the path in
the x- and y-directions equally, which means qx = qy. From an application perspective,
tracking in x- and y-directions is equally important. Finally, we set the weighting factor qψ

to a fixed value, since the absolute value of the weighting factors is not important for the
cost function, only the relation of the factors to each other. Furthermore, we did not directly
treat the weighting factors as decision variables. Instead, we optimized the exponent of
an exponential term because we expected that changing a weighting factor, e.g., from 1 to
10, would have a similarly high impact as changing it from 10 to 100. Thus, we obtained
N = 5 decision variables for which

qx = qy = px = py = 10θ1 rω = 10θ4

qa = pa = 10θ2 rϑ = 10θ5 (10)

ra = 10θ3

holds. We used

θmin = [θmin,1, . . . , θmin,5] = [−3, . . . ,−3],

θmax = [θmax,1, . . . , θmax,5] = [4, . . . , 4], (11)

as boundaries for the decision variables. These boundaries resulted from the experience
gained from the numerous driving tests with the MPC system in recent years. Thus, these
describe the range of expected values.

Appropriate objective functions must be defined to achieve the desired control behav-
ior. For this purpose, we focused on driving behavior in this work. Different situations,
such as urban driving, highway driving or parking, require different control behaviors
to ensure the desired driving quality. We considered the tracking behavior of the lateral
and longitudinal setpoints. However, we concentrated on comfort, since vehicle guidance
needs a very well-applied control for passengers accepting the automation. This paper
used only three objective functions because the selected objectives are reasonable for tuning
a vehicle-guidance MPC based on practical experience. In general, any number of objective
functions can be used.

To quantify the driving behavior, we used the outputs of the simulation. For the
following studies of different optimization algorithms, we simulated an urban-like scenario
representing driving on the circular track, as shown in Figure 3, equivalent to the publi-
cation of [21]. We assumed that each call of the simulation with the parameterization θ
returns trajectories of length Nk ∈ N, where Nk can be different for each parameterization
θ. We described the trajectories as finite sequences. For example, let (a(tk; θ))

Nk
k=1 be the

trajectory of the acceleration, where a(tk; θ) is the element for the sampling time instance
tk = k Ts using parameterization θ.
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Figure 3. 2D view of the target line and the speed limit vlim of the circular track used in the simulation.
The different sections of the target line are highlighted by the colors cyan and orange for clarity.
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Longitudinal Tracking: To describe the longitudinal tracking behavior, we used the
objective function

J1(θ) =

√√√√ 1
Nk

Nk

∑
k=1

(vdes(tk; θ)− v(tk; θ))2, (12)

which is the root–mean–square error of the deviation between the ego velocity and the
desired velocity. This was calculated using the returned trajectories of the desired and
driven ego velocity (vdes(tk; θ))

Nk
k=1 and (v(tk; θ))

Nk
k=1, respectively. The desired velocity vdes

was determined during the simulation based on the speed limit vlim(s) of the used track;
see Figure 3.

Lateral Tracking: The lateral tracking performance was quantified with the root–
mean–square error of the lateral deviation from the target line elat, using the trajectory
(elat(tk; θ))

Nk
k=1 returned by the simulation. Thus, the second objective function is

J2(θ) =

√√√√ 1
Nk

Nk

∑
k=1

(elat(tk; θ))2. (13)

The lateral deviation elat(tk; θ) is the shortest distance from the reference point of the vehicle
(middle of the front axle) to the target line shown in Figure 3 for the sampling time tk.
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This was calculated based on the coordinates of the vehicle in the world coordinate system
returned by the vehicle model of the simulation.

Comfort: The study [27] shows that vehicle acceleration has a very high impact on
passenger comfort. It was found that large lateral and longitudinal acceleration amplitudes
in the vehicle caused passengers to feel discomfort. Therefore, we chose

J3(θ) =

√√√√ 1
Nk

Nk

∑
k=1

(a(tk; θ))2 (14)

as the third optimization objective to minimize the vehicle acceleration a =
√

a2
lat + a2

long.

