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Abstract: In this paper, we consider the (3 + 1)-dimensional fractional-stochastic quantum Zakharov–
Kuznetsov equation (FSQZKE) with M-truncated derivative. To find novel trigonometric, hyperbolic,
elliptic, and rational fractional solutions, two techniques are used: the Jacobi elliptic function approach
and the modified F-expansion method. We also expand on a few earlier findings. The extended quan-
tum Zakharov–Kuznetsov has practical applications in dealing with quantum electronpositron–ion
magnetoplasmas, warm ions, and hot isothermal electrons in the presence of uniform magnetic fields,
which makes the solutions obtained useful in analyzing a number of intriguing physical phenomena.
We plot our data in MATLAB and display various 3D and 2D graphical representations to explain
how the stochastic term and fractional derivative influence the exact solutions of the FSEQZKE.

Keywords: Stochastic Zakharov–Kuznetsov equation; truncated M-fractional derivative; Jacobi
elliptic function method; modified F-expansion method
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1. Introduction

The stochastic model is evaluated based on several criteria to guarantee accuracy in
likely outcomes. Therefore, the stochastic model must account for all potential sources of
uncertainty in order to present all viable scenarios and produce the most accurate probabil-
ity distribution. Additionally, each probability is connected to the others within the model,
which helps determine how random the inputs are as a whole. Further predictions and
information forecasting are performed using these probabilities. As a result, the significance
of fluctuations or randomness in many phenomena has now been demonstrated. Because of
this, random effects have become more crucial for modeling a variety of physical processes
that take place in disciplines including oceanography, finance, physics, biology, meteorol-
ogy, environmental sciences, and others [1–3]. Stochastic partial differential equations are
the best mathematical representations of complex systems when noise or random effects
are involved.

In contrast, fractional differential equations (FDEs) are used to explain a wide variety
of physical phenomena in electromagnetic theory, engineering fields, mathematical biology,
signal processing, and other fields of science. Additionally, the fractional-order derivative
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can be used to represent a variety of physical phenomena, such as sound electrostatics,
heat, elasticity, gravity, diffusion, and many others [4–6]. Numerous definitions have been
proposed due to the significance of the fractional-order derivative, including He’s fractional
derivative, conformable fractional definitions, the Riemann–Liouville derivative, the Riesz
derivative, the Grunwald–Letnikov derivative, the new truncated M-fractional derivative,
and Beta derivative [7–14].

A novel fractional derivative known as the truncated M-fractional derivative has just
been proposed by Sousa et al. [14]. From here, let us define the truncated M-fractional
derivative for the function u : [0, ∞)→ R of order α ∈ (0, 1) as follows:

Ti,α,β
M,z u(z) = lim

h→0

u(z +i Eβ(hz−α))− u(z)
h

, (1)

where the truncated Mittag–Leffler function iEβ(x), for β > 0 and x ∈ C, [15] with one
parameter is defined as

iEβ(z) =
i

∑
k=0

zk

Γ(βk + 1)
.

The following features of the truncated M-fractional derivative are met for any con-
stants a and b [14,16]:

(1) Ti,α,β
M,z (au + bv) = aTi,α,β

M,z (u) + bTi,α,β
M,z (v), (2) Ti,α,β

M,z (z
ν) =

ν

Γ(β + 1)
zν−α,

(3) Ti,α,β
M,z (uv) = uTi,α,β

M,z v + vTi,α,β
M,z u, (4) Ti,α,β

M,z (u)(z) =
z1−α

Γ(β + 1)
du
dz

,

(5) Ti,α,β
M,z (u ◦ v)(z) = u

′
(v(z))Ti,α,β

M,z v(z).

The implications of FDEs has resulted in the development of various powerful and efficient
methods for determining the exact solutions to these equations. Several of these techniques
are the Riccati–Bernoulli sub-ODE [17], the tanh-sech method [18,19], the Jacobi elliptic func-
tion [20], Hirota’s method [21], exp(−ϕ(ς))-expansion [22], the perturbation method [23,24],
Lie symmetry analysis [25], the invariant subspace method [26], the sine-cosine method [27,28],
modified extended mapping [29], the (G′/G)-expansion method [30,31], etc.

