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Abstract: Many Chinese cities have severe air pollution due to the rapid development of the Chinese
economy, urbanization, and industrialization. Particulate matter (PM2.5) is a significant component
of air pollutants. It is related to cardiopulmonary and other systemic diseases because of its ability
to penetrate the human respiratory system. Forecasting air PM2.5 is a critical task that helps gov-
ernments and local authorities to make necessary plans and actions. Thus, in the current study, we
develop a new deep learning approach to forecast the concentration of PM2.5 in three major cities in
China, Beijing, Shijiazhuang, and Wuhan. The developed model is based on the Informer architecture,
where the attention distillation block is improved with a residual block-inspired structure from
efficient networks, and we named the model ResInformer. We use air quality index datasets that
cover 98 months collected from 1 January 2014 to 17 February 2022 to train and test the model. We
also test the proposed model for 20 months. The evaluation outcomes show that the ResInformer and
ResInformerStack perform better than the original model and yield better forecasting results. This
study’s methodology is easily adapted for similar efforts of fast computational modeling.

Keywords: air pollution; PM2.5; deep learning; time series; forecasting

MSC: 68T07

1. Introduction

Air quality has attracted public attention in recent years [1,2], with a particular focus
on pollution, specifically PM2.5 and PM10. As we know, PM2.5 and PM10 can worsen
air pollution and influence public health [3,4]. Hence, it is essential to precisely forecast
PM2.5 and PM10 to design proper deterrents and management criteria for enhancing air
quality. Researchers have used a variety of techniques to determine the concentration of
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atmospheric pollutants. Because of the significant adverse effects of air pollution on human
health, research into air quality and pollution is critical for public health [5]. Aside from the
well-known public health concerns created by air pollution, there are also illnesses related
to air pollution throughout the world [6,7].

Air pollution is the greatest issue in many parts of the world due to development and
industry [8,9]. Air pollution affects human health and has significant environmental and
ecological consequences. The most severe concern in most world cities is airborne fine
particulate matter (PM) with an aerodynamic diameter of PM2.5, or fewer [10]. The inhaled
PM is absorbed by the respiratory tract, depending on its size. A recent World Health
Organization (WHO) study found a link between PM intensity and 7 million worldwide
fatalities per year. These fatalities were linked to stroke (33%), ischemic heart disease
(IHD) (36%), ALRI (8%), lung cancer (LC) (6%), and COPD (17%). PM2.5 has the most
severe documented effects on human health. Almost 87 percent of the world’s population
lives in areas where pollution levels exceed the WHO recommendations. In medium- and
low-income nations, almost 90% of the population is exposed to hazardous concentrations
of pollutants [11,12].

Forecasting is separated into two types: deterministic and probabilistic [13]. The out-
comes of deterministic methods can yield a point forecasting result. The general public can
act immediately based on the obtained results. However, deterministic forecasting methods
are only sometimes accurate. The population must estimate the forecasting inaccuracy to
reduce air pollution, which is impractical. Probabilistic forecasting methods can assess
uncertainty within the error of deterministic forecasting and provide a prediction interval.
The prediction interval includes the actual PM2.5 values with a high confidence level.
With the probabilistic forecasting data, people can more readily create schedules to reduce
air pollution [14].

Main Objectives and Contributions

Many Chinese cities have had severe air pollution in recent years due to the rapid
development of the economy, industry, the vast number of vehicles and their pollution,
extensive coal consumption, and vehicular exhaust [15,16]. In addition, metal emissions
from anthropogenic sources have increased dramatically [17]. In the literature, many
studies have been implemented in China to study the relation between PM2.5 and several
known diseases, such as lung cancer [18], stillbirth [19], oral clefts [20], mouth, hand,
and foot disease [21], preterm birth [22], and others [23,24].