The acceleration trajectory of the ego vehicle returned by the simulation was denoted with
(a(tk; θ))

Nk
k=1.

Finally, the following equation was used as the function to describe whether an MPC
parameterization causes the system to crash

l(θ) =

{
1 elat,max(θ) ≤ 1.5∧ Nlaps(θ) = 1
0 otherwise

(15)

with

elat,max(θ) = max
k∈{1...Nk}

elat(tk; θ). (16)

Here, Nlaps is the number of laps driven by the ego vehicle. Consequently, the control task
is solved if the vehicle completes a lap and does not exceed a maximum lateral deviation of
1.5 m.

4. Multi-Objective Optimization Algorithms
4.1. Bayesian Optimization

Algorithm 1 outlines the MOBO procedure with crash constraints. In general, it
can also be used for non-deterministic optimization problems, although it is applied to a
deterministic formulation here. For a general introduction to BO, the reader is referred
to [28], For better readability, we define the operator ∪̃, where t̃ = t1 ∪̃ t2 is the tuple with the
ordered elements of t1, first followed by the ordered members of t2, i.e., (a, b, c) ∪̃ (d, e) =
(a, b, c, d, e).

In Step 1, an initial datasetD1 is generated using Ninit evaluations. It consists of the set
of evaluated parameters Θ1 = (θ1,1, . . . , θ1,Ninit) and the corresponding obtained objective
function values J1,m for each of the m ∈ {1, . . . M} objectives. Information on which of
the evaluations were successful and which crashed is stored in the set L1 = (l1, . . . lNinit),
where l1 corresponds to the first evaluated parameterization. In this research, Ninit = 5
initial samples were randomly drawn. Afterwards, the main optimization loop was entered.
At each iteration k, the current Pareto front Jpo,k was calculated from previous successful
evaluations (Step 3). Virtual datapoints Ĵk,m are calculated in Step 4 for all previous crash
evaluations and objectives (cf. Section 4.1.3).

Virtual datapoints and successful evaluations were used to construct a fast-to-evaluate

surrogate model GP Ĵm
k of each of the objective functions Jm(θ) (Step 5). In this work,

Gaussian Process Regression (GPR) [29] was used as the surrogate model. GPR is a
non-parametric model that provides probabilistic predictions of the objective functions.
This work defines GPR models by a constant mean function and an anisotropic squared
exponential kernel. Hyperparameters are optimized at each iteration by maximizing the
marginal log-likelihood.
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Algorithm 1 Multi-objective Bayesian optimization with crash constraints and flexible
batch size
1: Generate initial data D1 = (Θ1,J1,1, . . . ,J1,M,L1)

2: for k = 1, 2, . . . do
3: Calculate the set of non-dominated solutions Jpo,k

4: (Ĵk,1, . . . , Ĵk,M)← addVirtualData(Dk,Jpo,k)

5: Learn probabilistic surrogate models (GP Ĵ1
k , . . . ,GP ĴM

k )

using training data (Dk, Ĵk,1, . . . , Ĵk,M)

6: Sk ← calcBatchSize

7: Maximize acquisition function αk(Θ) = f
(

Θ,GP Ĵ1
k , . . . ,GP ĴM

k ,Jpo,k

)

to get Sk new sample points: Θ′k = arg max αk(Θ).
8: Query objective function with Θ′k = (θ1, . . . , θSk )

to obtain responses (J ′k,1, . . . ,J ′k,M,L′k)
9: Augment data with new evaluations: Dk+1 =

(
Θk ∪̃ Θ′k,Jk,1 ∪̃ J ′k,1, . . . ,Lk ∪̃ L′k

)