Recent study on fractional differential equations with stochastic terms has been ex-
amined, for example, [32–38] and the references therein. As a result, we consider the (3 +
1)-dimensional fractional-stochastic quantum Zakharov–Kuznetsov equation (FSQZKE)
with M-truncated derivative as follows:

ϕt + AϕT0,α,β
M,z ϕ + BT0,α,β

M,zzz ϕ + CT0,α,β
M,zxx ϕ + CT0,α,β

M,zyy ϕ = σϕWt, (2)

where ϕ = ϕ(x, y, z, t) is the electrostatic potential. A, B, and C are well-known constants
expressing dispersive and nonlinear coefficients. T0,α,β

M,z is the M-truncated derivative
defined in Equation (1) with i = 1. W(t) is the Wiener process, and ϕWt is a multiplicative
noise in the Itô sense. σ is the intensity of noise.

In the case of α→ 1 and σ = β = 0, then Equation (2) tends to the classical form:

ϕt + Aϕϕz + Bϕzzz + Cϕzxx + Cϕzyy = 0. (3)

In Moslem et al. [39] and Washimi and Taniuti [40], respectively, the reductive per-
turbation approach and a sequence of transformations were used to derive Equation (3).
The Zakharov–Kuznetsov equation is used frequently in engineering, applied mathematics,
and physics. It particularly appears in the field of plasma physics [41]. This Equation (3)
could be employed to illustrate how low-frequency ion-acoustic waves propagate in a
dense quantum magneto-plasma [42]. Different methods for obtaining the exact solutions
of quantum Zakharov–Kuznetsov Equation (3), such as the Jacobi elliptic equation and
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generalized (G′/G)-expansion [43,44], Hirota bilinear and auxiliary equation [45], exp-
function, modified F-expansion methods [46], the generalized unified method [47], and the
extended F-expansion method [48], while Equation (3) with a stochastic term and fractional
derivative with the M-truncated derivative has not been addressed previously before.

Achieving the analytical solutions of FSQZKE (2) is the motivation and main objective
of this article. The Jacobi elliptic function approach and the modified F-expansion method
are used to obtain these solutions. In addition, we generalize some earlier results, such as
the solutions presented in [43,48]. In describing some significant physical occurrences, the
solutions provided would be of great benefit to physicists. With the aid of the MATLAB
program, we also introduce a number of graphical representations to examine the effects of
the stochastic term and fractional derivative on the analytical solution of the FSQZKE (2).

This article is organized as follows: In Section 2, we use the wave transformation
to get the wave equation for the FSQZKE (2). In Section 3, we have the exact fractional
solutions of the FSQZKE (2), while in Section 4, we present some graphical representations
to see the effect of fractional derivative on the attained solutions of the FSQZKE. Finally,
the conclusions of the paper are stated.

2. Wave Equation for the FSQZKE

The next wave transformation is used to generate the wave equation for the FSQZKE (2):

ϕ(x, y, z, t) = u(η)e(σW(t)− 1
2 σ2t), η =

Γ(β + 1)
α

(η1xα + η2yα + η3zα) + λt, (4)

where u is deterministic function, η1, η2, η3 and λ are unknown constants. As we observe

ϕt = (λu′ + σuWt)e(σW(t)− 1
2 σ2t), T0,α,β

M,z ϕ = η3u′e(σW(t)− 1
2 σ2t), (5)

and

T0,α,β
M,zzz ϕ = η3

3u′′′e(σW(t)− 1
2 σ2t), T0,3α,β

M,zxx ϕ = η3η2
1u′′′e(σW(t)− 1

2 σ2t),

T0,α,β
M,zyy ϕ = η3η2

2u′′′e(σW(t)− 1
2 σ2t). (6)

Plugging Equation (4) into Equation (2) and using (5) and (6), we have

λu′ + Aη3uu′e(σW(t)− 1
2 σ2t) + [Bη3

3 + Cη3η2
1 + Cη3η2

2 ]u
′′′ = 0. (7)

We take the expectation E(·), which satisfies (i) E(XY) = E(X)E((Y) if X and Y are
independent random variable (ii) E(X) = X if X is deterministic, on both sides

λu′ + Aη3uu′e−
1
2 σ2tE(e(σW(t)) + [Bη3

3 + Cη3η2
1 + Cη3η2

2 ]u
′′′ = 0.

