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Abstract: For process control in engineering applications, the fewer the coding lines of optimization
algorithms, the more applications there are. Therefore, this work develops a new straightforward
metaheuristic optimization algorithm named the propagation search algorithm (PSA), stirred by
the wave propagation of the voltage and current along long transmission lines. The mathematical
models of the voltage and current are utilized in modeling the PSA, where the voltage and current
are the search agents. The propagation constant of the transmission line is the control parameter for
the exploitation and exploration of the PSA. After that, the robustness of the PSA is verified using
23 famous testing functions. The statistical tests, comprising mean, standard deviation, and p-values,
for 20 independent optimization experiments are utilized to confirm the robustness of the PSA to
find the best result and the significant difference between the outcomes of the PSA and those of the
compared algorithms. Finally, the proposed PSA is applied to find the optimum design parameters of
four engineering design problems, including a three-bar truss, compression spring, pressure vessel,
and welded beam. The outcomes show that the PSA converges to the best solutions very quickly,
which can be applied to those applications that require a fast response.

Keywords: algorithms; engineering optimization; metaheuristics; propagation search algorithm

MSC: 68W20

1. Introduction

Metaheuristic optimization algorithms have been extensively utilized in several engi-
neering applications to reduce costs. They have used either an optimal design or online
process control. For optimal design problems, it does not pose a significant problem if the
optimization algorithm is complex and takes a long time to find the best design parameters.
However, for online process control, it is required that optimization algorithms have a fast
response and less computation complexity. For example, energy harvesting from solar and
wind resources or the optimal power flow in large electrical networks require fast online
tracking of power variations, which increases system efficiency. Therefore, particle swarm
optimization (PSO) has been utilized in most engineering applications because of its sim-
plicity of coding and capability to find an optimum local or global solution. However, many
metaheuristic algorithms with high computational complexity and long codes have recently
emerged to achieve optimum solutions, which can be applied to optimal design problems
but not in online control processes. Therefore, proposing new metaheuristic algorithms
with less computational complexity is very much welcome for engineering applications.
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In the literature review, many metaheuristic optimization algorithms have been stimu-
lated by nature, biological behavior, or physical actions. For biological behavior, algorithms
are inspired by different behaviors, either social communities, reproduction, food finding,
or survival instinct. In 1975, Holland invented the genetic algorithm (GA), the first meta-
heuristic algorithm version that uses random searches to produce a new set of offspring [1].
After that, in 1995, Kennedy and Eberhart presented a new simple algorithm, the PSO algo-
rithm, stimulated by the swarming performance of birds and fish [2]. Then, in 1995, Dorigo
and Caro proposed the ant colony optimization (ACO) algorithm, which is motivated by
the manners of ants to find a straight path between the colony and food position [3]. After
that, many optimization algorithms emerged, such as the artificial bee colony (ABC) [4],
which is stimulated by the swarming deeds of honeybees; firefly algorithm (FA) [5], which
is stimulated by the blinking light of fireflies for communicating and attracting prey; and
cuckoo search (CS) algorithm [6], which is stimulated by the levy walk and intrusions on
the nests of other birds.

Furthermore, there are many recent metaheuristic algorithms that have been stimu-
lated by alive creatures’ behaviors, such as the grey wolf optimizer (GWO), which was
stimulated by the hierarchy of guidance and hunting [7]; the whale optimization algorithm
(WOA), which was stimulated by producing spiral bubbles around a school of fish [8];
the salp swarm algorithm (SSA), which was stimulated by the teeming of salps to track
food [9]; Harris hawk optimization (HHO), which was stimulated by the teeming work
of many hawks to attack prey [10]; the mantis search algorithm (MSA), which was in-
spired by the foraging process of mantises [11]; the nutcracker optimization algorithm
(NOA), which was stimulated by the seasonal deeds of nutcrackers in finding, storing, and
memorizing food [12]; the Aquila optimizer (AO), which was stimulated by the hunting
style of Aquila [13]; the black widow optimizer (BWO), which was stimulated by the
mating and flesh-eating of black widow spiders [14]; and the Tunicate swarm algorithm
(TSA), which was stimulated by the swarming manners of tunicates in tracking food [15].
Consequently, many algorithms are stimulated by the conduct of living creatures, for ex-
ample, dolphins [16], white sharks [17], vultures [18], orcas [19], starlings [20], rabbits [21],
frogs [22], butterflies [23], hyenas [24], reptiles [25], coati [26], leopards [27], and eagles [28].

Physicists such as Newton, Einstein, etc., were attracted by the physical phenomena in
the universe, which led them to find mathematical laws and paradigms after a long study.
Therefore, many algorithms have been proposed based on their physical models, such as
the annealing process of metals [29]; the law of gravity by Newton [30]; the law of gas by
William Henry [31]; the heat transfer between materials and ambient [32]; the collision
of bodies [33]; the pull and repulsion forces between atoms [34]; the laws of electrostatic
and dynamic charges by Coulomb and Newton [35]; the migrant light between mediums
with different intensities [36]; the transient behavior of first- and second-order electrical
circuits [37]; the motion and speed of planets by Kepler [38]; the electrical trees and figures
of lightning by Lichtenberg [39]; the electromagnetic field [40]; circles geometry [41]; and
the electrical field [42]. Moreover, many metaheuristic algorithms were inspired by the
gravity effect on the motion of planets and stars [43]; the centrifugal forces and gravity
relations [44]; ion motions [45]; and the orbits of electrons around the nucleus inside
atoms [46].

The research gap is defined by the no-free lunch theorem, which states that there is
no single algorithm that can succeed in solving all optimization problems. In addition,
the mathematical modeling and program coding of some recent metaheuristic algorithms
are complex and cannot be easily applied to the online process control of engineering
applications. Moreover, some models of algorithms are not investigated by related scientists.
Therefore, using a studied mathematical model, simple software code, and fast convergence
motivated us to propose a new metaheuristic optimizer called the propagation search
algorithm (PSA), stimulated by the propagation of the waveforms of the electrical voltage
and current along long transmission lines. Scientists previously offered mathematical
voltage and current models at any transmission line section. Then, we adapted these
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models to be randomized models for random transmission lines with random impedances
and admittances. The voltage and current are considered the search agents of the PSA,
where they propagate based on their previous values and the propagation constant of the
transmission line. These search agents rely on each other’s values, which helps them to
encircle the best solution.

