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Abstract: This paper explores the Schröder polynomials, a class of polynomials that produce the
famous Schröder numbers when x = 1. The three-term recurrence relation and the inversion formula
of these polynomials are a couple of the fundamental Schröder polynomial characteristics that are
given. The derivatives of the moments of Schröder polynomials are given. From this formula, the
moments of these polynomials and also their high-order derivatives are deduced as two significant
special cases. The derivatives of Schröder polynomials are further expressed in new forms using other
polynomials. Connection formulas between Schröder polynomials and a few other polynomials are
provided as a direct result of these formulas. Furthermore, new expressions that link some celebrated
numbers with Schröder numbers are also given. The formula for the repeated integrals of these
polynomials is derived in terms of Schröder polynomials. Furthermore, some linearization formulas
involving Schröder polynomials are established.
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1. Introduction

Special functions are crucial in numerous issues in various disciplines, including
approximation theory and theoretical physics. For example, the authors in [1] presented
some applications of special functions in mathematical physics, and some uses of special
functions in numerical analysis can be found in [2]. Other examples of special function
applications can be found in [3–5]. There is a large number of studies regarding the different
celebrated sequences of polynomials and their related numbers. For example, there are
several articles regarding the Fibonacci and Lucas sequences and their modifications and
generalizations. In this direction, the authors in [6,7] introduced some identities, including
the Fibonacci and Lucas polynomials. The authors of [8,9] developed some new formulas
for certain types of generalized Fibonacci and generalized Lucas polynomials and their
related numbers. Moreover, they developed some formulas for reducing some even and
odd radicals based on making use of these sequences of polynomials. Recently, the authors
of [10] established new formulas and integrals formulas involving Bernoulli polynomials.
The Horadam sequence of polynomials was investigated in [11]. In [12], the authors
established some determinant forms for general polynomial sequences. A sequence of
polynomials, namely, poly-Genocchi polynomials, was investigated in [13]. A matrix
approach was followed in [14] to treat certain Appel polynomials. Matrix calculus was
employed in [15] to treat bivariate Appell polynomials. For some other articles that study
different types of numbers and polynomials sequences, one can be referred to [16–22].
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The Schröder number Sn is also called a large Schröder number. It arises in number
theory (see [23]). The first few Schröder numbers are: 1, 2, 6, 22, 90, 394 1806 8558, . . . The
name Schröder is due to the German mathematician Ernst Schröder. Several contributions
were devoted to investigating these numbers and driving new identities for them. For
example, the authors in [24] presented some interesting properties of these numbers, such
as some determinant inequalities and product inequalities. Some recursive formulas of
these numbers are also introduced in [25]. Furthermore, some arithmetic properties of
these numbers were given in [26]. Some other contributions regarding these numbers can
be found in [27,28]. The Schröder polynomials are defined in [23]. In spite of the existence
of several contributions regarding Schröder numbers, the contributions regarding Schröder
polynomials and their numerous formulas are not found in the literature. This gives
us motivation for investigating these polynomials. In addition, investigating Schröder
polynomials enables us to obtain new properties of Schröder numbers. This gives us
another motivation for investigating Schröder numbers by following a different approach.

Various special function formulas are of theoretical and practical interest. Both ap-
proximation theory and numerical analysis rely heavily on the use of special functions. As
an illustration, obtaining spectral solutions to various differential equations can be aided
by expressing the derivatives of polynomials as certain combinations of the original ones.
Specifically, in [29], the authors constructed formulas for the high-order derivatives of
Chebyshev polynomials of the third kind and applied them to the treatment of certain
differential equations. Furthermore, some other derivatives formulas of the polynomials
that generalize Chebyshev polynomials of the third kind were established in [30]. Using
the spectral Galerkin approach, these polynomials were used to find solutions to linear and
non-linear even-order BVPs. In order to obtain an approximate solution to the non-linear
one-dimensional Burgers equation, Abd-Elhameed in [31] constructed new derivative
formulas of Chebyshev polynomials of the sixth kind.

Many areas would benefit greatly from knowing the formulas for linearization and con-
nection between various special functions ([32,33]). Many works, both historical and contem-
porary, have investigated this issue for various polynomials. Rahman [34] and Gasper [35,36]
have made significant contributions to this area in the past. The research in [37–41] is also
useful. Regarding a few recent studies that discuss the linearization formulas of Jacobi poly-
nomials and related classes, one may refer to the papers of Abd-Elhameed [42,43]. Some
additional articles that study various other sequences of polynomials can be found in [44–50].

The study and use of hypergeometric functions is fundamental to mathematical analy-
sis and its related fields. In fact, many hypergeometric functions serve as expressions for
almost all the fundamental functions. In addition, the connection and linearization coeffi-
cients between various orthogonal polynomials, and special functions that are applicable
in a wide variety of contexts, are typically expressed in terms of hypergeometric functions
of varying arguments; see, for instance, [51–53].

Studying Schröder polynomials theoretically is the primary focus of this paper. In this
paper, we develop several new formulas for Schröder polynomials. Moment derivative
formulas for these polynomials are developed. Furthermore, their derivatives in terms
of other polynomials are established. Connection formulas with different polynomials
are also found. With the help of our connection formulas for Schröder polynomials with
other celebrated polynomials, we can find new connections between Schröder numbers
and some other well-known numbers. The formulas in this paper are, according to what
we know, new and may be useful in some contexts.

We can categorize the information in the document as follows. Preliminary information
and some fundamental formulas of Schröder polynomials are presented in the next section.
In addition, we provide some elementary characteristics of a few well-known polynomials.
The focus of Section 3 is on the detailed derivation of the formula that expresses the
derivatives of the moments of Schröder polynomials. Derivatives of Schröder polynomials
are expressed in terms of other polynomials in Section 4. Connection formulas between
Schröder polynomials and other well-known polynomials are also shown in this section.
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A new simplified linearization formula of Schröder polynomials is given in Section 5. In
addition, the products of Schröder polynomials with some other celebrated polynomials are
also given in this section. The repeated integrals formula for Schröder polynomials is given
in Section 6. In the end, some concluding remarks and discussions are given in Section 7.

2. Preliminaries and Essential Formulas of Some Celebrated Polynomials

Some useful formulas for Schröder polynomials are discussed here. In addition, we
present a brief overview of a selection of well-known polynomials that we connect to
Schröder polynomials.

2.1. An Overview on Schröder Polynomials and Their Related Numbers

Schröder numbers appear in combinatorics and number theory. They can be defined
as ([23])

Si =
i

∑
j=0

(2j
j ) (

i+j
i−j)

j + 1
.

These numbers satisfy the following recurrence relation: ([25])

Sj+3 = 3 Sj+2 +
j

∑
i=0

Si+1 Sj−i+1, j ≥ 0.

In [23], the author defined Schröder polynomials as

Si(x) =
i

∑
j=0

(2j
j ) (

i+j
i−j)

j + 1
xj. (1)

It is evident that Si = Si(1).
For Schröder polynomials Si(x), we now state and demonstrate two fundamental

lemmas. The first lemma illustrates the three-term recurrence relation that Si(x) satisfies,
and the second lemma provides the inversion formula for these polynomials.

Lemma 1. The following recurrence three-term recurrence relation is fulfilled by Si(x):

xSi(x) =
i− 1

2(2i + 1)
Si−1(x)− 1

2
Si(x) +

i + 2
2(2i + 1)

Si+1(x), i ≥ 1. (2)

Proof. By applying the power form representation of the polynomials Si(x) in (1), it is
straightforward to demonstrate the correctness of the next relation:

i− 1
2(2i + 1)

Si−1(x)− 1
2

Si(x) +
i + 2

2(2i + 1)
Si+1(x)− xSi(x) = 0.