Since W(t) is a Normal process, E(eσW(t)) = e
1
2 σ2t. Hence, the above equation becomes

λu′ + Aη3uu′ + [Bη3
3 + Cη3η2

1 + Cη3η2
2 ]u
′′′ = 0. (8)

Integrating Equation (8) once and putting the integration constants equal to zero, we get

u′′ + `1u + `2u2 = 0, (9)

where
`1 =

λ

Bη3
3 + Cη3η2

1 + Cη3η2
2

and `2 =
Aη3

2(Bη2
3 + Cη2

1 + Cη2
2)

.

3. Exact Solutions of FSQZKE

In order to obtain solutions for FSQZKE (2), we apply two various approaches: the
Jacobi elliptic function (JEF) approach and the modified F-expansion method.
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3.1. JEF Method

Here, we use the JEF approach (see [49]). With regard to Equation (9), the solutions
have the next form:

u(η) =
M

∑
j=0

h̄j[Ω(η)]j, (10)

where h̄0, h̄1, ...., h̄M are unknown constants and h̄M 6= 0, Ω(η) = sn(η, m) is the Jacobi
elliptic sine function for 0 < m < 1. To calculate M, we balance u2 with u′′ in Equation (9)
to have

2M = M + 2,

therefore
M = 2. (11)

Rewriting Equation (10) by utilizing Equation (11) as

u(η) = h̄0 + h̄1Ω(η) + h̄2Ω2(η), (12)

Differentiating Equation (12) twice

u′′(η) = 2h̄2 − h̄1(m2 + 1)Ω− 4h̄2(m2 + 1)Ω2 + 2h̄1m2Ω3 + 6h̄2m2Ω4. (13)

substituting Equations (12) and (13) into Equation (9), we attain

(6m2h̄2 + `2h̄2
2)Ω

4 + (2m2h̄1 + 2`2h̄1h̄2)Ω3 + (2h̄0`2h̄2 − 4h̄2(m2 + 1) + `1h̄2 + `2h̄2
1)Ω

2

−[(m2 + 1)h̄1 − `1h̄1 − 2`2h̄0h̄1]Ω + (2h̄2 + `1h̄0 + `2h̄2
0) = 0.

Balancing each coefficient of Ωn to zero, yields

6m2h̄2 + `2h̄2
2 = 0,

2m2h̄1 + 2`2h̄1h̄2 = 0,

2h̄0`2h̄2 − 4h̄2(m2 + 1) + `1h̄2 + `2h̄2
1 = 0,

(m2 + 1)h̄1 − `1h̄1 − 2`2h̄0h̄1 = 0,

and
2h̄2 + `1h̄0 + `2h̄2

0 = 0.

We obtain the next two sets after solving these equations:
First set: 

h̄0 = 2(m2+1)−2
√

m4−m2+1
`2

,
h̄1 = 0,
h̄2 = −6m2

`2
,

λ = 4(Bη3
3 + Cη3η2

1 + Cη3η2
2)
√

m4 −m2 + 1.

Second set: 
h̄0 = 2(m2+1)+2

√
m4−m2+1

`2
,

h̄1 = 0,
h̄2 = −6m2

`2
,

λ = −4(Bη3
3 + Cη3η2

1 + Cη3η2
2)
√

m4 −m2 + 1.