The main contributions of this paper are summarized below:

1. Developing a new physics-based metaheuristic algorithm called the propagate search
algorithm (PSA), inspired by voltage and current waveform propagation along long
transmission lines.

2. Testing the PSA using the 23 famous testing functions and comparing the outcomes
with eight famous metaheuristic algorithms.

3. Applying the PSA to find the optimum design of four famous engineering problems
and comparing it with other metaheuristic algorithms.

The remainder of this paper is designed as follows: Section 2 describes the background,
the mathematical modeling, and the flowchart of the proposed PSA; Section 3 describes the
testing results; Section 4 shows the application of the proposed PSA to different engineering
applications; and Section 5 presents a brief conclusion about the contribution and the results
of this paper.

2. Propagation Search Algorithm

The PSA is a physics-based metaheuristic optimization algorithm that is stimulated by
the propagation of electrical voltage (V) and current (I) waveforms along long transmission
lines, as shown in Figure 1. The parameters of the transmission line, series impedance (z),
and shunt admittance (y) play essential roles in the propagation of the voltage and current.
For y > z, V(x + ∆x) is higher than I(x + ∆x); however, for y < z, V(x + ∆x) is lower than
I(x + ∆x), and for y = z, V(x + ∆x) is equal to I(x + ∆x), as shown in Figure 2. In this work, we
will introduce the mathematical modeling of the presented PSA based on the mathematical
modeling of the propagation of the voltage and current along the transmission line.
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2.1. Background

For a long transmission line, its impedance (z) and admittance (y) are uniformly
distributed along its length and cannot be lumped. Therefore, the voltage (V) and current
(I) can be calculated at each line section (∆x), as shown in Figure 1. The voltage at any
distance can be calculated using Kirchhoff’s voltage law as follows [47]:

V(x + ∆x) = (z∆x)I(x) + V(x)⇒ V(x + ∆x)−V(x)
∆x

= zI(x) ⇒ lim
∆x→0

V(x + ∆x)−V(x)
∆x

=
dV(x)

dx
= zI(x) (1)

For electrical current calculation, Kirchhoff’s current law can be applied as follows:

I(x + ∆x) = (y∆x)V(x + ∆x) + I(x)⇒ I(x + ∆x)− I(x)
∆x

= yV(x + ∆x) ⇒ lim
∆x→0

I(x + ∆x)− I(x)
∆x

=
dI(x)

dx
≈ yV(x) (2)

where V(x + ∆x) ≈ V(x), by taking the differential of (1) and substituting it in (2), we can
obtain the following:

d2V(x)
dx2 = z

dI(x)
dx

= zyV(x)⇒ d2V(x)
dx2 − zyV(x) = 0 (3)

Then, the second-order linear differential equation in (3) can be solved to find V(x), as
follows [47]:

V(x) = A1e
√

zyx + A2e−
√

zyx (4)

Then, to find the current expression, we will differentiate (4) and compare it with (1),
as follows:

dV(x)
dx

= A1
√

zye
√

zyx − A2
√

zye−
√

zyx = zI(x) (5)

I(x) =

√
zy
(

A1e
√

zyx − A2e−
√

zyx
)

z
=

A1eγx − A2e−γx

Zc
(6)

where Zc is the characteristic impedance of the transmission line, Zc = z√
zy , γ is the

propagation constant, γ =
√

zy, and A1 and A2 are constants that can be obtained by
solving (6) and (4) for V(0) =VR and I(0) = IR, where VR and IR are the receiving end voltage
and current, respectively. Then, we achieve A1 and A2 as follows:

A1 =
VR + Zc IR

2
& A2 =

VR − Zc IR
2

(7)

Then, substitute (7) into (4) and (6) to obtain the following:

V(x) =
(

VR + Zc IR
2

)
eγx +

(
VR − Zc IR

2

)
e−γx = VR

(
eγx + e−γx

2

)
+ Zc IR

(
eγx − e−γx

2

)
(8)

I(x) =
(

VR + Zc IR
2Zc

)
eγx −

(
VR − Zc IR

2Zc

)
e−γx =

VR
Zc

(
eγx − e−γx

2

)
+

(
eγx + e−γx

2

)
IR (9)

Then, the hyperbolic functions can be used to represent the exponential expressions as
follows:

V(x) = VR cosh(γx) + Zc IRsinh(γx) (10)

I(x) =
VR
Zc

sinh(γx) + IR cosh(γx) (11)

For long transmission lines, the series and shunt resistances can be neglected, and
only inductance (L) and capacitor (C) are considered. Therefore, z = jωL and y = jωC, so
Zc =

√
L/C and γ = jω

√
LC.
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2.2. PSA Inspiration

The PSA is a physics-based metaheuristic optimization algorithm stimulated by the
propagation performance of the voltage and current waveforms through a long transmis-
sion line. The search agents of the PSA imitate the behavior of the voltage and current. The
mathematical model of the PSA is developed based on Equations (10) and (11) with some
modifications, as in (12) and (13). The modifications assumed that L = C then Zc = 1 and
γ = C, the propagation constant γ is expressed as a random number as in (14), the voltage
VR is expressed as Xv, and the current IR is expressed as Xi. The length of the transmission
line (l) is the shrinking variable that decreases from 1 to 0, as described in (14).