Lamma 1 is now proved.

Lemma 2. The following inversion formula is valid for Si(x):

xi = i!(i + 1)!
i

∑
m=0

(−1)m(2i− 2m + 1)
(2i−m + 1)!m!

Si−m(x), i ≥ 0. (3)

Proof. We will prove the inversion formula by induction. The introductory step is obvious
for i = 0. Now, assume the validity of (3). In order to finish the proof, we need to show the
correctness of the next identity:

xi+1 =
i+1

∑
m=0

(−1)m (2(i + 1)− 2m + 1) (i + 1)! (i + 2)!
(2(i + 1)−m + 1)! m!

Si−m+1(x). (4)
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If we multiply both sides of Equation (3) by x and make use of the recurrence relation (2),
then we get

xi+1 =
i+1

∑
m=0

i! (i + 1)! ((−1)m (2i− 2m + 1))
(2i−m + 1)! m!

(
i−m− 1

2(2i− 2m + 1)
Si−m−1(x)

−1
2

Si−m(x) +
i−m + 2

2(2i− 2m + 1)
Si−m+1(x)

)
,

which after straightforward computations leads to Equation (4).

2.2. Several Characteristics of Jacobi Polynomials

Jacobi polynomials are well-known to be among the most significant categories
of orthogonal polynomials. The Jacobi polynomials P(ε,θ)

s (x), x ∈ [−1, 1], s ≥ 0 and
ε > −1, θ > −1, (see [54]) can be expressed in the following form:

P(ε,θ)
s (x) =

(ε + 1)s

s! 2F1

(
−s, s + ε + θ + 1

ε + 1

∣∣∣∣1− x
2

)
,

where (z)` represents the well-known Pochhammer symbol.
The Jacobi polynomials P(ε,θ)

s can be normalized to define:

R(ε,θ)
s (x) = 2F1

(
−s, s + ε + θ + 1

ε + 1

∣∣∣∣1− x
2

)
.

We refer here that six important sub-classes can be obtained as special cases of the class of
Jacobi polynomials. More precisely, we can write

Ts(x) = R(− 1
2 ,− 1

2 )
s (x), Us(x) = (s + 1) R( 1

2 , 1
2 )

s (x),

Vs(x) = R(− 1
2 , 1

2 )
s (x), Ws(x) = (2s + 1) R( 1

2 ,− 1
2 )

s (x),

C(α)
s (x) = R(α− 1

2 ,α− 1
2 )

s (x), Ps(x) = R(0,0)
s (x),

where Ts(x), Us(x), Vs(x), Ws(x) stand, respectively, for the first, second, third, and
fourth kinds of Chebyshev polynomials, while C(α)

s (x) and Ps(x) denote, respectively, the
ultraspherical and Legendre polynomials.

Note the the ultraspherical polynomials C(α)
s (x) are the normalized Gegenbauer poly-

nomials. That is,

C(α)
s (x) =

s!
(2α)s

G(α)
s (x),

where G(α)
k (x) are the standard Gegenbauer polynomials.

Among the features of Chebyshev polynomials is that they may be written in trigono-
metric forms (see [55]):

Ts(x) = cos(s θ), Us(x) =
sin((s + 1) θ)

sin θ
,

Vs(x) =
cos
((

s + 1
2

)
θ
)

cos
(

θ
2

) , Ws(x) =
sin
((

s + 1
2

)
θ
)

sin
(

θ
2

) ,

where θ = cos−1(x).
The following unified recurrence relation can be used to generate all four families of

Chebyshev polynomials:

φk(x) = 2x φk−1(x)− φk−2(x), k ≥ 2, (5)
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but with different initials.

Remark 1. Since all four kinds of Chebyshev polynomials have a unified recurrence relation (5),
then they have a unified moments formula. It can be easily derived from (5) to give

xm φj(x) =
1

2m

m

∑
s=0

(
m
s

)
φj+m−2s(x). (6)

In addition, we comment here the ultraspherical polynomials are symmetric Jacobi
polynomials, so the three classes of Legendre and Chebyshev polynomials of the first
and second kinds are special ones of the ultraspherical polynomials. Furthermore, the
ultraspherical polynomials have, respectively, the following power form and inversion
formulas ([56]):

C(λ)
j (x) =

j! Γ(2λ + 1)
2 Γ(λ + 1) Γ(j + 2λ)

⌊
j
2

⌋
∑
r=0

(−1)r 2j−2r Γ(j− r + λ)

(j− 2r)! r!
xj−2r, j ≥ 0,

xk =
Γ(λ + 1)

Γ(2λ + 1)

b k
2c

∑
m=0

2−k+1 (k− 2m + λ) k! Γ(k− 2m + 2λ)

(k− 2m)! m! Γ(k−m + λ + 1)
C(λ)

k−2m(x), k ≥ 0. (7)

2.3. An Account on Two Generalized Classes of Fibonacci and Lucas Polynomials

Recently, two forms of generalized Fibonacci and Lucas polynomials were studied
in [9]. The following two recurrence relations can produce these two classes of polynomials:

FA,B
k (x) = A x FA,B

k−1(x) + B FA,B
k−2(x), FA,B

0 (x) = 1, FA,B
1 (x) = A x, k ≥ 2, (8)

and

LR,S
k (x) = R x LR,S

k−1(x) + S LR,S
k−2(x), LR,S

0 (x) = 2, LR,S
1 (x) = R x, k ≥ 2. (9)

It is to be noted that several celebrated classes of polynomials can be obtained as special
cases of the two generalized classes of FA,B

k (x) and LR,S
k (x) (see [9]). For example, the

Fibonacci polynomials Fk+1(x) and Lucas polynomials Lk(x) are particular ones of FA,B
k (x)

and LR,S
k (x). In fact, we have:

Fk+1(x) = F1,1
k (x), Lk(x) = L1,1

k (x).

The moment formulae for the two polynomials FA,B
k (x) and LR,S

k (x) are among their essen-
tial characteristics. If (8) and (9) are written as:

x FA,B
k (x) =

1
A

FA,B
k+1(x)− B

A
FA,B

k−1(x),

and
x LR,S

k (x) =
1
R

LR,S
k+1(x)− S

R
LR,S

k−1(x),

then it is not difficult to obtain the moment formulas for the two generalizing classes
FA,B

k (x) and LA,B
k (x). This lemma gives these two formulas of the moments.
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Lemma 3. Choose any two non-negative numbers for r and k. The moment formulas listed below
are valid.

xr FA,B
k (x) =

r

∑
m=0

(
r
m

)
A−r(−B)m FA,B

k+r−2m(x),

xr LR,S
k (x) =

r

∑
m=0

(
r
m

)
R−r(−S)m LR,S

k+r−2m(x).

Proof. Applying the two recurrence relations, (8) and (9), makes the proof straightforward
via induction.

3. Derivatives of the Moments of Schröder Polynomials

In this section, we introduce a new formula for the derivatives of the moments of
Schröder polynomials. Then, as special cases, the following two significant formulas can be
derived from this one:

• The expression for the high-order derivatives of Schröder polynomials in terms of
their original polynomials.

• The moment formula of Schröder polynomials.

We comment here that the above two mentioned formulas are of fundamental interest
to deriving several formulas in this paper.

Theorem 1. Let j, m and q be non-negative integers with j + m ≥ q. The following formula holds:

Dq(xm Sj(x)
)
=

4j (j + m)! (j + m− q + 1)! Γ
(

j + 1
2

)
√

π (j + 1)!
×

j+m−q

∑
p=0

(−1)p+1 (−2j− 2m + 2p + 2q− 1)
p! (2j + 2m− p− 2q + 1)!