China has created robust action plans for reducing air pollution, in which PM2.5 has
received the highest priority due to its impacts on air quality [25]. To this end, building
an intelligence-based time-series forecasting tool for air quality is necessary. Accordingly,
this paper studies the forecasting of PM2.5 in three major cities in China: Beijing, Wuhan,
and Shijiazhuang. The air quality forecasting and analysis of the mentioned cities have
been addressed by many studies using different tools. For example, ref. [25] compared
the air quality between Beijing and Los Angeles in terms of PM2.5. They found that the
concentration of PM2.5 in Beijing has decreased in recent years. The authors of [26] studied
the impacts of PM2.5 on the acute exacerbation of chronic obstructive pulmonary disease
(AECOPD) using the records of the concentration of PM2.5 for Bejing for an extended period
(2010–2019). They employed the Kolmogorov–Zurbenko filter method on the collected
datasets using short-term and long-term scenarios. They found that the concentration of
PM2.5 had a positive association with the AECOPD hospitalization risk. Yang et al. [27]
suggested a forecasting tool using CNN, LSTM, and a combined CNN–LSTM for Beijing’s
PM2.5 concentrations. Zhang et al. [2] used the grey multivariable convolution model to
predict the concentration of PM10 and PM2.5 in Shijiazhuang.
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This paper presents a novel air pollution forecasting-based deep learning method.
In the proposed method, an improved attention distillation operation is proposed to
replace the original operation placed after the multi-head ProbSparse self-attention block
in the Informer [28] model to boost the model performance and extract more relevant
and meaningful features from the input sequences in the encoder block. Inspired by the
inverted residual block in the neural networks such as MobileNetV3 [29], we replace the
attention distillation in the Informer model with a residual-based structure. Furthermore,
we implement two versions of the Informer model using the residual structure instead of
the canonical convolution block, and we name these ResInformer and ResInformerStack.
We compare the proposed version with the original informer model on different PM2.5
forecasting datasets. In short, our main contributions can be summarized as follows:

• Inspired by the Informer [28] model, we develop a new time-series forecasting model
as a transformer-based scheme that shows significant prediction performance.

• We replace the self-attention distillation operation of the traditional Informer with a
residual block for capturing dominating attention on the encoder side.

• We use new versions of the Informer and the developed ResInformer called Inform-
erStack and ResInformerStack using the residual structure instead of the canonical
convolution block. The four models are extensively compared using different perfor-
mance indicators.

• We evaluate the mentioned models using PM2.5 datasets collected from three major
Chinese cities, Beijing, Shijiazhuang, and Wuhan.

This paper is organized into the following sections. Section 2 presents the related
works that use deep learning methods for air pollution forecasting. Section 3 shows the
proposed deep learning method for air pollution forecasting. In Section 4, the experiments
and results are detailed. Finally, the conclusions and future work directions are provided
in Section 5.

2. Literature Review

Prior studies on the green economy can be divided into national, regional, industrial,
and city [30,31].

Because the Community Radiative Transfer Model is oriented to the GOCART scheme [32],
a novel LiDAR assimilation technique for the MOSAIC system was established in [32],
based on the Community Radiative Transfer Model and 3DVAR methods, in order to en-
hance the prediction of PM2.5 3D distribution. The suggested model produced better
results than the conventional models in the literature. Despite much research on PM2.5,
the problem of gradient disappearance and the representative samples of wavelet orders
and layers still needs to be solved. A new model based on a wavelet transform-stacked
autoencoder was suggested in [33]. The conclusion was that such a unique approach may
assist in improving the accuracy of the PM2.5 forecast.

An integrated approach of gated recurrent unit deep net based on observable mode
decomposition (EMD-GRU) was proposed in [34] for forecasting the PM2.5 concentration.
This approach first decomposed the PM2.5 concentration sequence using a decomposition
model. It then fed the various stationary subsequences formed after the decomposition.
The forecast results of the instance presented in this study demonstrated that the EMD-GRU
model decreased the RMSE and SMAPE compared to the GRU model.

To examine the effects of COVID-19 on fine particulate matter (PM2.5) levels, a condi-
tional variational autoencoder system was created in [35] based on deep learning to detect
PM2.5 anomalies in Chinese cities during the COVID-19 outbreak. The authors demon-
strated that the timing of the variation in the cities with uncontrolled PM2.5 anomalies
corresponded to the WHO’s responses to COVID-19. A Long Short-Term Memory-based
deep neural network was used in [36] to anticipate the optimum PM2.5 concentrations.
Compared to traditional multilayer neural networks, deep learning approaches have con-
siderable advantages.
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A unique annual nonlinear grey paradigm was initially constructed in [37] to solve
such concerns by merging the climate sensitivity factor, the traditional Weibull Bernoulli
grey model, and the cultural algorithm, which depicted the periodicity and nonlinearity
of the source data concurrently. The suggested model provided early warning data to
policymakers in order for them to build PM2.5 mitigation plans. Based on Sentinel–5Ps and
ground-station observed data, researchers evaluated the shift in atmospheric pollutants
over a partial to total lockdown time in 2020 [38]. The results showed that the average
tropospheric NO2 level reduced significantly in 2020 due to the lockdown compared to the
previous year.