Xv(t + 1) =

VR︷ ︸︸ ︷
X∗v(t)− Xv(t) cosh(γl) +

IR︷ ︸︸ ︷
(X∗i (t)− Xi(t))sinh(γl) (12)

Xi(t + 1) =

IR︷ ︸︸ ︷
X∗i (t)− Xi(t) cosh(γl) +

VR︷ ︸︸ ︷
(X∗v(t)− Xv(t))sinh(γl) (13)

l =
{

1−
√

t/T t < 0.5T√
1− t/T t ≥ 0.5T

& γ =

{
r1
√

πr2 t < 0.5T

rn

√
π
2 r3 t ≥ 0.5T

(14)

where t is the current iteration; T is the total iterations; r1, r2, and r3 are random numbers
uniformly distributed between 0 and 1; and rn is a random number generally distributed
with a mean of zero. The search agents of the PSA algorithm are Xv and Xi, and the best
agents are X∗v and X∗i .

2.2.1. Search Agents Initialization

The PSA first initializes the vector of the search agent randomly between the lower
and upper bounds (LB and UB) with the dimension (1× D) of a cost function. Initialization
plays a vital part in successfully helping the proposed algorithm find the global optimum
solution. There are two types of initialization: symmetrical and nonsymmetrical methods.
For symmetrical initialization, all elements of the search agent vector are multiplied by the
same random number. For the nonsymmetrical initialization, every element is multiplied
by a different random number. For the PSA, there are two search agent vectors, Xv and Xi,
which can be initialized by any initialization method or by both initialization methods, as
in (15).

Xv = LB + r× (UB− LB) (15)

Xi = LB + R× (UB− LB) (16)

where Xv = [xv1, xv2, xv3, . . . xvd]T, Xi = [xi1, xi2, xi3, . . . xid]T, UB = [ub1, ub2, ub3, . . . ubd]T,
LB = [lb1, lb2, lb3, . . . lbd]T, and R = [r1, r2, r3, . . . rd]T. The initialization can be conducted
for a number n of search agents, so the dimension of all search agents is (N × D).

2.2.2. Exploration and Exploitation of PSA

For better exploration, firstly, the search agents Xv and Xi are initialized differently,
as in (15) and (16), which will widen the search areas of the PSA. Secondly, these agents
are updated using (12) and (13), where they search in opposite directions for VR 6= IR,
as shown in Figure 3. For exploitation of the PSA, the changes of both search agents
converge to zero for VR = IR, as shown in Figure 3. Moreover, both search agents are
designed to encircle the best solution due to the presence of VR =−Xv in (12) and IR =−Xi
in (13). The balance between exploration and exploitation is managed by (14), where the
first half of total iterations is used for exploitation, and the second half of iterations is
utilized for exploration, where the search agents can be diverted using normally distributed
random numbers.



Mathematics 2023, 11, 4224 6 of 26

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 23 
 

 

2.2.1. Search Agents Initialization 
The PSA first initializes the vector of the search agent randomly between the lower 

and upper bounds (LB and UB) with the dimension (1 × D) of a cost function. Initialization 
plays a vital part in successfully helping the proposed algorithm find the global optimum 
solution. There are two types of initialization: symmetrical and nonsymmetrical methods. 
For symmetrical initialization, all elements of the search agent vector are multiplied by 
the same random number. For the nonsymmetrical initialization, every element is multi-
plied by a different random number. For the PSA, there are two search agent vectors, Xv 
and Xi, which can be initialized by any initialization method or by both initialization meth-
ods, as in (15). 

( )= + × −X LB UB LBv r  (15)

( )= + × −X LB R UB LBi  (16)

where Xv = [xv1, xv2, xv3, … xvd]T, Xi = [xi1, xi2, xi3, … xid]T, UB = [ub1, ub2, ub3, … ubd]T, LB = [lb1, 
lb2, lb3, … lbd]T, and R = [r1, r2, r3, … rd]T. The initialization can be conducted for a number 
n of search agents, so the dimension of all search agents is (N × D). 

2.2.2. Exploration and Exploitation of PSA 
For better exploration, firstly, the search agents Xv and Xi are initialized differently, 

as in (15) and (16), which will widen the search areas of the PSA. Secondly, these agents 
are updated using (12) and (13), where they search in opposite directions for VR ≠ IR, as 
shown in Figure 3. For exploitation of the PSA, the changes of both search agents converge 
to zero for VR = IR, as shown in Figure 3. Moreover, both search agents are designed to 
encircle the best solution due to the presence of VR =−𝑋  in (12) and IR =−𝑋  in (13). The 
balance between exploration and exploitation is managed by (14), where the first half of 
total iterations is used for exploitation, and the second half of iterations is utilized for 
exploration, where the search agents can be diverted using normally distributed random 
numbers. 

 
Figure 3. Exploration and exploitation of PSA. 

For more explanation about exploitation and exploration, two common functions, the 
Rosenbrock and Rastrigin functions, are used to test the exploration and exploitation of 
the PSA. Figure 4 shows how the search agents found the best voltage immediately after 
10 iterations for the Rastrigin function; however, they were stuck in a local solution for the 
Rosenbrock function. After t ≥ 0.5 T (at t = 300), the exploration capability of the PSA was 
activated, and the search agents moved to the best voltage. 

0 20 40 60 80 100Length
-10

-5

0

5

10

15

20

Se
ar

ch
 A

ge
nt

s

Xi
Xv

ExploitationExploration

Figure 3. Exploration and exploitation of PSA.

For more explanation about exploitation and exploration, two common functions, the
Rosenbrock and Rastrigin functions, are used to test the exploration and exploitation of
the PSA. Figure 4 shows how the search agents found the best voltage immediately after
10 iterations for the Rastrigin function; however, they were stuck in a local solution for the
Rosenbrock function. After t ≥ 0.5 T (at t = 300), the exploration capability of the PSA was
activated, and the search agents moved to the best voltage.
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2.2.3. Encircling Behavior of PSA

Even though the search agents Xv and Xi of the PSA go in opposite directions, as
shown in Figure 3, in the end, they encircle the best solution (X*) because each agent relies
on the update step of the other best agent, as shown in (12) and (13). We can notice that
the term VR exists in the search agent Xi and the term IR exists in the search agent Xv.
Therefore, both search agents encircle the best position, X*. The flowchart of the proposed
PSA is depicted in Figure 5.