×

4F3

(
−p,−1− j,−j,−1− 2j− 2m + p + 2q

−2j,−j−m,−1− j−m + q

∣∣∣∣1) Sj+m−q−p(x).

(10)

Proof. The analytic form of Si(x) in (1) can be rewritten as

Si(x) =
i

∑
j=0

(2(i−j)
i−j ) (2i−j

j )

i− j + 1
xi−j. (11)

Based on the last formula, one can write the following expression for Dq(xm Sj(x)
)
:

Dq(xm Sj(x)
)
=

j+m−q

∑
r=0

(2j− r)! (j + m− q− r + 1)q

r! (j− r + 1) ((j− r)!)2 xj+m−r−q.

Due to the inversion formula in (3), the previous expression turns into

Dq(xm Sj(x)
)
=

j+m−q

∑
r=0

(2j− r)! (j + m− q− r + 1)q (j + m− q− r + 1)!
r! (j− r + 1) ((j− r)!)2 ×

j+m−q−r

∑
t=0

(−1)t (2(j + m− q− r)− 2t + 1) (j + m− q− r)!
t! Γ(2j + 2m− 2(q + r− 1)− t)

Sj+m−r−q−t(x).

(12)

Some algebraic manipulations lead to converting formula (12) into the following one:
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Dq(xm Sj(x)
)
=

j+m−q

∑
p=0

(2j + 2m− 2p− 2q + 1)×

p

∑
r=0

(−1)p−r+1 (2j− r)! (j + m− r)! (j + m− q− r + 1)!
(−j + r− 1)((j− r)!)2 (p− r)! r! (2j + 2m− p− 2q− r + 1)!

Sj+m−q−p(x),

which can be written in the following hypergeometric formula:

Dq(xm Sj(x)
)
=

4j (j + m)! (j + m− q + 1)! Γ
(

j + 1
2

)
√

π (j + 1)!
×

j+m−q

∑
p=0

(−1)p+1 (−2j− 2m + 2p + 2q− 1)
p! (2j + 2m− p− 2q + 1)!

×

4F3

(
−p,−j− 1,−j,−2j− 2m + p + 2q− 1

−2j,−j−m,−1− j−m + q

∣∣∣∣1) Sj+m−q−p(x).

This finalizes the proof of Theorem 1.

Remark 2. As particular results of Theorem 1, two crucial formulas involving Schröder polynomi-
als can be deduced. The first formula, obtained by putting m = 0 in (10), provides the expressions
of Schröder polynomial derivatives in terms of their original ones. If we set q = 0 in (10), we can
obtain the moment formula for Schröder polynomials. These vital formulae are displayed in the two
corollaries that follow.

Corollary 1. Let j and q be non-negative integers with j ≥ q. The qth derivatives of Schröder
polynomials are given in terms of their original ones as follows:

DqSj(x) =
22q

j (j + 1) (q− 1)!


⌊

j−q
2

⌋
∑
p=0

(2j− 4p− 2q + 1) Γ
(

j− p + 1
2

)
(p + q− 1)!

2p! Γ
(

j− p− q + 3
2
) ×

(
j2 − p + 2p(p + q)− j(2p + q− 1)

)
Sj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

(−2j + 4p + 2q + 1) (p + q)! Γ
(

j− p + 1
2

)
p! Γ
(

j− p− q + 1
2

) Sj−q−2p−1(x)

.

Proof. Setting m = 0 in Formula (10) yields:

DqSj(x) =
4j j! (j− q + 1)! Γ

(
j + 1

2

)
√

π(j + 1)!

j−q

∑
p=0

(−1)p+1 (−2j + 2p + 2q− 1)
p! (2j− p− 2q + 1)!

×

3F2

(
−p,−1− j,−1− 2j + p + 2q

−2j,−1− j + q

∣∣∣∣1) Sj−q−p(x).

(13)

Now, the terminating hypergeometric 3F2(1) that appears in (13) can be reduced as follows:
Set

Hp,j,q = 3F2

(
−p,−1− j,−1− 2j + p + 2q

−2j,−1− j + q

∣∣∣∣1),
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and we utilize the celebrated algorithm of Zeilberger ([57]) to show that the following
recurrence relation is fulfilled by Hp,j,q:

(1− p) (j− p− q + 1)2 (p + 2q− 2) Hp−2,j,q − (2j− 2p− 2q + 3)×(
−2− 2j + 3p + 2jp− p2 + 4q + 2jq− 2pq− 2q2

)
Hp−1,j,q

+ (2j− p + 1)(2j− p− 2q + 2)(j− p− q + 2)2 Hp,j,q = 0,

accompanied with the following starting values:

H0,i,j = 1, H1,i,j =
q

j(j− q + 1)
.

The exact solution to the preceding recurrence relation is

Hp,j,q =
1

j
√

π



(
2j2 − 2j(p + q− 1) + p(p + 2q− 1)

)
Γ
(

p+1
2

)
(q) p

2

2
(

j− p
2 + 1

2

)
p
2

(
j− p

2 − q + 1
)

p
2 +1

, p even,

2Γ
(

j− p
2 + 1

)
Γ
( p

2 + 1
)
(q) p+1

2

Γ
(

j + 1
2

)(
j− p

2 − q + 3
2
)

p+1
2

, p odd.

Some simplifications lead to the following formula:

DqSj(x) =
22q

j(j + 1) (q− 1)!


⌊

j−q
2

⌋
∑
p=0

(2j− 4p− 2q + 1) Γ
(

j− p + 1
2

)
(p + q− 1)!

2 p! Γ
(

j− p− q + 3
2
) ×

(
j2 − p + 2p(p + q)− j(2p + q− 1)

)
Sj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

(−2j + 4p + 2q + 1) (p + q)! Γ
(

j− p + 1
2

)
p! Γ
(

j− p− q + 1
2

) Sj−q−2p−1(x)

.

Corollary 1 is now proved.

Corollary 2. The following is the moment formula of Schröder polynomials:

xm Sj(x) =
4j (j + m)! (j + m + 1)! Γ

(
j + 1

2

)
√

π(j + 1)!

j+m

∑
p=0

(−1)p+1 (−2j− 2m + 2p− 1)
(2j + 2m− p + 1)! p!

×

4F3

(
−p,−1− j,−j,−1− 2j− 2m + p
−2j,−1− j−m,−j−m

∣∣∣∣1) Sj+m−p(x).

(14)

Proof. Setting q = 0 in Formula (10) yields Formula (14) instantly.

4. New Expressions for the Derivatives of Some Celebrated Polynomials

This section displays various derivative expressions of various well-known polynomi-
als. More specifically, we provide new derivative expressions of Schröder polynomials in
terms of ultraspherical, Hermite, generalized Laguerre, generalized Fibonacci, and gener-
alized Lucas polynomials. The inversion formulas to the generated derivatives formulas
are also presented in this section. In addition, we provide some new formulas for the
relationships between Schröder polynomials and other types of polynomials.
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4.1. Expressions for the Derivatives of Some Other Polynomials

Theorem 2. If we have two non-negative integers j, q with j ≥ q, then DqSj(x) can be expressed

in terms of the ultraspherical polynomials C(λ)
i (x) as:

DqSj(x) =
21−j+q (2j)! Γ(λ + 1)
(j + 1)! Γ(2λ + 1)

⌊
j−q

2

⌋
∑

m=0

(j− 2m− q + λ) Γ(j− 2m− q + 2λ)

m! (j− 2m− q)! Γ(j−m− q + λ + 1)
×

4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m + q− λ
1
2 , 1

2 − j,−j

∣∣∣∣∣1
)

C(λ)
j−q−2m(x)

+
22−j+q−2λ

√
π (2j− 1)!

j! Γ
(

λ + 1
2

) b 1
2 (j−q−1)c

∑
m=0

(j− 2m− q + λ− 1) Γ(j− 2m− q + 2λ− 1)
m! (j− 2m− q− 1)! Γ(j−m− q + λ)

×

4F3

(
−m, 1

2 −
j
2 ,− j

2 ,−1− j + m + q− λ
3
2 , 1

2 − j, 1− j

∣∣∣∣∣1
)

C(λ)
j−q−2m−1(x).