Further research examined the reasons for these unexpected incidents [39]. The PM2.5
data were collected from surveillance systems installed as part of the Airbox project in
Taichung. Short-term forecast reaction capability may increase significantly in the future.
Ref. [40] provided a cellular automata (CA) system based on a multiple regression analysis
model and many schematics to evaluate the formation and dispersion of PM2.5. The percent
of the forecast errors in this experiment was almost smaller than 20 g/m3.

The research in [41] investigated reliable PM2.5 prediction, which may help to reduce
or avoid detrimental outcomes. The suggested method was unique because it used a genetic
algorithm (GA) and an encoder–decoder (E–D) model to forecast PM2.5. The suggested
strategy enhanced the accuracy by at least 13.7 percent by merging the GA-based feature
extraction technique and the E–D model. Using various clustering algorithms, the authors
in [42] demonstrated that it was feasible to correctly estimate acceptable PM2.5 concentra-
tions with minimum computing time. The data were collected using an Internet of Things
infrastructure comprised of Airbox devices for PM2.5 monitoring. A final comparison study
was performed for several clustering algorithms regarding efficiency and computing time.

Another study proposed a novel picture-based predictor of PM2.5 concentration,
which used photographs taken with mobile phones or cameras to estimate PM2.5 con-
centration in real time [43]. Naturalness statistics models were developed on entropy
characteristics in spatial and transform domains using a large body of images recorded
under favorable weather, i.e., poor PM2.5 concentration. In terms of the prediction accuracy
and deployment efficiency, adequate experimental findings demonstrated the proposed
model’s advantage over current relevant state-of-the-art forecasts.

Another paper suggested a deep neural system PM2.5 prediction model that captured
the temporal variations of ground-level PM2.5 by combining remote sensing atmospheric
aerosol depth information from the Himawari-8 satellite with traditional meteorological
information [44]. The suggested PM2.5 model considerably increased the accuracy of
the PM2.5 estimate and offered a new viewpoint for PM2.5 monitoring by utilizing an
end-to-end classification technique.

3. Proposed Deep Learning Model

Recent research has witnessed the development of deep learning models for long se-
quence time-series forecasting (LSTF) problems, such as Informer [28]. The Informer model
is transformer-based architecture known for its superiority in forecasting long sequences
compared to other models such as ARIMA, DeepAR, CNN, and LSTM. The Informer
models are widely used in time-series forecasting, relying on sparse attention transformers
to extract long-term temporal dependencies. In this section, we introduce an improved
architecture of the Informer by replacing the self-attention distillation operation with a
residual block to capture dominating attention on the encoder side. The residual block is
a generalization of the residual connection inspired by the inverted residual block in the
MobileNetV3 [29] architecture. The proposed architecture of the ResInformer is shown in
Figure 1.
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Figure 1. The proposed ResInformer architecture.

The main components of the Informer rely on the following parts: the self-attention
mechanism, ProbSparse, which lowers the time complexity, the self-attention distilling
operation, which reduces overheads (process longer inputs), and the batch sequence pre-
diction, which is based on the generative style decoder. The ProbSparse self-attention
mechanism was proposed to tackle the time and memory complexity in attention-based
models when dealing with long input sequences. The ProbSparse attention is based on the
KL-divergence to create a sparse attention version that can achieve O(TlogT) complexity
compared to the self-attention mechanism in a vanilla Transformer model. Compared to
the canonical attention [45], the ProbSparse attention only selects a subset u of dominant
queries based on their variance (the largest variance is selected) over all keys. The sparse
query matrix defined as Q̄ ∈ RLQ×d replaces the old query in the ProbSparse attention,
which consists only of the subset of Top-u queries, and d represents the corresponding
input dimension. The ProbSparse attention is defined in Equation (1),

ATT(Q̄, K, V) = So f tmax(
Q̄Kt
√

d
)V. (1)

As shown in Figure 1, to perform information distillation, the Informer uses the multi-
head ProbSparse Self-Attention Blocks followed by the self-attention distillation operation
in a pyramid structure to distill the redundant combinations of value V. The operation
sequences proposed to replace the actual distillation process are listed in Algorithm 1.
The original Informer starts with a ProbSparse self-attention applied on the hidden rep-
resentation hi from the ith block generating the Q, K, and V. Later, the self-attention
distillation operation is applied using the dilated convolution (Conv1d) layers inspired
by [46] and defined as in Equation (2),

Xt
j+1 = MaxPool(ELU(Conv1D([Xt

j ]AB))), (2)

where j represents the jth, [·]AB represents the operations of the ProbSparse self-attention,
and Conv1D, MaxPool, and ELU are the 1D convolution operation with the kernel size
K = 3, the max-pooling operation to downsample Xt to half with a stride equal to two at
each block, and the ELU activation function, respectively [47].