2.2.4. Computational Complexity of PSA

The complexity of the algorithms varies with the number of loops, the number of
search agents (N), and the number of fitness function evaluations. Big O Notation is utilized
to measure the computational complexity of PSA. As shown in Figure 4, it starts with the
loop of initialization for two kinds of search agents, Xv and Xi, and then the PSA has O(2N)
complexity. For the update process and function evaluations, the PSA has O(T × 2N).
Therefore, the total complexity of the PSA is O(2N + 2T × N), which can be reduced to the
term with the largest order, such as O(2T × N).
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3. Optimization Results of Testing Functions

First of all, the robustness of the proposed PSA should be tested using the 23 well-
known testing functions. These functions are utilized to verify the exploration and ex-
ploitation behaviors of all previously published algorithms. Some of these functions are
utilized to test the exploitation ability of the algorithms because they are convex and have
one lowest solution, such as the unimodal functions (F1–F7) displayed in Table 1. Other
functions are utilized to verify the exploration capability of algorithms to escape being
trapped in a local minimum solution because they have different local minimum solutions
rather than the global minimum solution, such as the multimodal functions (F8–F23) dis-
played in Tables 2 and 3. Then, the minimum values of these functions found by the PSA
are compared with those of other renowned algorithms.

Table 1. Unimodal testing functions with unfixed dimensions (d).

No. Name Formula Dimension [LB, UB] Minimum

F1 Sphere d
∑

i=1
yi

2 d = 30 [−100, 100] d 0

F2 Shwefel
2.22

d
∑

i=1
|yi|+

d
∏
i=1
|yi| d = 30 [−10, 10] d 0

F3 Shwefel
1.2

d
∑

i=1
(

i
∑

j=1
yj)

2
d = 30 [−100, 100] d 0

F4 Schwefel
2.21 maxi{|yi|, 1 ≤ i ≤ d} d = 30 [−100, 100] d 0

F5 Rosenbrock d
∑

i=1
[100(yi+1 − yi

2)
2
+ (yi − 1)2] d = 30 [−30, 30] d 0

F6 Step d
∑

i=1
(yi + 0.5)2 d = 30 [−100, 100] d 0

F7 Quartic
Noise

d
∑

i=1
i.yi

4 + random[0, 1) d = 30 [−1.28, 1.28] d 0
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Table 2. Multimodal testing functions with unfixed dimensions (d).

No. Name Formula Dimension [LB, UB] Minimum

F8 Schwefel 2.26 d
∑

i=1
yi sin(

√
|yi|) d = 30 [−500, 500] d −418.98 × d

F9 Rastrigin
n
∑

i=1
[yi

2 − 10 cos(2πyi) + 10] d = 30 [−5.12, 5.12] d 0

F10 Ackley −20 exp(−0.2

√
1
d

d
∑

j=1
yj)− exp( 1

n cos(2πyj)) + 20 + e d = 30 [−32, 32] d 0

F11 Griewank 1
4000

d
∑

i=1
yi

2 −
d
∏
i=1

cos( yi√
i
) + 1 d = 30 [−600, 600] d 0

F12 Penalized

π
d {10 sin(πy1) +

d
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yd − 1)2}+
d
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 & u(xi, a, k, m) =


k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

d = 30 [−50, 50] d 0

F13 Generalized Penalized 0.1× {10 sin2(3πy1) +
d
∑

i=1
(yi − 1)2[1 + sin2(3πyi + 1)]

+(yd − 1)2[1 + sin2(2πyd)]}+
d
∑

i=1
u(yi, 5, 100, 4)

d = 30 [−50, 50] d 0
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Table 3. Fixed-dimension (d) multimodal testing functions.

No. Name Formula Dimension [LB, UB] Best Solution

F14 De Jong Fifth ( 1
500 +

25
∑

i=1

1

i+
2
∑

j=1
(yi−aij)

6
)−1 d = 2 [−65, 65] d 1

F15 11
∑

i=1
[ai −

yi(bi
2+biy2)

bi
2+biy3+y4

]
2 d = 4 [−5, 5] d 0.00030

F16 Six-Hump Camel 4y1
2 − 2.1y1

4 + 1
3 y1

6 + y1y2 − 4y2
2 + 4y2

4 d = 2 [−5, 5] d −1.0316

F17 Branins (y2 − 5.1
4π2 y1

2 + 5
π y1 − 6)

2
+ 10(1− 1

8π ) cos(y1) + 10 d = 2 [−5, 5] d 0.398

F18 Goldstein–Price [1 + (y1 + y2 + 1)2(19− 14y1 + 3y1
2 − 14y2 + 6y1y2 + 3y2

2)]×
[30 + (2y1 − 3y2)

2 × (18− 32y1 + 12y1
2

+48y2 − 36y1y2 + 27y2
2)]

d = 2 [−2, 2] d 3

F19 Hartmann 3D −
4
∑

i=1
ci exp (−

3
∑

j=1
aij(yj − pij)

2

) d = 3 [1, 3] d −3.86

F20 Hartmann 6D −
4
∑

i=1
ci exp (−

6
∑

j=1
aij(yj − pij)

2

) d = 6 [0, 1] d −3.32

F21 Shekel 5 −
5
∑

i=1
[(Y− ai)(Y− ai)

T + ci]
−1 d = 4 [0, 10] d −10.1532

F22 Shekel 7 −
7
∑

i=1
[(Y− ai)(Y− ai)

T + ci]
−1 d = 4 [0, 10] d −10.4028

F23 Shekel 10 −
10
∑

i=1
[(Y− ai)(Y− ai)

T + ci]
−1 d = 4 [0, 10] d −10.5363
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In this section, we used eight metaheuristic optimization algorithms besides the PSA.
These are the particle swarm optimization (PSO), grey wolf optimizer (GWO), whale
optimization algorithm (WOA), sine-cosine algorithm (SCA), transient search optimization
(TSO), salp swarm algorithm (SSA), cuckoo search algorithm (CS), and artificial electric
field algorithm (AEFA). These algorithms are carefully selected based on the most popular
algorithms applied in different engineering applications, such as PSO, GWO, and the WOA.
Some of these algorithms are selected because they are inspired by physical behaviors,
such as TSO and the AEFA. The remaining algorithms are selected randomly for more
comparisons. The values of the algorithms’ parameters are displayed in Table 4.