(15)

Proof. Thanks to Schröder’s polynomials power form, one can write

DqSj(x) =
j−q

∑
r=0

(2j− r)!
r! (j− r + 1)! (j− q− r)!

xj−r−q.

The previous formula is transformed into the following form utilizing Formula (7):

DqSj(x) =
Γ(λ + 1)

Γ(2λ + 1)

j−q

∑
r=0

21−j+q+r (2j− r)!
r! (j− r + 1)! (j− q− r)!

×

b 1
2 (j−r−q)c

∑
t=0

(j− q− r− 2t + λ)(j− q− r)! Γ(j− q− r− 2t + 2λ)

(j− q− r− 2t)! t! Γ(j− q− r− t + λ + 1)
C(λ)

j−r−q−2t(x).

The last formula can be turned into a more convenient form after performing expanding
and rearranging the terms

DqSj(x) =

⌊
j−q

2

⌋
∑

m=0

m

∑
r=0

δm,j,q C(λ)
j−q−2m(x) +

b 1
2 (j−q−1)c

∑
m=0

m

∑
r=0

δ̄m,j,q C(λ)
j−q−2m−1(x), (16)

where δm,j,q and δ̄m,j,q are given as follows

δm,j,q =
21−j+q+2r (j− 2m− q + λ)(2j− 2r)! Γ(λ + 1) Γ(j− 2m− q + 2λ)

(j− 2m− q)! (j− 2r + 1)! (m− r)! (2r)! Γ(j−m− q− r + λ + 1) Γ(2λ + 1)
,

δ̄m,j,q =
22−j+q+2r (j− 2m− q + λ− 1) (2j− 2r− 1)! Γ(λ + 1) Γ(j− 2m− q + 2λ− 1)
(j− 2m− q− 1)! (j− 2r)! (m− r)! (2r + 1)! Γ(j−m− q− r + λ) Γ(2λ + 1)

.
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We can write the coefficients
m

∑
r=0

δm,j,q and
m

∑
r=0

δ̄m,j,q as:

m

∑
r=0

δm,j,q =
21−j+q (j− 2m− q + λ) (2j)! Γ(λ + 1) Γ(j− 2m− q + 2λ)

(j + 1)! m! (j− 2m− q)! Γ(j−m− q + λ + 1) Γ(2λ + 1)
×

4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m + q− λ
1
2 , 1

2 − j,−j

∣∣∣∣∣1
)

,

m

∑
r=0

δ̄m,j,q =
22−j+q−2λ

√
π (j− 2m− q + λ− 1) (2j− 1)! Γ(j− 2m− q + 2λ− 1)

j! m! (j− 2m− q− 1)! Γ
(

λ + 1
2

)
Γ(j−m− q + λ)

×

4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m + q− λ
3
2 , 1

2 − j, 1− j

∣∣∣∣∣1
)

.

If we insert the last two identities into (16), then Formula (15) can be obtained.

Remark 3. Since the ultraspherical polynomials C(λ)
j (x), involve three important special classes of

polynomials, namely, Legendre and Chebyshev polynomials of the first and second kinds, we can
deduce three specific formulas of Formula (15). In the following, we write the expression of DqSj(x)
in terms of Chebyshev polynomials. The expressions in terms of Legendre and the second-kind
Chebyshev polynomials can be also deduced.

Corollary 3. Given two non-negative integers j, q with j ≥ q, DqSj(x) can be represented as:

DqSj(x) =
21−j+q (2j)!
(j + 1)!

⌊
j−q

2

⌋
∑

m=0

cj−q−2m

m! (j−m− q)! 4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m + q
1
2 , 1

2 − j,−j

∣∣∣∣∣1
)

Tj−q−2m(x)

+
22−j+q(2j− 1)!

j!

b 1
2 (j−q−1)c

∑
m=0

cj−q−2m−1

m!(j−m− q− 1)! 4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m + q
3
2 , 1

2 − j, 1− j

∣∣∣∣∣1
)
×

Tj−q−2m−1(x),

where the constants cr are defined as

cr =

{
1
2 , r = 0,
1, r ≥ 1.

(17)

Remark 4. Relying on the power form of Schröder polynomials and the inversion formula for
ultraspherical polynomials, we were able to prove Theorem 2, so using similar procedures, one can
derive other expressions for the derivatives of Schröder polynomials in terms of other polynomials.
In the following, we give without proof other expressions for the derivatives of Schröder polynomials
in terms of some celebrated polynomials.
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Theorem 3. If we have two non-negative integers j, q with j ≥ q, then DqSj(x) can be expressed
in terms of Hermite polynomials Hi(x) as:

DqSj(x) =
2−j+q (2j)!
(j + 1)!

⌊
j−q

2

⌋
∑

m=0

1
m!(j− 2m− q)!

×

3F3

(
− 1

2 −
j
2 ,− j

2 ,−m
1
2 , 1

2 − j,−j

∣∣∣∣∣− 1

)
Hj−q−2m(x)

+
21−j+q (2j− 1)!

j!

b 1
2 (j−q−1)c

∑
m=0

1
m!(j− 2m− q− 1)!

×

3F3

(
−m, 1

2 −
j
2 ,− j

2
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− 1

)
Hj−q−2m−1(x).

Theorem 4. If we have two non-negative integers j, q with j ≥ q, then DqSj(x) can be expressed

in terms of generalized Laguerre polynomials L(α)
i (x) as:

DqSj(x) =
(2j)! Γ(j− q + α + 1)

(j + 1)!

j−q

∑
m=0

(−1)j−m−q

m! Γ(j−m− q + α + 1)
×

2F2

(
−m,−1− j
−2j,−j + q− α

∣∣∣∣1) L(α)
j−q−m(x).

(18)

Theorem 5. If we have two non-negative integers j, q with j ≥ q, DqSj(x) can be expressed in
terms of the generalized Fibonacci polynomials FA,B

i (x) as:

DqSj(x) =
(2j)! A−j+q

(j + 1)!

⌊
j−q

2

⌋
∑

m=0

(−1)m Bm (j− 2m− q + 1)
m! (j−m− q + 1)!

×

4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−1− j + m + q
1
2 , 1

2 − j,−j

∣∣∣∣∣− A2

4B

)
FA,B

j−q−2m(x)

+
(2j− 1)! A1−j+q

j!

b 1
2 (j−q−1)c

∑
m=0

(−1)m+1 Bm (−j + 2m + q)
m! (j−m− q)!

×

4F3

(
−m, 1

2 −
j
2 ,− j

2 ,−j + m + q
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− A2

4B

)
FA,B

j−q−2m−1(x).

(19)

Remark 5. Since the class of the generalized Fibonacci polynomials, FA,B
i (x), includes some

celebrated polynomials as special cases for specific choices of the two parameters A and B, we
can easily deduce specific derivatives formulas from Formula (19). More precisely, we will give
the derivatives of Schröder polynomials in terms of the well-known Fibonacci polynomials in the
following corollary. Other formulas can be easily deduced from Formula (19).
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Corollary 4. Let j and q be two non-negative integers with j ≥ q. The derivatives of Sj(x) can be
expressed in terms of Fibonacci polynomials as:

DqSj(x) =
(2j)!

(j + 1)!