10: end for

Based on the GPR models and the current Pareto optimal points, an acquisition
function αk(Θ) is maximized to determine the next Sk sample points Θ′k (Step 7). Here, two
different acquisition functions are compared. TSEMO (cf. Section 4.1.1) can be used with a
variable batch size Sk. EIM (cf. Section 4.1.2) is used with a constant batch size of Sk = 1.
After evaluating the new parameter combinations on the expensive-to-evaluate closed-loop
simulation (Step 8), the dataset was augmented (Step 9). This was achieved by adding the
new parameter combinations Θ′k and the corresponding obtained objective function values
J ′k,m and crash constraint values L′k to previous evaluations Dk = (Θk,Jk,1, . . . ,Jk,M,Lk)

such that Dk+1 =
(

Θk ∪̃ Θ′k,Jk,1 ∪̃ J ′k,1, . . . ,Lk ∪̃ L′k
)

.

4.1.1. Thompson Sampling Efficient Multi-Objective Optimization (TSEMO) with Flexible
Batch Size

In TSEMO [24], one sample from the GPR model GP Ĵm
k of each of the M objectives

is drawn. This way, an approximate objective function landscape consistent with the
observed data is generated randomly. A multi-objective genetic algorithm, in this case
NSGA-II [30], searches for the Pareto-optimal parameter set of the approximate objective
function landscape. Because the sampled functions are fast-to-evaluate, this is cheaper in
several orders of magnitude than directly solving Equation (1) with NSGA-II. From the
Pareto-optimal candidate set, the parameterizations to be evaluated next on the expensive-
to-evaluate black box are chosen by maximizing the increase in the hyper-volume indicator
over Jpo,k. The implementation publicly available in [31] is used as a starting point for our
experiments.

In [24,31], the number of evaluations per iteration is constant. Instead, at iteration k,
the batch size Sk is chosen adaptively to not exceed a desired relative overhead po,des:

Sk =

⌈
to,k−1

po,des tsim,k−1

⌉
, (17)

where to,k−1 is the overhead required for GPR training and to determine the next sample
point in the previous iteration. The average time for one objective function evaluation
during the last iteration is denoted as tsim,k−1. Here, po,des = 0.2 is used. While the
overhead is small, the ideal batch size of one is maintained to achieve optimal sample
quality. With increasing overhead, the growing sample size trades more objective function
evaluations for less ideal sample quality. We expect this trade-off to be beneficial.
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4.1.2. Expected Improvement Matrix Criterion

As an alternative to TSEMO, the EIM criterion presented in [23] is used as a benchmark,
with a constant batch size of Sk = 1. This extends the well-known single-objective expected
improvement (EI) criterion to the multi-objective case. Here, the Euclidean distance-based
variant EIMe is employed. The EIMe criterion was also used for multi-objective MPC
tuning in previous work [21].

4.1.3. Virtual Datapoints (VDP) for Multi-Objective BO

In case of crashed simulations (l(θ) = 0), the objective function values cannot be
calculated from the simulation results. The most straightforward way to address this
problem is to assign constant objective function values. However, expert knowledge is
required to decide which value to assign. Additionally, this intuitive approach leads to
discontinuities at the borders between successful and unsuccessful evaluations, which is
problematic because GPR assumes smooth functions.

Here, a heuristic based on pessimistic GP predictions, which has been used for the
single-objective [16] and the constrained [32] case, is extended to the multi-objective case.
An MOBO with crash constraints was previously reported in [33], where an additional
classifier was trained to predict crashes. A separate GP model was also used to predict
crash evaluations in [21]. In contrast, the approach presented here is compatible with
any acquisition function because it only adapts to the training data of the GPR models.
Therefore, there is no need to facilitate the probability of feasibility in the acquisition
function, as is the case in [21,33].