Table 4. The setting of the compared algorithms.

Algorithm Parameters

Proposed PSA l decrease from 1 to 0

PSO weight ω varies between [0.5, 0.3] c1 = c2 = 2

GWO The variable a changes between [2, 0]

SSA The probability is 0.5

SCA a = 2 and p = 0.5

CS Pa = 0.25, tolerance is 1 × 10−5, beta = 1.5,

WOA l = 1, a decrease from 2 to 0, a2 decrease from −1 to −2

TSO t decreases from 2 to 0, K = 1, probability update is 0.5

AFEA Alfa = 30, K0 = 500;

In this work, the testing experiments are implemented using MATLAB R2023a on
Windows 10 64 bits on a Core i7, 16 GB RAM laptop. For an unbiased evaluation, all
compared algorithms have a similar number of search agents, N = 30, and the same total
number of iterations, T = 500, and all algorithms have the same initialized search agents.

3.1. Statistical Analysis

Due to the random operation of all metaheuristic algorithms, we need to test these
algorithms in many independent optimization experiments. Therefore, all optimization
algorithms are executed 20 times for each testing function in this paper. Then, the robustness
of an algorithm is confirmed by applying different statistical methods, for example, mean
(m) and standard deviation (σ) and nonparametric testing methods. Table 5 displays the
m and σ of 20 independent runs for all 23 testing functions using the offered PSA and
other compared algorithms. The outcomes proved that the offered PSA is competitive
with different algorithms and obtained the optimum outcomes for 16 functions out of 23.
However, the second competitive algorithm is the CS algorithm, which achieves 9 best
functions out of 23 functions.

The exploitation of the algorithms is measured using unimodal functions (F1–F8),
where the proposed PSA achieved the best outcomes for seven out of eight functions,
which proved the exploitation capability of the PSA among other algorithms. On the other
side, the exploration capability of the PSA is measured using the multimodal functions
(F9–F23). The results show that the PSA obtained the 10 best results out of 15, whereas
the CS algorithm achieved second place with the 9 best results out of 15. To check the
equilibrium between exploration and exploitation, Rosenbrock (F5) and Rastrigin (F9) are
used because they are contrasted, and no algorithm can solve both of them successfully.
The results verified that the PSA succeeded in obtaining better results than other algorithms
in both types of functions.
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Table 5. Mean and standard deviations of 20 independent trials.

No. GWO SCA SSA CS WOA PSO TSO AEFA PSA

F1
m 2.954E−38 4.401E−11 1.204E−07 6.780E−01 1.845E−75 3.772E−07 2.037E−77 1.818E+00 3.507E−81

σ 4.217E−38 7.184E−11 7.488E−08 3.424E−01 8.119E−75 5.262E−07 9.038E−77 4.526E+00 1.568E−80

F2
m 1.798E−22 4.088E−08 1.919E−01 4.904E−01 4.471E−52 9.866E−04 7.933E−40 9.613E+00 2.814E−42

σ 2.141E−22 9.436E−08 1.990E−01 1.785E−01 1.355E−51 3.135E−03 3.353E−39 5.891E+00 8.774E−42

F3
m 1.465E−08 1.942E−08 1.891E+02 3.220E+02 2.092E+00 9.432E+02 2.050E−72 8.880E+02 5.964E−81

σ 5.082E−08 4.062E−08 3.092E+02 2.957E+02 5.104E+00 1.118E+03 9.161E−72 4.508E+02 2.536E−80

F4
m 1.022E−01 8.313E−01 7.620E−01 1.083E+00 1.833E−02 2.120E+00 9.245E−40 1.486E+00 6.223E−43

σ 2.591E−01 1.103E+00 6.087E−01 6.512E−01 3.710E−02 2.301E+00 4.122E−39 1.199E+00 1.474E−42

F5
m 2.161E+01 5.604E+01 1.991E+01 5.693E+01 7.043E+00 2.968E+01 4.282E+01 6.921E+02 2.507E−02

σ 1.056E+01 8.190E+01 1.286E+01 4.234E+01 1.228E+01 2.689E+01 1.308E+02 1.143E+03 4.152E−02

F6
m 5.181E−01 5.225E+00 1.006E−06 5.647E−01 6.694E−03 6.793E−07 5.687E−01 1.379E+00 4.303E−02

σ 3.616E−01 1.234E+00 3.178E−06 3.298E−01 1.232E−02 1.157E−06 6.711E−01 3.051E+00 1.902E−01

F7
m 1.701E−03 5.580E−04 2.901E−02 1.043E−02 7.335E−04 3.340E−02 6.114E−03 2.270E−01 6.207E−05

σ 1.196E−03 7.296E−04 2.039E−02 1.271E−02 6.587E−04 2.274E−02 1.298E−02 1.791E−01 6.558E−05

F8
m −1.176E+04 −1.173E+04 −1.239E+04 −1.243E+04 −1.239E+04 −1.234E+04 −1.247E+04 −1.226E+04 −1.257E+04

σ 1.174E+03 1.161E+03 7.945E+02 2.125E+02 7.951E+02 8.072E+02 2.035E+02 4.015E+02 2.810E−02

F9
m 5.013E+01 2.966E+01 5.970E+00 1.652E+01 0.000E+00 1.323E+01 4.601E−05 3.100E+01 0.000E+00

σ 4.214E+01 4.088E+01 1.225E+01 1.156E+01 0.000E+00 1.463E+01 1.111E−04 1.977E+01 0.000E+00

F10
m 1.910E−14 2.723E−05 8.452E−01 1.482E+00 3.997E−15 1.493E+00 9.446E−04 1.379E+00 4.441E−16

σ 3.972E−15 7.773E−05 1.101E+00 8.255E−01 2.577E−15 1.916E+00 1.101E−03 1.058E+00 0.000E+00

F11
m 1.215E−03 6.158E−09 1.418E−02 6.696E−01 0.000E+00 1.746E−02 8.731E−02 6.641E−01 0.000E+00

σ 3.741E−03 1.751E−08 1.305E−02 1.297E−01 0.000E+00 1.371E−03 1.968E−02 4.874E−01 0.000E+00

F12
m 4.925E−01 1.218E+00 4.070E−02 8.174E−02 1.105E−04 1.371E+00 1.219E−02 2.001E+00 1.433E−05

σ 1.417E+00 1.462E+00 1.183E−01 7.730E−02 2.800E−04 2.738E+00 2.050E−02 1.659E+00 2.472E−05
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F13
m 3.058E−01 2.085E+00 1.750E−01 3.605E−01 1.707E−02 4.397E−03 4.041E−01 1.017E+01 1.076E−02