⌊
j−q

2

⌋
∑

m=0

(−1)m(j− 2m− q + 1)
m!(j−m− q + 1)!

×

4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−1− j + m + q
1
2 , 1

2 − j,−j

∣∣∣∣∣− 1
4

)
Fj−q−2m(x)

+
(2j− 1)!

j!

b 1
2 (j−q−1)c

∑
m=0

(−1)m+1(−j + 2m + q)
m! (j−m− q)!

×

4F3

(
−m, 1

2 −
j
2 ,− j

2 ,−j + m + q
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− 1
4

)
Fj−q−2m−1(x).

(20)

Theorem 6. If we have two non-negative integers j, q with j ≥ q, then DqSj(x) can be expressed
in terms of the generalized Lucas polynomials LR,S

i (x) as:

DqSj(x) =
R−j+q (2j)!
(j + 1)!

⌊
j−q

2

⌋
∑

m=0

cj−q−2m (−S)m

m! (j−m− q)!
×

4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m + q
1
2 , 1

2 − j,−j

∣∣∣∣∣− R2

4S

)
LR,S

j−q−2m(x)

+
R1−j+q (2j− 1)!

j!

b 1
2 (j−q−1)c

∑
m=0

cj−q−2m−1 (−S)m

m! (j−m− q− 1)!
×

4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m + q
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− R2

4S

)
LR,S

j−q−2m−1(x),

(21)

where cr are given by (17).

Remark 6. Since the class of the generalized Lucas polynomials, LR,S
j (x), includes some celebrated

polynomials as special cases for specific choices of the two parameters R and S, we can write some
expressions for the derivatives of Schröder polynomials in terms of some specific polynomials of
LR,S

j (x). The following corollary exhibits the formula of the derivatives of Schröder polynomials in
terms of Lucas polynomials. Other formulas can be deduced from Formula (21).

Corollary 5. Given two non-negative integers j, q with j ≥ q. Consider the Lucas polynomials
Lj(x). The following derivatives formula is valid:

DqSj(x) =
(2j)!

(j + 1)!

⌊
j−q

2

⌋
∑

m=0

cj−q−2m

m!(j−m− q)!
×

4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m + q
1
2 , 1

2 − j,−j

∣∣∣∣∣− 1
4

)
Lj−q−2m(x)

+
(2j− 1)!

j!

b 1
2 (j−q−1)c

∑
m=0

cj−q−2m−1

m!(j−m− q− 1)!
×

4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m + q
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− 1
4

)
Lj−q−2m−1(x).
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4.2. Inversion Formulas for the Derivatives Formulas in Section 4.1

In this section, and following similar procedures to those given in the previous section,
we introduce the inversion derivatives to those given in the previous section. Due to the
similarity of the proofs to the proof of Theorem 2, the proofs are omitted.

Theorem 7. Given two non-negative integers j, q with j ≥ q, in terms of Schröder polynomials,
the derivatives of ultraspherical polynomials have the following expression:

DqC(λ)
j (x) =

2j+2λ−1 j! (j− q + 1)! Γ
(

λ + 1
2

)
Γ(j + λ)

√
π Γ(j + 2λ)


⌊

j−q
2

⌋
∑
p=0

2j− 4p− 2q + 1
(2p)!(2j− 2p− 2q + 1)!

×

4F3

(
−p, 1

2 − p,− 1
2 − j + p + q,−j + p + q

− 1
2 −

j
2 + q

2 ,− j
2 + q

2 , 1− j− λ

∣∣∣∣∣1
)

Sj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

1− 2j + 4p + 2q
(2p + 1)! (2j− 2p− 2q)!

×

4F3

(
−p,− 1

2 − p,−j + p + q, 1
2 − j + p + q

− 1
2 −

j
2 + q

2 ,− j
2 + q

2 , 1− j− λ

∣∣∣∣∣1
)

Sj−q−2p−1(x)

)
.

Theorem 8. Given two non-negative integers j, q with j ≥ q, in terms of Schröder polynomials,
the derivatives of Hermite polynomials have the following expression:

DqHj(x) =2j j! (j− q + 1)!×
⌊

j−q
2

⌋
∑
p=0

2j− 4p− 2q + 1
(2p)!(2j− 2p− 2q + 1)!

×

4F2

(
−p, 1

2 − p,− 1
2 − j + p + q,−j + p + q

− 1
2 −

j
2 + q

2 ,− j
2 + q

2

∣∣∣∣∣− 1

)
Sj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

1− 2j + 4p + 2q
(2p + 1)!(2j− 2p− 2q)!

×

4F2

(
−p,−p− 1

2 ,−j + p + q, 1
2 − j + p + q

− j
2 + q

2 ,− 1
2 −

j
2 + q

2

∣∣∣∣∣− 1

)
Sj−q−2p−1(x)

)
.

Theorem 9. Given two non-negative integers j, q with j ≥ q, in terms of Schröder polynomials,
the derivatives of the generalized Laguerre polynomials have the following expression:

DqL(α)
j (x) =(j− q + 1)!

j−q

∑
p=0

(−1)j+p (2j− 2p− 2q + 1)
p! (2j− p− 2q + 1)!

×

3F1

(
−p,−α− j,−1− 2j + p + 2q

−1− j + q

∣∣∣∣1) Sj−q−p(x).

(22)
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Theorem 10. Given two non-negative integers j, q with j ≥ q, in terms of Schröder polynomials,
the derivatives of the generalized Fibonacci polynomials have the following expression:

DqFA,B
j (x) =Aj j! (j− q + 1)!


⌊

j−q
2

⌋
∑
p=0

2j− 4p− 2q + 1
(2p)!(2j− 2p− 2q + 1)!

×

4F3

(
−p, 1

2 − p,− 1
2 − j + p + q,−j + p + q

−j,− 1
2 −

j
2 + q

2 ,− j
2 + q

2

∣∣∣∣∣− 4B
A2

)
Sj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

1− 2j + 4p + 2q
(2p + 1)!(2j− 2p− 2q)!

×

4F3

(
−p,− 1

2 − p,−j + p + q, 1
2 − j + p + q

−j,− 1
2 −

j
2 + q

2 ,− j
2 + q

2

∣∣∣∣∣− 4B
A2

)
Sj−q−2p−1(x)

)
.

(23)

Theorem 11. Given two non-negative integers j, q with j ≥ q, in terms of Schröder polynomials,
the derivatives of the generalized Lucas polynomials have the following expression:

DqLR,S
j (x) =Rj j! (j− q + 1)!


⌊

j−q
2

⌋
∑
p=0

2j− 4p− 2q + 1
(2p)!(2j− 2p− 2q + 1)!

×

4F3

(
−p, 1

2 − p,− 1
2 − j + p + q,−j + p + q

1− j,− 1
2 −

j
2 + q

2 ,− j
2 + q

2

∣∣∣∣∣− 4S
R2

)
Sj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

1− 2j + 4p + 2q
(2p + 1)!(2j− 2p− 2q)!

×

4F3

(
−p,− 1

2 − p,−j + p + q, 1
2 − j + p + q

1− j,− 1
2 −

j
2 + q

2 ,− j
2 + q

2

∣∣∣∣∣− 4S
R2

)
Sj−q−2p−1(x)

)
.

(24)

4.3. Some Connection Formulas between Some Celebrated Polynomials

Some formulas relating Schröder polynomials to other polynomials are provided here.
For the case where q = 0, all of the derivatives formulas presented in Sections 4.1 and 4.2
hold true. As a result, for every formula for a derivative, one can find a formula for a
related connection. Some of these formulas are presented below.