The approach is summarized in Algorithm 2. First (Steps 1 and 2), GPR models for
each objective are fitted using all successful evaluations (i.e., where lk = 1 is observed).
Afterwards, pessimistic GPR predictions are calculated for each of the crashed parameter-
izations (Step 4) using the predictive mean µJm and standard deviation σJm of the model,
which was fitted with exclusively successful evaluations. Here, the tuning parameter γ was
initialized to γ = 3. Finally, the virtual datapoints were bounded to the worst observed
successful evaluation for each objective m (Step 5). If any of the virtual datapoints dominate
the set of Pareto points Jpo,k, the tuning parameter γ is increased (Steps 6 and 7). It is not
desirable for the virtual datapoints to become part of the Pareto front.

This heuristic drives optimization away from the region in which crashes were ob-
served, i.e., the expectation at the virtual datapoints is worse than the current Pareto front,
while uncertainty is reduced. At the same time, discontinuities are avoided because smooth
GP predictions are used to calculate the virtual datapoints.

Algorithm 2 Calculation of virtual datapoints (Step 4 of Algorithm 1)

1: Extract all crashed evaluations: D̄k = (Θ̄k, J̄k,1, . . . , J̄k,M)

2: Fit GPR Models with successful evaluations Dk \ D̄k.
3: For each crashed query θ̄ ∈ Θ̄k

4: Calculate virtual datapoints using a pessimistic GP prediction:
Ĵm(θ̄) = µJm(θ̄) + γσJm(θ̄)

5: Bound pessimistic prediction to the worst successful evaluations
Ĵm(θ̄) = min( Ĵm(θ̄), Jmax,m)

6: If any virtual datapoints dominate one element in Jpo,k:
7: do γ = γ + 0.5; Go to line 3;

4.2. NSGA-II

NSGA-II is a very popular evolutionary algorithm for multi-objective optimization [34].
We based our implementation on the algorithm described in [30]. Algorithm 3 provides
an outline of the procedure. After initialization in Steps 1–3, the algorithm loops over the
generation count Ngen (Steps 4–12). In each iteration, a new child generation is generated by
mutation and crossover of the parent generation. In the crossover section, the parameters θ
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of each individual in the child generation are set as a random point on the interpolation
line between two members of the parent generation, as shown in Step 5. After that, in
the mutation step, normal distributed random values are added to parameters from the
crossover step in Step 6. After evaluating the new generation using the simulation proce-
dure, the union of the child and the parent generation is first sorted by a non-dominated
sorting algorithm (Step 9), and is then based on the crowding distance in Step 10. The
last step is decimating sorted entities to the given population count. To deal with crashed
simulations, every cost value is set to infinity. In this way, the non-dominated sorting sets
the parameter configurations at the lower end of the list. Thus, they are removed in the
truncation step, where the following parent generation is generated from the current parent
and child generation; see Step 11. If there are more invalid parameter configurations than
elements that are deleted in this step, the invalid parameters are replaced by new random
parameters for the next generation, so mutation and crossover do not rely on parameter
configurations that are known to be invalid. The obtained results are based on a population
size of Npop = 100 and a total generation count of Ngen = 50.

Algorithm 3 NSGA-II
1: Generate an initial population Θ1 = (θ1,1, . . . θ1,Npop)

2: Query objective function with Θ1 to obtain responses (J1,1, . . . ,J1,M,L1)

3: Form initial dataset D1 = (Θ1,J1,1, . . . ,J1,M,L1)

4: For each generation k = 1, 2, . . . , Ngen do
5: Crossover: Θk,Cross = Crossover(Dk)

6: Mutation: Θ′k = Mutation(Θk,Cross)

7: Query objective function with Θ′k = (θ1, . . . θNpop) to obtain
responses J ′k,1, . . . ,J ′k,M,L′k

8: Augment data with new evaluations:
Dk+1 =

(
Θk ∪̃ Θ′k,Jk,1 ∪̃ J ′k,1, . . . ,Lk ∪̃ L′k

)

9: Non-dominated Sorting of Dk+1

10: Sort each Domination-Rank of Dk+1 by Crowding Distance
11: Truncate the elements of Dk+1 to population size Npop based on sorting
12: End for

4.3. Multiple-Objective Particle Swarm Optimization

MOPSO is another very popular evolutionary algorithm for multi-objective optimiza-
tion. It is an extension of the well-known particle swarm optimization (PSO) used to handle
multi-objective optimization problems and uses a secondary repository to store the global
best particles that are used to guide the movement of particles in future iterations.