σ 2.599E−01 8.328E−01 6.583E−01 4.287E−01 5.871E−02 5.525E−03 9.038E−01 1.078E+01 4.679E−02

F14
m 1.978E+00 1.652E+00 1.048E+00 9.980E−01 1.486E+00 9.980E−01 9.980E−01 3.074E+00 1.147E+00

σ 2.643E+00 9.196E−01 2.223E−01 7.675E−16 2.184E+00 0.000E+00 4.434E−08 2.259E+00 4.857E−01

F15
m 1.354E−03 5.678E−04 9.093E−04 3.141E−04 3.131E−04 4.319E−04 3.889E−04 1.045E−02 4.438E−04

σ 4.475E−03 3.540E−04 6.895E−04 6.6833E−06 6.186E−06 1.139E−04 1.244E−04 6.900E−03 2.274E−04

F16
m −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00

σ 8.071E−08 9.936E−05 1.929E−14 8.823E−17 8.258E−10 2.161E−16 7.439E−06 2.038E−16 2.783E−06

F17
m 3.979E−01 4.020E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01 3.979E−01

σ 2.293E−06 4.196E−03 9.744E−15 0.000E+00 1.453E−05 0.000E+00 4.011E−05 0.000E+00 3.393E−05

F18
m 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.107E+01 3.056E+00 3.000E+00

σ 1.935E−05 6.407E−05 1.253E−13 1.585E−15 8.710E−05 9.557E−16 1.209E+00 2.518E−01 2.115E−04

F19
m −3.860E+00 −3.850E+00 −3.863E+00 −3.863E+00 −3.857E+00 −3.862E+00 −3.731E+00 −3.862E+00 −3.862E+00

σ 3.312E−03 4.917E−03 9.363E−11 2.040E−15 1.049E−02 1.762E−03 3.073E−01 1.102E−03 1.400E−03

F20
m −3.298E+00 −2.696E+00 −3.255E+00 −3.322E+00 −3.294E+00 −3.286E+00 −3.275E+00 −3.322E+00 −3.223E+00

σ 7.242E−02 3.335E−01 1.025E−01 4.843E−09 7.383E−02 6.652E−02 1.799E−01 4.556E−16 8.357E−02

F21
m −8.318E+00 −7.132E+00 −1.015E+01 −1.015E+01 −9.898E+00 −8.373E+00 −1.013E+01 −7.285E+00 −1.015E+01

σ 2.229E+00 2.255E+00 3.153E−11 1.500E−08 1.140E+00 2.488E+00 3.212E−02 2.158E+00 6.068E−04

F22
m −8.548E+00 −7.536E+00 −9.612E+00 −1.040E+01 −1.014E+01 −8.289E+00 −1.038E+01 −9.712E+00 −1.040E+01

σ 2.445E+00 2.342E+00 1.932E+00 1.765E−08 1.188E+00 2.656E+00 5.051E−02 1.703E+00 8.270E−04

F23
m −8.912E+00 −7.562E+00 −1.027E+01 −1.054E+01 −9.995E+00 −8.923E+00 −1.051E+01 −1.054E+01 −1.054E+01

σ 2.200E+00 2.216E+00 1.199E+00 1.223E−07 1.664E+00 2.528E+00 2.716E−02 1.578E−15 2.631E−03
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Additionally, the Wilcoxon signed-rank test with a 5% significance level is utilized to
verify the significance of the PSA among other compared algorithms. This test is a null
hypothesis test, which hypothesizes that the results of the PSA and other algorithms are
the same if the p-value is higher than 0.05. Table 6 shows the p-values and the denial of
the null hypothesis (h = true) or acceptance of it (h = false). We can notice that the most
dominant decision is h = true, meaning a significant difference exists between the PSA and
other algorithms.

Finally, a boxplot is used for further statistical analysis to verify the performance
of the PSA during 20 independent experiments. Figure 6a–f shows the boxplot for six
benchmark functions (F2, F4, F8, F10, F12, and F21). The boxplot analysis shows that the
PSA has obtained a very small deviation between the maximum and minimum values of
20 experiments. Moreover, it is noticeable that there are outlier points, which are labeled by
(+), for all compared algorithm except PSA. Therefore, the boxplot proved the robustness
of the PSA over other algorithms.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 23 
 

 

F11 
p-value 5.00E-01 6.683E-05 6.683E-05 6.683E-05 trueE+00 6.683E-05 6.683E-05 6.683E-05 

h false true true true false true true true 

F12 
p-value 6.683E-05 6.683E-05 2.19E-04 6.683E-05 5.75E-01 6.01E-01 6.683E-05 6.683E-05 

h true true true true false false true true 

F13 
p-value 2.19E-04 6.683E-05 1.32E-03 6.683E-05 1.52E-02 4.78E-01 3.90E-04 6.683E-05 

h true true true true true false true true 

F14 
p-value 4.38E-02 7.80E-04 1.16E-03 6.683E-05 3.33E-02 6.683E-05 5.02E-01 3.38E-04 

h true true true true true true false true 

F15 
p-value 1.79E-01 9.30E-02 1.11E-02 2.19E-04 7.80E-04 7.94E-01 5.02E-01 6.683E-05 