Corollary 6. For every non-negative integer j, the Schröder–Laguerre and the Laguerre–Schröder
connection formulas are given by

Sj(x) =
(2j)! Γ(j + α + 1)

(j + 1)!

j

∑
m=0

(−1)j−m

m! Γ(j−m + α + 1) 2F2

(
−m,−1− j
−2j,−j− α

∣∣∣∣1) L(α)
j−m(x), (25)

L(α)
j (x) =(j + 1)!

j

∑
m=0

(−1)j+m(2j− 2m + 1)
m!(2j−m + 1)! 3F1

(
−m,−α− j,−1− 2j + m

−1− j

∣∣∣∣1) Sj−m(x). (26)

Proof. One can immediately acquire the two connection formulas in (25) and (26) by
putting q = 0 in (18) and (22).

Corollary 7. For every j ≥ 1, the Schröder-first kind Chebyshev connection formula is
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Sj(x) =
21−j (2j)!
(j + 1)!

⌊
j
2

⌋
∑

m=0

cj−2m

m! (j−m)! 4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m
1
2 , 1

2 − j,−j

∣∣∣∣∣1
)

Tj−2m(x)

+
22−j(2j− 1)!

j!

b 1
2 (j−1)c
∑

m=0

cj−2m−1

m!(j−m− 1)! 4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m
3
2 , 1

2 − j, 1− j

∣∣∣∣∣1
)
×

Tj−2m−1(x),

(27)

where the constants cr are defined as in (17).

Remark 7. The trigonometric identity corresponding to the connection formula (27) is:

Sj(cos θ) =
21−j (2j)!
(j + 1)!

⌊
j
2

⌋
∑

m=0

cj−2m

m! (j−m)! 4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m
1
2 , 1

2 − j,−j

∣∣∣∣∣1
)

cos((j− 2m) θ)

+
22−j (2j− 1)!

j!

b 1
2 (j−1)c
∑

m=0

cj−2m−1

m! (j−m− 1)! 4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m
3
2 , 1

2 − j, 1− j

∣∣∣∣∣1
)

cos((j− 2m− 1) θ).

Remark 8. Other trigonometric identities can be obtained using the connection formulas between
Schröder polynomials and other kinds of Chebyshev polynomials.

4.4. Relationships between Some Well-Known Numbers

Thanks to the connection formulas between some celebrated polynomials, some
formulas linking some celebrated numbers can be obtained. In the following, we list some
of these connections.

Corollary 8. For every positive integer j, using the Fibonacci sequence, we can write the Schröder
numbers as:

Sj =
(2j)!

(j + 1)!

⌊
j
2

⌋
∑

m=0

(−1)m(j− 2m + 1)
m!(j−m + 1)! 4F3

(
− 1

2 −
j
2 ,− j

2 ,−m,−1− j + m
1
2 , 1

2 − j,−j

∣∣∣∣∣− 1
4

)
Fj−2m+1

+
(2j− 1)!

j!

⌊
j−1

2

⌋
∑

m=0

(−1)m+1(−j + 2m)

m!(j−m)! 4F3

(
1
2 −

j
2 ,− j

2 ,−m,−j + m
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− 1
4

)
Fj−2m.

(28)

Proof. Formulas (28) can be obtained by setting q = 0, A = B = 1, and x = 1 in
Formula (19).

Corollary 9. For every positive integer j, using the Lucas numbers, we can write the Schröder
numbers as:

Sj =
(2j)!

(j + 1)!

⌊
j
2

⌋
∑

m=0

(−1)m cj−2m

m!(j−m)! 4F3

(
−m,− 1

2 −
j
2 ,− j

2 ,−j + m
1
2 , 1

2 − j,−j

∣∣∣∣∣− 1
4

)
Lj−2m

+
(2j− 1)!

j!

⌊
j−1

2

⌋
∑

m=0

(−1)m cj−2m−1

m!(j−m− 1)! 4F3

(
−m, 1

2 −
j
2 ,− j

2 , 1− j + m
3
2 , 1

2 − j, 1− j

∣∣∣∣∣− 1
4

)
Lj−2m−1.

(29)

Proof. Setting q = 0, R = S = 1, and x = 1 in Formula (21) yields Formula (29).
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Corollary 10. In terms of Schröder numbers, the Fibonacci sequence Fj+1 can be written for any
positive integer j as:

Fj+1 =j! (j + 1)!


⌊

j
2

⌋
∑
p=0

2j− 4p + 1
(2p)! (2j− 2p + 1)! 4F3

(
−p, 1

2 −
1
2 − j + p,−j + p

− 1
2 −

j
2 ,−j,− j

2

∣∣∣∣∣− 4

)
Sj−2p

+

⌊
j−1

2

⌋
∑
p=0

1− 2j + 4p
(2p + 1)!(2j− 2p)! 4F3

(
−p,− 1

2 − p, 1
2 − j + p,−j + p

− 1
2 −

j
2 ,−j,− j

2

∣∣∣∣∣− 4

)
Sj−2p−1

.

(30)

Proof. Formulas (30) can be obtained by setting q = 0, A = B = 1 and x = 1 in
Formula (23).

Corollary 11. In terms of Schröder numbers, the Lucas numbers Lj can be written for any positive
integer j as:

Lj =j! (j + 1)!


⌊

j
2

⌋
∑
p=0

2j− 4p + 1
(2p)! (2j− 2p + 1)! 4F3

(
−p, 1

2 − p,− 1
2 − j + p,−j + p

− 1
2 −

j
2 , 1− j,− j

2

∣∣∣∣∣− 4

)
Sj−2p

+

⌊
j−1

2

⌋
∑
p=0

1− 2j + 4p
(2p + 1)!(2j− 2p)! 4F3

(
−p,− 1

2 − p, 1
2 − j + p,−j + p

− 1
2 −

j
2 , 1− j,− j

2

∣∣∣∣∣− 4

)
Sj−2p−1

.

(31)

Proof. Formula (31) can be obtained by setting q = 0, R = S = 1, and x = 1 in
Formula (24).

5. Some Linearization Formulas Involving Schröder Polynomials

This section is interested in introducing some linearization formulas involving Schröder
polynomials. To be more precise, we will state and prove three theorems concerned with
Schröder polynomials.

• The first theorem gives the standard linearization formula of Schröder polynomials;
that is, we solve the problem

Sm(x)Sn(x) =
m+n

∑
r=0

Gr,m,n Sm+n−r(x),

where Gr,m,n are the linearization coefficients.
• The second theorem introduces an expression for the product of Schröder polynomials

with any polynomial of the well-known four kinds of Chebyshev polynomials in terms
of the same kind of polynomials.

• The third theorem introduces an expression for the product of Schröder polynomials
with the generalized Fibonacci polynomials FA,B

m (x) in terms of FA,B
m (x).

Theorem 12. Given two non-negative integers m and n, the next formula for linearization is valid:
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Sm(x) Sn(x) =

1
2 m n (m + 1) (n + 1)π

bm+n
2 c

∑
r=0

(2m + 2n− 4 r + 1) Γ
(

m− r + 1
2

)
Γ
(

n− r + 1
2

)
(m + n− r)! Γ

(
r + 1

2

)
r! (m− r)! (n− r)! Γ

(
m + n− r + 3

2
) ×

(
−(2n− 2 r + 1)2r2 + m2

(
n + 4nr− 4r2

)
+ m(n− 2r + 1)

(
n + 4nr− 4r2

))
Sm+n−2r(x)

+ 2
b 1

2 (m+n−1)c
∑
r=0

(2m + 2n− 4r− 1) Γ
(

m− r + 1
2

)
Γ
(

n− r + 1
2

)
(m + n− r)!Γ

(
r + 3

2
)

r!(m− r− 1)!(n− r− 1)!Γ
(

m + n− r + 1
2

) Sm+n−2r−1(x)

.