For the first set, the solutions of FSQZKE (2), using (12), are

ϕ(x, y, z, t) = [
2(m2 + 1)− 2

√
m4 −m2 + 1

`2
− 6m2

`2
sn2(η, m)]e(σW(t)− 1

2 σ2t), (14)
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where η = Γ(β+1)
α (η1xα + η2yα + η3zα)+ 4

√
m4 −m2 + 1(Bη3

3 +Cη3η2
1 +Cη3η2

2)t. If m→ 1,
then Equation (14) takes the form

ϕ(x, y, z, t) = [
2
`2
− 6

`2
tanh2(η)]e(σW(t)− 1

2 σ2t), (15)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα) + 4(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
For the second set, the solutions of FSQZKE (2), using (12), are

ϕ(x, y, z, t) = [
2(m2 + 1) + 2

√
m4 −m2 + 1

`2
− 6m2

`2
sn2(η, m)]e(σW(t)− 1

2 σ2t) , (16)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 4

√
m4 −m2 + 1(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
If m→ 1, then Equation (16) becomes

ϕ(x, y, z, t) = [
6
`2
− 6

`2
tanh2(η)]e(σW(t)− 1

2 σ2t) =
6
`2

sech2(η)e(σW(t)− 1
2 σ2t), (17)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 4(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Analogously, we can replace sn in (12) by cn to have the FSQZKE (2) as follows:

ϕ(x, y, z, t) = [
(2− 4m2)− 2

√
m4 −m2 + 1

`2
+

6m2

`2
cn2(η, m)]e(σW(t)− 1

2 σ2t), (18)

or

ϕ(x, y, z, t) = [
(2− 4m2) + 2

√
m4 −m2 + 1

`2
+

6m2

`2
cn2(η, m)]e(σW(t)− 1

2 σ2t). (19)

If m→ 1, then the solutions (18) become

ϕ(x, y, z, t) = [
−4
`2

+
6
`2

sech2(η)]e(σW(t)− 1
2 σ2t), (20)

or
ϕ(x, y, z, t) =

6
`2

sech2(η)e(σW(t)− 1
2 σ2t), (21)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 4(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.

Remark 1. Setting α = 1, β = σ = 0 in Equations (16) and (19), we obtain the same solutions
(30) and (32), respectively, stated in [48].

Remark 2. Putting α = 1, β = σ = 0 in Equations (16), (15) and (21), we obtain the similar
solutions (3.30), (3.16), and (3.15) reported in [43] via extended generalized (G′/G)-expansion.

3.2. Modified F-Expansion Method

Here, we use the modified F-expansion method (see [50]). Let us suppose the solution
u of Equation (9) has the type (with M = 2):

u(η) = a0 + a1F + a2F2 +
b1

F
+

b1

F2 , (22)

where F solves
F′ = F2 + k, (23)

where k is a real constant. The Equation (23) has the solutions:

φ(µ) =
√

k tan(
√

kµ) or φ(µ) = −
√

k cot(
√

kµ), (24)
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If k > 0, or

φ(µ) = −
√
−k tanh(

√
−kµ) or φ(µ) = −

√
−k coth(

√
−kµ), (25)

If k < 0, or

φ(µ) =
−1
µ

, (26)

If k = 0.
Now, substituting Equation (22) into Equation (9) we obtain

(6a2 + `2a2
2)F4 + (2a1 + 2`2a1a2)F3 + (8ka2 + 2a0a2`2 + a2

1`2 + `1a2)F2

(2ka1 + `1a1 + 2`2a0a1 + 2a2b1)F + (2k2a2 + 2b2 + `1a0 + `2a2
0 + 2`2a1b1

+2`2a2b2) + (2kb1 + 2`2a0b1 + 2`2a1b2 + `1b1)F−1 + (8kb2 + 2a0b2`2

+b2
1`2 + `1b2)F−2 + (2b1k2 + 2`2b1b2)F−3 + (6k2b2 + `2b2

2)F−4 = 0

Setting each power of F’s coefficients to zero as follows:

6a2 + `2a2
2 = 0,

2a1 + 2`2a1a2 = 0,

8ka2 + 2a0a2`2 + a2
1`2 + `1a2 = 0,

2ka1 + `1a1 + 2`2a0a1 + 2a2b1 = 0,

2k2a2 + 2b2 + `1a0 + `2a2
0 + 2`2a1b1 + 2`2a2b2 = 0,

2kb1 + 2`2a0b1 + 2`2a1b2 + `1b1 = 0,

8kb2 + 2a0b2`2 + b2
1`2 + `1b2 = 0,

2b1k2 + 2`2b1b2 = 0

and
6k2b2 + `2b2

2 = 0.