In our study, we used the MOPSO implementation [35], which is based on the work
proposed in [36,37]. Algorithm 4 outlines the procedure of the MOPSO implementation. In
Steps 1 and 2, an initial population Θ0, i.e., a set of parameterizations with Npop particles,
is randomly initialized, and the corresponding objective function values are obtained.
Afterwards, the non-dominated solutions are determined and stored in the repository.
Furthermore, the search space that has been explored at that point is subdivided into
hypercubes (adaptive grid), and the particles are assigned to these hypercubes based on
their objective function values.

Then, Steps 5–7 are cyclically undertaken until the maximum number of generations
Ngen is reached. In Step 5, a new population of particles Θk+1 is obtained. First, their
positions and velocities are obtained using information from the adaptive grid. Then,
mutation is performed, and finally the boundaries for each particle are checked. For the
new population, the objective function values are queried in Step 6. Based on the results,
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the repository and adaptive grid are updated in Step 7. During this process, the repository
is truncated to the maximum size, Nrep, if necessary.

Algorithm 4 MOPSO
1: Generate an initial population Θ1 = (θ1,1, . . . θ1,Npop)

2: Query objective function with Θ1 to obtain responses (J1,1, . . . ,J1,M,L1)

3: Add non-dominated solutions to repository and generate adaptive grid
4: for k = 1, 2, . . . Ngen do
5: Update speeds and positions, perform mutation and check boundaries to obtain new

population Θk+1 = (θk+1,1, . . . θk+1,Npop)

6: Query objective function with Θk+1 to obtain responses
(Jk+1,1, . . . ,Jk+1,M,Lk+1)

7: Update repository and adaptive grid
8: End for

We used a modified version of the constraint handling originally proposed in [36] to
handle the crash constraints. The original version checks whether the constraints are satis-
fied each time two particles are compared. If both are feasible (l(θ) = 1), the dominating
particle is the winner. If one is feasible and the other is infeasible, the feasible wins. If both
are infeasible, then the particle with the lowest constraint violation is used. The latter was
not possible in our case, since the function l(θ) does not provide any information about
the level of constraint violation. Therefore, we randomly selected the winning particle. All
other cases are treated the same way as the originally proposed constraint handling. In our
study, we chose Npop = 100 as the number of particles, Nrep = 250 as the repository size,
and Ngen = 50 as the maximum number of generations.

5. Results
5.1. Evaluated Optimizers

In total, five different BO variants were evaluated:

• TSEMO-1-C: MOBO with TSEMO as the acquisition function and a constant batch size
of one, without VDP.

• TSEMO-A-C: MOBO with TSEMO as the acquisition function and a variable batch
size, without VDP.

• TSEMO-1-VDP: MOBO with TSEMO as the acquisition function and a constant batch
size of one, with VDP.

• TSEMO-A-VDP: MOBO with TSEMO as the acquisition function and a variable batch
size, with VDP.

• EIM-1-VDP: MOBO with EIM as the acquisition function and a constant batch size of
one, with VDP.

If VDP (cf. Section 4.1.3) was not used, constant objective values were assigned to the
failed evaluations. The BO variants were compared with NSGA-II and MOPSO. Random
sampling (Rand) was performed as an additional benchmark by drawing parameterizations
from a uniform distribution, bounded by the box constraints. Grid search (Grid) was
used as the final benchmark. For grid search, each parameter θi was discretized into six
equally spaced levels. Based on this discretization, the parameter space was evaluated as a
full factorial.