Proof. As a starting point, we use the analytic form in (11) to get

Sm(x) Sn(x) =
m

∑
`=0

(2(m−`)
m−` ) (2m−`

` )

m− `+ 1
xm−`Sn(x).

The moment’s formula of Schröder polynomials in (14) helps one get at the following equation:

Sm(x) Sn(x) =
4n Γ

(
n + 1

2

)
√

π (n + 1)!

m

∑
`=0

(2(m−`)
m−` )(2m−`

` )(m + n− `)!(m + n− `+ 1)!
m− `+ 1

×

m−`+n

∑
r=0

(−1)r+1 (−1− 2m− 2n + 2`+ 2r)
r! (2(m + n− `+ 1)− r− 1)!

×

4F3

(
−r,−1− n,−n,−1− 2m− 2n + 2`+ r
−2n,−1−m− n + `,−m− n + `

∣∣∣∣1) Sm+n−`−r(x).

Following some algebraic manipulation, the last formula can be rewritten as the
following equation:

Sm(x) Sn(x) =
m+n

∑
r=0

r

∑
`=0

F`,r,m,n Sm+n−r(x), (32)

where the coefficients F`,r,m,n are given by the following formula:

F`,r,m,n =
(−1)r−` 4n (2m + 2n− 2r + 1)(2 (m−`)

m−` )(2m−`
` )(m + n− `)! (m + n− `+ 1)!Γ

(
n + 1

2

)
(−1−m + `)

√
π (n + 1)! (2m + 2n− `− r + 1)! (r− `)!

×

4F3

(
`− r,−1− n,−n,−1− 2m− 2n + `+ r
−2n,−1−m− n + `,−m− n + `

∣∣∣∣1).

We make use of a suitable symbolic algorithm, such as Zeilberger’s algorithm (see [57]), to

reduce the linearization coefficients in (32) given by: Gr,m,n =
r

∑
`=0

F`,r,m,n in the form

Gr,m,n =
1

m n (m + 1) (n + 1)π
×

(2m + 2n− 2r + 1) Γ
(

m− r
2 + 1

2

)
Γ
(

n− r
2 + 1

2

)
Γ
(
m + n− r

2
)
! Γ
(

r+1
2

)
8
(
m− r

2
)
!
(
n− r

2
)
! Γ
(
m + n− r

2 + 3
2
) ( r

2
)
!

×(
−r2(−1− 2n + r)2 + 4m2(n + 2nr− r2)+ 4m(n− r + 1)

(
n + 2nr− r2)), r even,

(2m + 2n− 2r + 1) r Γ
(
m− r

2 + 1
)

Γ
(
n− r

2 + 1
)

Γ
(
m + n− r

2 + 3
2
)

Γ
( r

2
)(

m− r+1
2

)
!
(

n− r+1
2

)
! Γ
(
m + n− r

2 + 1
)( r−1

2

)
!

, r odd.

(33)
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Now, using the reduction formula to the linearization coefficients Gp,i,n that is given in (33),
we have

Sm(x) Sn(x) =
bm+n

2 c
∑
r=0

G2r,m,n Sm+n−2r(x) +
b 1

2 (m+n−1)c
∑
r=0

G2r+1,m,n Sm+n−2r−1(x),

which turns into the following relation:

Sm(x) Sn(x) =

1
2 m n (m + 1) (n + 1)π

bm+n
2 c

∑
r=0

(2m + 2n− 4 r + 1) Γ
(

m− r + 1
2

)
Γ
(

n− r + 1
2

)
(m + n− r)! Γ

(
r + 1

2

)
r! (m− r)! (n− r)! Γ

(
m + n− r + 3

2
) ×

(
−(2n− 2 r + 1)2r2 + m2

(
n + 4nr− 4r2

)
+ m(n− 2r + 1)

(
n + 4nr− 4r2

))
Sm+n−2r(x)

+ 2
b 1

2 (m+n−1)c
∑
r=0

(2m + 2n− 4r− 1) Γ
(

m− r + 1
2

)
Γ
(

n− r + 1
2

)
(m + n− r)!Γ

(
r + 3

2
)

r!(m− r− 1)!(n− r− 1)!Γ
(

m + n− r + 1
2

) Sm+n−2r−1(x)

.

This finishes the proof of Theorem 12.

Theorem 13. Assume φn(x) is one of the four well-known Chebyshev polynomials. The next
linearization formula holds

Sm(x) φn(x) =
(2m

m )

2m (m + 1)

m

∑
r=0

(
m
r

)
4F3

(
−r,− 1

2 −
m
2 ,−m

2 ,−m + r
1
2 , 1

2 −m,−m

∣∣∣∣1) φm+n−2r(x)

+
21−m(2m− 1)!

m!

m−1

∑
r=0

1
r!(m− r− 1)! 4F3

(
−r, 1

2 −
m
2 ,−m

2 , 1−m + r
3
2 , 1

2 −m, 1−m

∣∣∣∣1) φm+n−2r−1(x).

(34)

Proof. Combining the unified moment’s formula for the four types of Chebyshev polyno-
mials (11) with the analytic formula (6), one obtains

Sm(x) φn(x) =
m

∑
`=0

2−m+` (2m− `)!
(m− `+ 1)((m− `)!)2 `!

m−`
∑
s=0

(
m− `

s

)
φm+n−`−2s(x),

which turns into the form:

Sm(x) φn(x) =
bm+n

2 c
∑
r=0

r

∑
`=0

2−m+2` (m−2`
r−` ) (

2(m−2`)
m−2` ) (2m−2`

2` )

m− 2`+ 1
φm+n−2r(x)

+
b 1

2 (m+n−1)c
∑
r=0

r

∑
`=0

21−m+2` (2m− 2`− 1)!
(m− 2`)! (2`+ 1)! (m− `− r− 1)! (r− `)!

φm+n−2r−1(x).

(35)

Now, we make use of the two identities:

r

∑
`=0

2−m+2` (m−2`
r−` )(

2(m−2`)
m−2` ) (2m−2`

2` )

m− 2`+ 1

=
2−m(i

r) (
2m
m )

m + 1 4F3

(
−r,− 1

2 −
m
2 ,−m

2 ,−m + r
1
2 , 1

2 −m,−m

∣∣∣∣1),

r

∑
`=0

21−m+2`(2m− 2`− 1)!
(m− 2`)! (2`+ 1)! (m− `− r− 1)! (r− `)!

=
21−m(2m− 1)!

m! r! (m− r− 1)! 4F3

(
−r, 1

2 −
m
2 ,−m

2 , 1−m + r
3
2 , 1

2 −m, 1−m

∣∣∣∣1),
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to convert Formula (35) into the following one:

Sm(x) φn(x) =
(2m

m )

2m (m + 1)

m

∑
r=0

(
m
r

)
4F3

(
−r,− 1

2 −
m
2 ,−m

2 ,−m + r
1
2 , 1

2 −m,−m

∣∣∣∣1) φm+n−2r(x)

+
21−m(2m− 1)!

m!

m−1

∑
r=0

1
r!(m− r− 1)! 4F3

(
−r, 1

2 −
m
2 ,−m

2 , 1−m + r
3
2 , 1

2 −m, 1−m

∣∣∣∣1) φm+n−2r−1(x).

This proves Formula (34).

Theorem 14. Let FA,B
n (x) be the generalized Fibonacci polynomials that can be constructed by (8).