h false false true true true false false true 

F16 
p-value 2.54E-04 6.683E-05 6.683E-05 6.683E-05 1.03E-04 6.683E-05 1.87E-02 6.683E-05 

h true true true true true true true true 

F17 
p-value 3.04E-02 6.683E-05 6.683E-05 6.683E-05 1.56E-01 6.683E-05 2.28E-02 6.683E-05 

h true true true true false true true true 

F18 
p-value 1.52E-02 1.79E-01 6.683E-05 6.683E-05 3.33E-02 6.683E-05 6.683E-05 1.51E-03 

h true true true true false true true true 

F19 
p-value 3.32E-01 6.683E-05 6.683E-05 6.683E-05 2.28E-02 1.32E-03 2.19E-04 2.04E-01 

h false true true true true true true false 

F20 
p-value 6.42E-03 6.683E-05 2.63E-01 6.683E-05 2.20E-03 1.24E-02 4.55E-03 6.683E-05 

h true true false true true true true true 

F21 
p-value 6.683E-05 6.683E-05 6.683E-05 6.683E-05 8.52E-01 6.01E-01 6.683E-05 1.03E-04 

h true true true true false false true true 

F22 
p-value 6.683E-05 6.683E-05 7.31E-02 6.683E-05 2.63E-01 3.13E-01 6.683E-05 trueE+00 

h true true false true false false true false 

F23 
p-value 6.683E-05 6.683E-05 1.51E-03 6.683E-05 4.33E-01 trueE+00 1.63E-04 6.683E-05 

h true true true true false false true true 

Finally, a boxplot is used for further statistical analysis to verify the performance of 

the PSA during 20 independent experiments. Figure 6a–f shows the boxplot for six bench-

mark functions (F2, F4, F8, F10, F12, and F21). The boxplot analysis shows that the PSA 

has obtained a very small deviation between the maximum and minimum values of 20 

experiments. Moreover, it is noticeable that there are outlier points, which are labeled by 

(+), for all compared algorithm except PSA. Therefore, the boxplot proved the robustness 

of the PSA over other algorithms. 

  
(a) (b) 

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 23 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 6. Statistical analysis using boxplot for all compared algorithms. 

3.2. Optimization Convergence 

The speed of finding the best solution plays a critical role in control systems, so we 

need to check the behavior of algorithms with each increment of iterations. Table 7 dis-

plays the total elapsed time for all compared algorithms during each independent exper-

iment. However, Figure 7 shows the convergence behavior for all compared algorithms 

toward the best minimum solution. It is noticeable that all algorithms start from the same 

initial point for unbiased comparison. The proposed PSA shows fast convergence for the 

testing functions F1–F8, and then at the middle of total iterations (t = 250) it becomes 

slower because of changes in the values of the propagation constant (γ). For the remaining 

functions, the PSA competes with the other algorithms in searching for global solutions; 

particularly, at t = 250 the PSA escapes being trapped in a local solution. 

Table 7. Elapsed time in seconds for algorithm execution. 

 GWO SCA SSA CS WOA PSO TSO AEFA PSA 

F1 0.19396 0.12807 0.12076 0.32297 0.07844 0.10489 0.07901 0.70572 0.14529 

F3 0.28908 0.25333 0.21823 0.59093 0.21227 0.24697 0.20247 0.5662 0.21162 

F5 0.22024 0.14419 0.11669 0.37283 0.09557 0.12428 0.09445 0.74423 0.18258 

F7 0.25270 0.27462 0.17785 0.52765 0.18240 0.20720 0.15772 0.58886 0.23347 

F9 0.21667 0.14238 0.10190 0.35608 0.09275 0.12364 0.07937 0.70294 0.15709 

F11 0.21608 0.15083 0.11007 0.39285 0.09911 0.13238 0.09883 0.75162 0.18998 

F13 0.43091 0.37946 0.34172 0.89211 0.32739 0.34480 0.31621 0.71861 0.45095 

F15 0.08482 0.06125 0.04754 0.24100 0.04562 0.04603 0.04342 0.19139 0.07792 

F17 0.04381 0.05114 0.03805 0.20785 0.03501 0.02629 0.03271 0.14607 0.05805 

F19 0.05045 0.05739 0.05281 0.22891 0.05190 0.04391 0.04880 0.17714 0.12969 

F21 0.06674 0.06795 0.06347 0.25504 0.05845 0.05484 0.06027 0.21141 0.10314 

F23 0.08750 0.08496 0.08194 0.29582 0.07910 0.07160 0.07826 0.22082 0.14134 

Sum 2.15295 1.79558 1.47103 4.68403 1.35800 1.52684 1.29151 5.72502 2.08111 

Figure 6. Statistical analysis using boxplot for all compared algorithms.



Mathematics 2023, 11, 4224 14 of 26

Table 6. Wilcoxon signed-rank test.

No. GWO SCA SSA CS WOA PSO TSO AEFA

F1
p-value 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05

h true true true true true true true true

F2
p-value 6.683E−05 6.683E−05 6.683E−05 6.683E−05 1.03E−04 6.683E−05 6.683E−05 6.683E−05

h true true true true true true true true

F3
p-value 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05

h true true true true true true true true

F4
p-value 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05 6.683E−05

h true true true true true true true true

F5
p-value 6.683E−05 6.683E−05 6.683E−05 6.683E−05 1.32E−03 1.03E−04 6.683E−05 6.683E−05

h true true true true true true true true

F6
p-value 6.81E−04 6.683E−05 6.683E−05 1.20E−04 3.04E−02 1.03E−04 7.80E−04 2.82E−03

h true true true true true true true true

F7
p-value 6.683E−05 2.54E−04 6.683E−05 6.683E−05 2.19E−04 6.683E−05 1.20E−04 6.683E−05

h true true true true true true true true

F8
p-value 6.683E−05 6.683E−05 1.51E−03 6.683E−05 9.11E−01 7.31E−02 1.03E−04 6.683E−05

h true true true true true true true true

F9
p-value 1.32E−04 4.38E−04 6.683E−05 6.683E−05 trueE+00 6.683E−05 6.683E−05 6.683E−05

h true true true true false true true true

F10
p-value 6.81E−05 6.683E−05 6.683E−05 6.683E−05 6.10E−05 6.683E−05 6.683E−05 6.683E−05

h true true true true true true true true

F11
p-value 5.00E−01 6.683E−05 6.683E−05 6.683E−05 trueE+00 6.683E−05 6.683E−05 6.683E−05

h false true true true false true true true

F12
p-value 6.683E−05 6.683E−05 2.19E−04 6.683E−05 5.75E−01 6.01E−01 6.683E−05 6.683E−05

h true true true true false false true true
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Table 6. Cont.