Solving these equations yields the four distinct sets as follows:
First set:

a0 =
−6k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 = 0, λ = 4k(Bη3
3 + Cη3η2

1 + Cη3η2
2), (27)

Second set:

a0 =
−2k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 = 0, λ = −4k(Bη3
3 + Cη3η2

1 + Cη3η2
2). (28)

Third set:

a0 =
−12k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 =
−6k2

`2
, λ = 16k(Bη3

3 + Cη3η2
1 + Cη3η2

2), (29)

Fourth set:

a0 =
8k
`2

, a1 = 0, a2 =
−6
`2

, b1 = 0, b2 =
−6k2

`2
, λ = −14k(Bη3

3 + Cη3η2
1 + Cη3η2

2). (30)

First set: The solution of Equation (9) in this case is

u(η) =
−6k
`2
− 6

`2
F2(η).
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For F(η), there are three cases:
Case1: If k > 0, then by using (24) we obtain

u(η) =
−6k
`2
− 6k

`2
tan2(

√
kη) = −6k

`2
sec2(

√
kη),

and
u(η) =

−6k
`2
− 6k

`2
cot2(

√
kη) =

−6k
`2

csc2(
√

kη).

Thus, the FSQZKE (2) has the solutions

ϕ1,1(x, y, z, t) = −6k
`2

sec2(
√

kη)e(σW(t)− 1
2 σ2t), (31)

and
ϕ1,2(x, y, z, t) =

−6k
`2

csc2(
√

kη)e(σW(t)− 1
2 σ2t), (32)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα) + 4k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Case2: If k < 0, then by using (25) we obtain

u(η) =
−6k
`2

+
6k
`2

tanh2(
√
−kη) =

−6k
`2

sech2(
√
−kη),

and
u(η) =

−6k
`2

+
6k
`2

coth2(
√
−kη) =

6k
`2

csch2(
√
−kη).

Thus, the FSQZKE (2) has the solutions

ϕ1,3(x, y, z, t) =
−6k
`2

sech2(
√
−kη)e(σW(t)− 1

2 σ2t), (33)

and
ϕ1,4(x, y, z, t) =

6k
`2

csch2(
√
−kη)e(σW(t)− 1

2 σ2t), (34)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα) + 4k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Case3: If k = 0, then by using (26) we obtain

u(η) =
6
`2

1
η2 .

Thus, the FSQZKE (2) has the solution

ϕ1,5(x, y, z, t) = [− 6
`2

1
η2 ]e

(σW(t)− 1
2 σ2t), (35)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα) + 4k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Second set: The Equation (9) has the solution

u(η) =
−2k
`2
− 6

`2
F2(η)

For F(η), there are three cases:
Case1: If k > 0, then by using (24) we obtain

u(η) =
−2k
`2
− 6k

`2
tan2(

√
kη),
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and
u(η) =

−2k
`2
− 6k

`2
cot2(

√
kη).

Thus, the FSQZKE (2) has the solutions

ϕ2,1(x, y, z, t) = [
−2k
`2
− 6k

`2
tan2(

√
kη)]e(σW(t)− 1

2 σ2t), (36)

and
ϕ2,2(x, y, z, t) = [

−2k
`2
− 6k

`2
cot2(

√
kη)]e(σW(t)− 1

2 σ2t), (37)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 4k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Case2: If k < 0, then by using (25) we obtain

u(η) =
−2k
`2

+
6k
`2

tanh2(
√
−kη),

and
u(η) =

−2k
`2

+
6k
`2

coth2(
√
−kη).