In the proposed ResInformer, the self-attention distillation operation is proposed as
listed in Algorithm 1. The model takes as input the hidden representation hi from the ith

block and produces the hi+1 representation for the i + 1th block.
The batch normalization is used to normalize the inputs used in Transformer architec-

tures across the C number of channels of the generated output in a 1D array of length L
from the Conv-1D layer over N batches.
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Algorithm 1 ResInformer ProbSparse Self-Attention Block.

Require: hi
Ensure: hi+1

residual ← hi
hi+1 ← ATT(hi, hi)
hi+1 ← ELU(BatchNorm(Conv1D(hi+1)))
hi+1 ← MaxPool(ELU(BatchNorm(Conv1D(hi+1)) + residual))

After concatenating the representation of the output resulting from the encoder block
in a final hidden representation hL, the decoder block is applied to generate the output
sequence yL, which is built based on the standard decoder architecture from [45]. The de-
coder block comprises a multi-head self-attention mechanism and a fully connected layer
to generate the output sequence. The decoder uses a generative style to predict the next
time step yt+1, based on the previous time step yt and the currently hidden representation
ht. Concerning the loss function, we used the mean square error (MSE) loss function as in
Equation (3),

lossmse(y, ŷ) =
1
M

n

∑
t=1
‖y(t) − ŷ(t)‖2

2, (3)

where ŷ ∈ RM×n is the predicted output, and Y is the ground truth.
Table 1 lists the main characteristics of the models used in our study.

Table 1. The models’ characteristics.

Characteristics Informer InformerStack ResFormer ResFormerStack

Transformer-based X X X X
ProbSparse self-attention X X X X
Self-attention distilling X X % %
Generative style decoder X X X X
Encoders/decoders 1/1 2/1 1/1 2/1
Residual distilation block % % X X

4. Study Areas

Beijing, the capital of the People’s Republic of China, is situated at the north tip of the
North China Plain, with mountains to its north and west, having about 21,886,000 residents
in a total area of 16,410 km2, with a population density of 1333 person/km. Its urban
population makes it the second-largest Chinese city.

It is also the nation’s cultural, educational, and political center. Its climate is humid
continental, influenced by the monsoon, with hot humid summers and cold dry winters.
The city used to have poor air quality, especially in winter, caused by several factors,
including car exhaust emissions, manufacturing in surrounding regions, and coal burning.

Shijiazhuang, the capital city of Hebei province, is situated at the west edge of the
North China Plain and the east foot of the Taihang Mountains, about 266 km southwest of
Beijing. Its climate is semi-arid continental, influenced by the monsoon, with hot humid
summers and cold dry winters. It has a total area of 14,530 km2, with an estimated resident
population of 11,204,700 in 2021. The population density of Shijiazhuang is 771 person/km.
It is a major industrial city in North China, with a state-level industrial zone. Its poor air
quality ranked as high for air pollution in the nation and the world.

Wuhan, the capital city of Hubei Province, is situated at the confluence of the Yangtze
River and the Han river, having a total area of 8483 km2, with an estimated resident
population of 13,648,900 in 2021. The population density of Wuhan is 1608 person/km. Its
urban area consists of three towns, Wuchang, Hankou, and Hanyang, with 25% covered by
water. Its climate is humid subtropical, with abundant rainfall in summer and four distinct
seasons. It has a population of more than 11 million, making it the most populous city in
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Central China. It is also an industrial hub in Central China, with three state-level industrial
zones and over 350 research institutes. Figure 2 shows the geographical position of the
three cities.

Figure 2. The study areas.

5. Experiments
5.1. Experimental Setup

The ADAM [48] optimizer with an initial learning rate of 1E−4 was used to train the
models using a batch size of 16 for 50 epochs. The training process was stopped early
within ten epochs. All the experiments were repeated ten times, implemented in PyTorch,
and conducted on a single NVIDIA GTX1080 GPU with 8 GB of RAM. The ResInformer
contained two encoder layers and one decoder layer with eight attention heads. The same
configurations were set for the Informer, InformerStack, and ResInformer, with prediction
windows equal to one day based on the datasets’ time stamps. The InformerStack stacked
the encoder layers with the following order 3,2,1. All models used an input sequence
length of the encoder equal to 96 and a start token (label length) for the decoder equal to 48.
The encoder and decoder input sizes were equal to seven.