5.2. Metrics

The hypervolume (HV) indicator (e.g., [38]) was used as the primary performance
metric. This is the most common metric for comparing multi-objective optimization
algorithms [39]. To minimize the impact of initial sample quality on optimizer perfor-
mance, each algorithm was run with ten different seeds. The median HV indicator was
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calculated from these runs and used to compare the different optimization approaches. In
addition to comparing the median, a hypothesis test was used to evaluate the statistical sig-
nificance of the differences. It cannot be assumed that the distribution of the HV indicator
follows a Gaussian trend. Therefore, the non-parametric, one-sided Wilcoxon rank sum
test was used with a significance level of 5%.

On average, one evaluation accounts for approximately 8.4 · 103 simulation time steps
and takes around 20 seconds. The objective function evaluation time differs depending on
the parameterization of the algorithm. Therefore, simulation steps were used to measure
computational effort instead of objective function evaluations. In contrast to the evaluated
metaheuristics, BO has a large overhead, caused by Steps 4–7 in Algorithm 1. Therefore, to
evaluate the practical usability of the optimizers, it is not sufficient to only compare the
computing effort of the objective function evaluations. Instead, the overhead was converted
to equivalent simulation time steps by dividing the overhead time by the average time
required for one simulation time step. The converted overhead was added to the simulation
steps to obtain the total computing effort in terms of the simulation time steps.

5.3. Comparison of BO Variants

Figure 4 shows the progression of the HV indicator for the evaluated BO variants and
a budget of 107 steps (∼1180 evals). It can be observed that TSEMO, with a flexible batch
size and virtual datapoints to handle crash constraints (TSEMO-A-VDP), performs best. If
a fixed budget of one evaluation per iteration is used (TSEMO-1-VDP), a decrease in perfor-
mance can be observed with an increasing number of steps. After around 1.7 · 106 steps
(∼200 evals), the difference is statistically significant. The same trend can be observed
when comparing the BO variants TSEMO-A-C and TSEMO-1-C, which do not use VDP.

As an explanation, Figure 5 shows the overhead of the BO variants. It can be seen
that the relative cumulative overhead is bounded to under 0.2 by adapting the batch size.
Therefore, in this case, trading overhead for a potential reduction in sample quality is
shown to be beneficial.

Additionally, using the adaptive VDP approach to deal with crashed simulations is
significantly better than assigning a fixed objective function value. This can be observed for
cases with an adaptive batch size and a batch size of one. Compared to TSEMO (TSEMO-1-
VDP), the expected improvement matrix criterion (EIM-1-VDP) performed worse for the
application at hand.
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Figure 4. HV indicator as a function of simulation steps including algorithmic overhead. Markers
in light colors indicate that the HV indicator of the respective algorithm is statistically significantly
worse than the best BO variant.
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Figure 5. Relative cumulative overhead (c.f. Section 5.2) of the BO variants. The overhead of Rand,
NSGA-II and MOPSO are not shown because they are very small < 0.01.

5.4. Overall Comparison

Figure 6 compares the best-performing BO variant with random sampling, grid search,
NSGA-II, and MOPSO for a budget of 3.25 · 107 steps (∼3850 evals). For a small budget, i.e.,
until around 2.5 · 106 steps (∼294 evals), TSEMO-A-VDP performs statistically significantly
better than the other optimizers. For a medium budget of around 8.0 · 106 steps (∼950 evals),
NSGA-II is statistically significantly best. After around 1.2 · 107 steps (∼1430 evals), the
median of random sampling (Rand) is best. MOPSO performs similarly to Rand, with
slight advantages for a small-to-medium budget. However, in contrast to TSEMO-A-VDP
and NSGA-II, MOPSO is not statistically significantly worse than Rand at the maximum
budget. Importantly, TSEMO-A-VDP performs worse at the maximum budget, even if
overhead is not taken into account (the corresponding plot is not shown here for briefness.)
This indicates that, in addition to an increase in overhead, TSEMO may suffer a decrease in
sample quality if a large amount of data have already been acquired.