Thus, the FSQZKE (2) has the solutions

ϕ2,3(x, y, z, t) = [
−2k
`2

+
6k
`2

tanh2(
√
−kη)]e(σW(t)− 1

2 σ2t), (38)

and
ϕ2,4(x, y, z, t) = [

−2k
`2

+
6k
`2

coth2(
√
−kη)]e(σW(t)− 1

2 σ2t). (39)

Case3: If k = 0, then by using (26) we obtain

u(η) =
6
`2

1
η2 .

Thus the solution of FSQZKE (2) is

ϕ2,5(x, y, z, t) =
6
`2

1
η2 e(σW(t)− 1

2 σ2t), (40)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 4k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Third set: The solution of Equation (9) in this case is

u(η) =
−12k
`2
− 6

`2
F2(η)− 6k2

`2
F−2(η).

For F(η), there are three cases:
Case1: If k > 0, then by using (24) we obtain

u(η) =
−12k
`2
− 6k

`2
tan2(

√
kη)− 6k

`2
cot2(

√
kη)

= −6k
`2

[sec2(
√

kη) + csc2(
√

kη)].

Thus, the FSQZKE (2) has the solution

ϕ3,1(x, y, z, t) = −6k
`2

[sec2(
√

kη) + csc2(
√

kη)]e(σW(t)− 1
2 σ2t), (41)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα) + 16k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
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Case2: If k < 0, then by using (25) we obtain

u(η) =
−12k
`2

+
6k
`2

tanh2(
√
−kη) +

6k
`2

coth2(
√
−kη)

=
−6k
`2

[sech2(
√
−kη)− csch2(

√
−kη)].

Thus, the solution of FSQZKE (2) is

ϕ3,2(x, y, z, t) =
−6k
`2

[sech2(
√
−kη)− csch2(

√
−kη)]e(σW(t)− 1

2 σ2t), (42)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα) + 16k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Case3:If k = 0, then by using (26) we obtain

u(η) =
6
`2

1
η2 +

6
`2

η2.

Thus, the solution of FSQZKE (2) is

ϕ3,3(x, y, z, t) =
6
`2
[

1
η2 + η2]e(σW(t)− 1

2 σ2t). (43)

Fourth set: The solution of Equation (9) in this case is

u(η) =
8k
`2
− 6

`2
F2(η)− 6k2

`2
F−2(η).

For F(η), there are three cases:
Case1: If k > 0, then by using (24) we obtain

u(η) =
8k
`2
− 6k

`2
tan2(

√
kη)− 6k

`2
cot2(

√
kη).

Thus, the FSQZKE (2) has the solutions

ϕ4,1(x, y, z, t) = [
8k
`2
− 6k

`2
tan2(

√
kη)− 6k

`2
cot2(

√
kη)]e(σW(t)− 1

2 σ2t), (44)

where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 14k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.
Case2: If k < 0, then by using (25) we obtain

u(η) =
8k
`2

+
6k
`2

tanh2(
√
−kη) +

6k
`2

coth2(
√
−kη).

Thus, the solution of FSQZKE (2) is

ϕ4,2(x, y, z, t) = [
8k
`2

+
6k
`2

tanh2(
√
−kη) +

6k
`2

coth2(
√
−kη)]e(σW(t)− 1

2 σ2t). (45)

Case3: If k = 0, then by using (26) we obtain

u(η) =
6
`2

1
η2 +

6
`2

η2.

Thus, the FSQZKE (2) has the solution

ϕ4,3(x, y, z, t) =
6
`2
[

1
η2 + η2]e(σW(t)− 1

2 σ2t), (46)
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where η = Γ(β+1)
α (η1xα + η2yα + η3zα)− 14k(Bη3

3 + Cη3η2
1 + Cη3η2

2)t.

Remark 3. Putting α = 1, β = σ = 0 in Equations (33), (38) and (45), we obtain the similar
solutions (50), (56) and (57) presented in [48] by extended F-expansion method.