Multiple evaluation metrics were used to evaluate the performance of the models, in-
cluding the mean square error (MSE), the mean absolute error (MAE), the root mean square
error (RMSE), the mean squared prediction error (MSPE), the mean absolute percentage
error (MAPE), and the coefficient of determination (R2). The following equations define
the evaluation metrics used in the experiments.

MSE =
1
n

n

∑
t=1
‖y(t) − ŷ(t)‖2

2; (4)

MAE =
1
n

n

∑
t=1
‖y(t) − ŷ(t)‖1; (5)

RMSE =

√
1
n

n

∑
t=1
‖y(t) − ŷ(t)‖2

2; (6)
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MSPE =
1
n

n

∑
t=1
‖y(t) − ŷ(t)‖1/y(t); (7)

MAPE =
1
n

n

∑
t=1
‖y(t) − ŷ(t)‖1/ŷ(t); (8)

R2 = 1− ∑n
t=1 ‖y(t) − ŷ(t)‖2

2

∑n
t=1 ‖y(t) − ȳ‖2

2
, (9)

where ȳ is the mean of the ground truth values y, while ŷ represents the predicted values.

5.2. Dataset Description

We obtained the air quality index datasets from the Worldwide COVID-19 Air Quality
datasets that are publicly available online at “Air Quality Open Data Platform (https:
//aqicn.org/data-platform/covid19/, accessed on 1 March 2022)”. As mentioned above,
we selected three major Chinese cities, Beijing, Shijiazhuang, and Wuhan. The data were
divided into three parts: training, validation, and testing sets with a ratio of 70:10:20.
Concerning data preprocessing, all datasets were prepared with data standardization as
defined in Equation (10) to boost the models’ performance and to reduce the variance in
the data. For the Beijing data, the dates ranged from 1 January 2014 to 17 February 2022.
For the Wuhan data, the dates ranged from 1 January 2014 to 26 October 2021. For the
Shijiazhuang data, the dates ranged from 21 February 2014 to 9 February 2022.

x̃ =
x−mean

std
, (10)

where mean is the mean of the training samples, and std is the standard deviation of the
training samples.

5.3. Results

We compared the proposed ResInformer and its variant ResInformerStack to the
aforementioned models, Informer and InformerStack.

Table 2 illustrates the evaluation results for the four models using five evaluation
indicators, MAE, MSE, R2, RMSE, MAPE, and MSPE.

In the case of Beijing, it is clear that the ResInformerStack obtained the best values in
terms of all performance indicators. The InformerStack model recorded the second rank in
terms of the MSE, MAE, R2, and RMSE. The Informer obtained the second rank in terms of
the MAPE and MSPE.

In the case of Wuhan, the ResInformerStack model recorded the best values in terms of
the MSE, R2, RMSE, MAPE, and MSPE. In terms of the MAE, the best result was obtained
by the InformerStack model. Moreover, the InformerStack recorded the second rank in
several indicators, such as the MSE, R2, RMSE, and MSPE. The Informer model recorded
the second rank in terms of the MAPE.

For the Shijiazhuang data, the ResInformer obtained the best MSE value, followed by
the Informer, ResInformerStack, and the ResInformer, respectively. The Informer model
obtained the best MAE value, followed by the ResInformerStack, InformerStack, and the
ResInformer. In terms of the R2, the best results were obtained by the Informer model,
followed by the InformerStack, ResInformer, and the ResInformerStack, respectively. The
ResInformer recorded the best RMSE value, followed by the Informer, ResInformerStck,
and the InformerStack, respectively. Moreover, the Informer model obtained the first rank in
terms of the MSPE, followed by the ResInformerStack, ResInformer, and the InformerStack,
respectively.

For further analysis, Figures 3–5 show the prediction results of all the compared meth-
ods on the testing sets in terms of the MAE, MSE, and R2, for Beijing, Wuhan, and Shiji-
azhuang, respectively. Here also, the ResInformerStack obtained the best results, except for

https:// aqicn.org/data-platform/covid19/
https:// aqicn.org/data-platform/covid19/
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the data of Shijiazhuang city, in which the Informer model obtained the best results in
terms of the MAE and R2, whereas the ResInformer obtained the best MSE value.
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Figure 3. Wuhan PM2.5 prediction scores. (a) MSE score for testing data predictions; (b) MAE score
for testing data predictions; (c) R2 score for testing data predictions.
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Figure 4. Shijiazhuang PM2.5 prediction scores. (a) MSE score for testing data predictions; (b) MAE
score for testing data predictions; (c) R2 score for testing data predictions.
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Figure 5. Beijing PM2.5 prediction scores. (a) MSE score for testing data predictions; (b) MAE score
for testing data predictions; (c) R2 score for testing data predictions.