The next formula for linearization is valid:

Sm(x) FA,B
n (x) =

A−m (2m
m )

m + 1

m

∑
r=0

(−B)r
(

m
r

)
4F3

(
−r,− 1

2 −
m
2 ,−m

2 ,−m + r
1
2 , 1

2 −m,−m

∣∣∣∣− A2

4B

)
FA,B

m+n−2r(x)

+
(2m− 1)!

m!

m−1

∑
r=0

A1−m(−B)r

r!(m− r− 1)! 4F3

(
−r, 1

2 −
m
2 ,−m

2 , 1−m + r
3
2 , 1

2 −m, 1−m

∣∣∣∣− A2

4B

)
FA,B

m+n−2r−1(x).

Proof. The analytic formula of Schröder polynomials enables one to get

Sm(x) FA,B
n (x) =

m

∑
`=0

(2(m−`)
m−` )(2m−`

` )

m− `+ 1
xm−`FA,B

n (x).

Based on the moment formula of FA,B
n (x), the last formula turns into the following formula:

Sm(x) FA,B
n (x) =

m

∑
`=0

(2(m−`)
m−` ) (2m−`

` )

m− `+ 1

m−`
∑
s=0

A−m+` (−B)s
(

m− `

s

)
FA,B

m+n−`−2s,

which can be also converted into the following form:

Sm(x) FA,B
n (x) =

m

∑
r=0

r

∑
`=0

A−m+2`(−B)r−` (m−2`
r−` ) (

2(m−2`)
m−2` ) (2m−2`

2` )

m− 2`+ 1
FA,B

m+n−2r(x)

+
m−1

∑
r=0

r

∑
`=0

A1−m+2` (−B)r−` (2m− 2`− 1)!
(m− 2`)! (2`+ 1)! (m− `− r− 1)!(r− `)!

FA,B
m+n−2r−1(x).

Based on the following two identities:

r

∑
`=0

A−m+2` (−B)r−` (m−2`
r−` ) (

2(m−2`)
m−2` ) (2m−2`

2` )

m− 2`+ 1

=
A−m (−B)r (m

r ) (
2m
m )

m + 1 4F3

(
−r,− 1

2 −
m
2 ,−m

2 ,−m + r
1
2 , 1

2 −m,−m

∣∣∣∣− A2

4B

)
,

r

∑
`=0

A1−m+2`(−B)r−`(2m− 2`− 1)!
(m− 2`)!(2`+ 1)!(m− `− r− 1)!(r− `)!

=
A1−m(−B)r(2m− 1)!

m!r!(m− r− 1)! 4F3

(
−r, 1

2 −
m
2 ,−m

2 , 1−m + r
3
2 , 1

2 −m, 1−m

∣∣∣∣− A2

4B

)
,

the following formula can be obtained:
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Sm(x) FA,B
n (x) =

A−m (2m
m )

m + 1

m

∑
r=0

(−B)r
(

m
r

)
4F3

(
−r,− 1

2 −
m
2 ,−m

2 ,−m + r
1
2 , 1

2 −m,−m

∣∣∣∣− A2

4B

)
FA,B

m+n−2r(x)

+
(2m− 1)!

m!

m−1

∑
r=0

A1−m(−B)r

r!(m− r− 1)! 4F3

(
−r, 1

2 −
m
2 ,−m

2 , 1−m + r
3
2 , 1

2 −m, 1−m

∣∣∣∣− A2

4B

)
FA,B

m+n−2r−1(x).

This finishes the proof of Theorem 14.

6. Repeated Integrals of Schröder Polynomials

In this section, we give a formula that expresses the repeated integrals of Schröder
polynomials in terms of their original ones.

Theorem 15. Let the q-times repeated integration of Sr(x) be written as

I(q)j (x) =
∫ (q)

Sj(x) (dx)q =

q times︷ ︸︸ ︷∫ ∫
. . .
∫

Sj(x)

q times︷ ︸︸ ︷
dx dx . . . dx;

then,

I(q)j (x) =
2−2q−1

j (j + 1)

q

∑
`=0

(−1)` (2j− 4`+ 2q + 1) Γ
(

j− `+ 1
2

)
(q− `+ 1)`

`! Γ
(

j− `+ q + 3
2
) ×(

j2 + `(2`− 2q− 1) + j(1− 2`+ q)
)

Sj+q−2`(x)

+
4−q

j (j + 1)

q

∑
`=0

(−1)`(2j− 4`+ 2q− 1) Γ
(

j− `+ 1
2

)
(q− `)`+1

`! Γ
(

j− `+ q + 1
2

) Sj+q−2`−1(x)

+ Ωq−1(x),

and Ωq−1(x) is a polynomial whose degree does not exceed (q− 1).

Proof. If we integrate relation (11) q-times and make use of the identity

∫ (q)
xi (dx)q =

xi+q

(i + 1)q
+ Ωq−1(x),

where Ωq−1(x) is a polynomials of degree does not exceed (q− 1), then we get

I(q)j (x) =
j

∑
r=0

(2j− r)!
(j− r + 1)!(j + q− r)!r!

xj−r+q + Ωq−1(x).

Making use of relation (3) enables one to write

I(q)j (x) =
j

∑
r=0

(2j− r)!
(j− r + 1)!r!

j+q−r

∑
t=0

(−1)t (2(j + q− r)− 2t + 1) (j + q− r + 1)!
t! (2(j + q− r)− t + 1)!

Sj−r+q−t(x)

+ Ωq−1(x).

The final formula can also take the following form by rearranging the terms:

I(q)j (x) =
j

∑
`=0

(2j− 2`+ 2q + 1)
`

∑
r=0

(−1)`−r (2j− r)! (j + q− r + 1)!
(j− r + 1)! (`− r)! (2j− `+ 2q− r + 1)! r!

Sj+q−`(x)

+ Ωq−1(x).
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Thanks to Zeilberger’s algorithm [57], it can be demonstrated that the following identity
holds:

`

∑
r=0

(−1)`−r (2j− r)! (j + q− r + 1)!
(j− r + 1)! (`− r)! (2j− `+ 2q− r + 1)! r!

=
q!

j(j + 1)
×

(−1)`/22−2(q+1)(2j2 + `(`− 2q− 1) + 2j(1− `+ q)
)
Γ
(

j− `
2 + 1

2

)
(
`
2

)
!
(

q− `
2

)
! Γ
(

j− `
2 + q + 3

2

) , ` even,

(−1)
`−1

2 4−q Γ
(

j− `
2 + 1

)
(
`−1

2

)
!
(

q−
(
`−3

2

))
!Γ
(

j− `
2 + q + 1

) , ` odd,

,

and accordingly, the following formula can be obtained:

I(q)j (x) =
2−1−2q

j (j + 1)

q

∑
`=0

(−1)` (2j− 4`+ 2q + 1) Γ
(

j− `+ 1
2

)
(q− `+ 1)`

`! Γ
(

j− `+ q + 3
2
) ×(

j2 + `(2`− 2q− 1) + j(1− 2`+ q)
)

Sj+q−2`(x)

+
4−q

j (j + 1)

q

∑
`=0

(−1)`(2j− 4`+ 2q− 1) Γ
(

j− `+ 1
2

)
(q− `)`+1

`! Γ
(

j− `+ q + 1
2

) Sj+q−2`−1(x)

+ Ωq−1(x).

With that, we have completed our proof of Theorem 15.

7. Concluding Remarks

This article was devoted to presenting some formulas concerned with Schröder poly-
nomials. Several new formulas were established. New high-order derivatives and moment
formulas of Schröder polynomials were given in terms of different polynomials; hence,
new connection formulas between these polynomials with different polynomials could
be obtained. The connection coefficients are often expressed in terms of the well-known
generalized hypergeometric functions of different arguments. New connections between
Schröder numbers and some other celebrated numbers were obtained. Furthermore, some
new linearization formulas involving the Schröder polynomials were given. We do believe
that the derived formulas in this article will be useful in some applications. In a forthcoming
paper, we aim to employ polynomials of this kind from a practical point of view.
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