All optimizers and random sampling quickly outperform grid search, although grid
search requires a substantially higher computational effort, at 5.24 · 107 steps. This may
indicate the low intrinsic dimensionality of the problem.

5.5. Practical Implications

Figure 7 provides an example of the time-domain behaviors of three different pa-
rameterizations belonging to the Pareto front. It can be observed that vastly different
control behaviors can be achieved with different parameterizations. From a practical
perspective, knowledge of the Pareto front and its corresponding parameterizations has
many advantages. First, it enables the intuitive parameterization of the vehicle guidance
system: application engineers can move on the Pareto front if they feel that the driving
experience is too smooth or too rough. Users can also look up the corresponding optimal
parameterizations without an in-depth understanding of the MPC itself or manually tune
the parameters through numerous driving tests. In addition, the dimensionality of the
application of vehicle guidance is significantly reduced in the case considered here, from
five MPC parameters to three intuitive objectives. In other applications, this ratio can
arbitrarily vary. This can significantly reduce the time required for its application.



Mathematics 2023, 11, 465 16 of 19

0.5 1 1.5 2 2.5 3·107

6.8

7

7.2

7.4

Sim. Steps including Overhead

M
ed

ia
n

H
V

In
di

ca
to

r

TSEMO-A-VDP
MOPSO
NSGAII
Rand
Grid Reference

Figure 6. HV indicator as a function of simulation steps, including algorithmic overhead. Markers
in light colors indicate that the HV indicator of the respective algorithm is statistically significantly
worse than the best-performing optimizer.

Second, the optimization may find parameterizations that even an experienced engi-
neer would not have tried: this may increase the control performance compared to manual
tuning. Third, knowledge of the Pareto front makes it very easy to implement an automatic
switching of MPC parameterization: this allows, for example, for a situation-dependent
switching of the parameterization based on the objectives that are important for a particular
situation. For instance, one could use a different parameterization on the highway (comfort
is important) than when parking (tracking is important).
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Figure 7. (Left) Time-domain plot for three different Pareto-optimal MPC parameterizations. The
green, blue and red parameterizations focus on minimizing acceleration, lateral error, and velocity
error, respectively. (Right) Corresponding objective Pareto front, where the parameterizations shown
in the left image are marked in the equivalent colors: minimizing acceleration (green dots), lateral
error (blue dots) and velocity (red dots). All other parameterizations on the Pareto front (black dots)
represent alternative non-dominated compromises.
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6. Conclusions

In this paper, we considered model predictive control (MPC) for the lateral and
longitudinal control of autonomous vehicles, and compared the sample efficiency and the
computational overhead of five different multi-objective Bayesian optimization (MOBO)
versions and two metaheuristics, Multiple Objective Particle Swarm Optimization (MOPSO)
and Non-dominated Sorting Genetic Algorithm II (NSGA-II). Multi-objective MPC tuning
is shown to be capable of automatically finding parameters that produce versatile closed-
loop behaviors. The presented method has two advantageous features. First, the problem
of applying vehicle guidance is reduced from five dimensions in a parameter space to
a two-dimensional manifold in three-dimensional objective function space. Second, the
individual parameterizations represented by each point of this manifold can be interpreted
very well by their resulting physical effects. The substantiality of the dimension reduction
and the interpretability is determined by the respective application or the respective design.

From an optimization perspective, it was shown that, for this specific application,
properly addressing crash constraints is essential to BO performance. Additionally, the
overhead was bounded by adaptively choosing the sample size, increasing the overall
optimization speed. Compared to other optimizers, BO was only best for a small number
of objective function evaluations. For medium budgets, NSGA-II is best, and for large
budgets, only MOPSO was not statistically significantly worse than random search. Grid
search was clearly outperformed. Future work should address whether these findings carry
over to other applications.
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