Additionally, Figures 6–8 display the predicted outputs compared to the real data
records for the compared methods using the datasets of the three cities, Beijing, Wuhan,
and Shijiazhuang, respectively. We selected 20% of the last records based on the time from
each dataset for the test prediction. From these figures, we can see that the ResInformerStack
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obtained the nearest value to the real record (ground truth) on the Beijing and Shijiazhuang
datasets. In terms of the Wuhan dataset, it can be noticed that the Informer model per-
formed similarly to ResInformerStack, where at some time stamps, the Informer model
was relatively accurate. As noticed in the Beijing dataset charts, the InformerStack did not
perform well on the February to March segment, whereas the other models performed
better on this segment.

(a)

(b)

(c)

(d)

Figure 6. Beijing PM25 predictions. (a) PM2.5 predictions on the testing set using Informer; (b) PM2.5
predictions on the testing set using InformerStack; (c) PM2.5 predictions on the testing set using
ResInformer; (d) PM2.5 predictions on the testing set using ResInformerStack.
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(a)

(b)

(c)

(d)

Figure 7. Wuhan PM2.5 predictions. (a) PM2.5 predictions on the testing set using Informer; (b) PM2.5
predictions on the testing set using InformerStack; (c) PM2.5 predictions on the testing set using
ResInformer; (d) PM2.5 predictions on the testing set using ResInformerStack.
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(a)

(b)

(c)

(d)

Figure 8. Shijiazhuang PM2.5 predictions. (a) PM2.5 predictions on the testing set using Informer;
(b) PM2.5 predictions on the testing set using InformerStack; (c) PM2.5 predictions on the testing set
using ResInformer; (d) PM2.5 predictions on the testing set using ResInformerStack.
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Table 2. The prediction results of PM2.5.

City Model MSE MAE R2 RMSE MAPE MSPE

Beijing

Informer 0.0813 0.2159 0.8285 0.2852 0.8064 9.79
InformerStack 0.0725 0.2012 0.8472 0.2692 0.8921 16.30
ResInformer 0.0796 0.2130 0.8320 0.2822 0.8565 11.96
ResInformerStack 0.0688 0.1964 0.8549 0.2623 0.7561 7.73

Wuhan

Informer 0.2730 0.4180 0.5329 0.5225 1.44 29.94
InformerStack 0.1380 0.2911 0.7621 0.3716 1.49 26.94
ResInformer 0.2215 0.3782 0.6142 0.4706 1.54 32.72
ResInformerStack 0.1378 0.2982 0.7656 0.3712 1.39 21.19

Shijiazhuang

Informer 0.2614 0.2890 0.6433 0.5112 1.79 137.91
InformerStack 0.2925 0.3081 0.6020 0.5408 2.25 263.97
ResInformer 0.2158 0.3138 0.5857 0.4646 2.00 212.94
ResInformerStack 0.2855 0.3055 0.4937 0.5343 1.91 185.91

6. Conclusions

China has implemented strict policies to tackle the problem of air pollution. Therefore,
developing time-series forecasting tools for air quality in China is necessary. Thus, we
selected three major cities in China, Beijing, Wuhan, and Shijiazhuang, to forecast partic-
ulate matter (PM2.5) concentrations using public datasets. The developed deep learning
model was built based on the well-known Informer model, where the attention distillation
block was boosted with a residual block-inspired structure from efficient networks. The de-
veloped structure was named ResInformer. With extensive evaluation experiments, we
concluded that the developed ResInformer and its variant ResInformerStack performed
better than the original Informer and its variant InformerStack in many cases.
However, the proposed model faced some limitations in the context of the encoder–decoder
architectures, such as the large set of training parameters that needed to be set carefully
before the training, which could affect the network size and complexity. In addition, the net-
work speed and accuracy convergence should be further studied in depth, which will be
considered in our future work, in order to balance the network performance and the time
and resources cost. In future work, we will enhance the prediction accuracy of the ResIn-
former further so that it can be employed for other time-series forecasting applications.
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