Remark 4. Putting α = 1, β = σ = 0 in Equations (31), (32), (34), (39), (44), and (45), we obtain
the same solutions (3.26), (3.46), (3.22), (3.23), (3.54) and (3.61), respectively, reported in [43] by
using extended generalized (G′/G)-expansion.

4. Graphical Representation and Discussion

In this paper, the analytical solutions of FSQZKE were acquired. Many analytic solu-
tions to FSQZKE, such as trigonometric, rational, elliptic, and hyperbolic solutions, were
attained using modified F-expansion method and Jacobi elliptic function method. The
first method, the Jacobi elliptic function, provided us with various solutions in the type of
hyperbolic, trigonometric, and rational. While the second method, modified F-expansion,
provided us with a variety of elliptic solutions. We introduced some graphical represen-
tations of the solutions using the Matlab program to better understand their behavior
and features. The behaviors of the attained solutions can be controlled by switching the
values of the free parameters. Consequently, switching the parameter values changes the
nature of the graph. To show how the graph of the obtained solutions is impacted by the
stochastic term and the fractional order, let us fix the next parameters η1 = 1, η2 = −1,
η3 = 1, x ∈ [0, 6], t ∈ [0, 2], y = z = 1, A = 1, B = 0.5, C = 0.25, `2 = 1

2 .
First the impact of stochastic term:
We may conclude, from Figures 1 and 2, that there are several various sorts of solutions,

including periodic solutions, dark solutions, and others, when the noise is disregarded
(i.e., at σ = 0). When noise is taken into account, the surface after minor transit patterns
considerably flattens down and gains strength by σ = 1, 2. This indicates that the stochastic
term affects the FSQZKE solutions and causes them to stabilize around zero.

(a) (b)

(c) (d)

Figure 1. For Equation (33), (a–d) with k = −1, α = 1, β = 0, λ = −4, indicate the 3D profiles (a)
σ = 0 (b) σ = 0.5 (c) σ = 1 and (d) σ = 2.
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(a) (b)

(c) (d)

Figure 2. For Equation (16), (a–d) with m = 0.5, α = 1, β = 0, λ = −
√

13, indicate the 3D profiles (a)
σ = 0 (b) σ = 0.5 (c) σ = 1 and (d) σ = 2.

Second the impact of fractional order:
Finally, from Figures 3 and 4 we inferred that the curves do not overlap. Furthermore,

the solutions shift to the left when the order of the M-truncated derivative increases.

(a) (b)

(c) (d)

Figure 3. For Equation (33), (a–c) with parameters k = −1, σ = 0, λ = −4, indicate the 3D profiles
and (d) denotes the 2D plot for different values of α at t = 1.5 and there is no overlap between the
curves of the solution. (a) α = 1, β = 0 (b) α = 0.7, β = 0.9 and (c) α = 0.5, β = 0.9.
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(a) (b)

(c) (d)

Figure 4. For Equation (16), (a–c) with parameters m = 0.5, σ = 0, λ = −
√

13 indicate the 3D profiles
and (d) denotes the 2D plot for different values of α at t = 1.5 and there is no overlap between the
curves of the solution. (a) α = 1, β = 0 (b) α = 0.7, β = 0.9 and (c) α = 0.5, β = 0.9.

5. Conclusions

In this paper, we looked at the (3 + 1)-dimensional fractional-stochastic quantum
Zakharov–Kuznetsov Equation (2) with M-truncated derivative. We obtained the trigono-
metric, hyperbolic, elliptic, and rational fractional-stochastic solutions of FSQZKE (2) by
using the Jacobi elliptic function method and the modified F-expansion method. Addi-
tionally, we generalized a few previous results, such as those in [43,48]. The discovered
solutions are crucial for deriving a wide range of exciting and complex phenomena. The
impact of the stochastic term and fractional derivative on the analytical solution of the
FSQZKE (2) was demonstrated using the Matlab program. Finally, we demonstrated how
the FSQZKE solutions are impacted by the stochastic term and M-truncated derivative.
In future work, we can study FSQZKE (2) with additive noise or with color multiplica-
tive noise.
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