No. GWO SCA SSA CS WOA PSO TSO AEFA

F13
p-value 2.19E−04 6.683E−05 1.32E−03 6.683E−05 1.52E−02 4.78E−01 3.90E−04 6.683E−05

h true true true true true false true true

F14
p-value 4.38E−02 7.80E−04 1.16E−03 6.683E−05 3.33E−02 6.683E−05 5.02E−01 3.38E−04

h true true true true true true false true

F15
p-value 1.79E−01 9.30E−02 1.11E−02 2.19E−04 7.80E−04 7.94E−01 5.02E−01 6.683E−05

h false false true true true false false true

F16
p-value 2.54E−04 6.683E−05 6.683E−05 6.683E−05 1.03E−04 6.683E−05 1.87E−02 6.683E−05

h true true true true true true true true

F17
p-value 3.04E−02 6.683E−05 6.683E−05 6.683E−05 1.56E−01 6.683E−05 2.28E−02 6.683E−05

h true true true true false true true true

F18
p-value 1.52E−02 1.79E−01 6.683E−05 6.683E−05 3.33E−02 6.683E−05 6.683E−05 1.51E−03

h true true true true false true true true

F19
p-value 3.32E−01 6.683E−05 6.683E−05 6.683E−05 2.28E−02 1.32E−03 2.19E−04 2.04E−01

h false true true true true true true false

F20
p-value 6.42E−03 6.683E−05 2.63E−01 6.683E−05 2.20E−03 1.24E−02 4.55E−03 6.683E−05

h true true false true true true true true

F21
p-value 6.683E−05 6.683E−05 6.683E−05 6.683E−05 8.52E−01 6.01E−01 6.683E−05 1.03E−04

h true true true true false false true true

F22
p-value 6.683E−05 6.683E−05 7.31E−02 6.683E−05 2.63E−01 3.13E−01 6.683E−05 trueE+00

h true true false true false false true false

F23
p-value 6.683E−05 6.683E−05 1.51E−03 6.683E−05 4.33E−01 trueE+00 1.63E−04 6.683E−05

h true true true true false false true true



Mathematics 2023, 11, 4224 16 of 26

3.2. Optimization Convergence

The speed of finding the best solution plays a critical role in control systems, so we
need to check the behavior of algorithms with each increment of iterations. Table 7 displays
the total elapsed time for all compared algorithms during each independent experiment.
However, Figure 7 shows the convergence behavior for all compared algorithms toward
the best minimum solution. It is noticeable that all algorithms start from the same initial
point for unbiased comparison. The proposed PSA shows fast convergence for the testing
functions F1–F8, and then at the middle of total iterations (t = 250) it becomes slower because
of changes in the values of the propagation constant (γ). For the remaining functions, the
PSA competes with the other algorithms in searching for global solutions; particularly, at
t = 250 the PSA escapes being trapped in a local solution.

Table 7. Elapsed time in seconds for algorithm execution.

GWO SCA SSA CS WOA PSO TSO AEFA PSA

F1 0.19396 0.12807 0.12076 0.32297 0.07844 0.10489 0.07901 0.70572 0.14529

F3 0.28908 0.25333 0.21823 0.59093 0.21227 0.24697 0.20247 0.5662 0.21162

F5 0.22024 0.14419 0.11669 0.37283 0.09557 0.12428 0.09445 0.74423 0.18258

F7 0.25270 0.27462 0.17785 0.52765 0.18240 0.20720 0.15772 0.58886 0.23347

F9 0.21667 0.14238 0.10190 0.35608 0.09275 0.12364 0.07937 0.70294 0.15709

F11 0.21608 0.15083 0.11007 0.39285 0.09911 0.13238 0.09883 0.75162 0.18998

F13 0.43091 0.37946 0.34172 0.89211 0.32739 0.34480 0.31621 0.71861 0.45095

F15 0.08482 0.06125 0.04754 0.24100 0.04562 0.04603 0.04342 0.19139 0.07792

F17 0.04381 0.05114 0.03805 0.20785 0.03501 0.02629 0.03271 0.14607 0.05805

F19 0.05045 0.05739 0.05281 0.22891 0.05190 0.04391 0.04880 0.17714 0.12969

F21 0.06674 0.06795 0.06347 0.25504 0.05845 0.05484 0.06027 0.21141 0.10314

F23 0.08750 0.08496 0.08194 0.29582 0.07910 0.07160 0.07826 0.22082 0.14134

Sum 2.15295 1.79558 1.47103 4.68403 1.35800 1.52684 1.29151 5.72502 2.08111
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4. Renowned Engineering Problems

In this section, the offered PSA and other algorithms are utilized to obtain the optimum
design of four famous engineering problems, including a three-bar truss structure, a
compression spring, a pressure vessel, and a welded beam. The optimization experiments
are conducted on MATLAB 2023a on a Windows 10 Core-i7 laptop. The number of search
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agents is 200, and the total number of iterations is 1000. The mean and standard deviation
are calculated for 20 independent code runs.

4.1. Three-Bar Truss Design

Figure 8 depicts the structure of this truss, which is constructed of three bars with
different cross-sectional areas (A1, A2, and A3), where A1 = A3. These bars meet at a
common node, where a P load is connected to this node. The dimensions between the
supporting points of the three bars are equal, which is l, and the vertical dimension between
the supporting points and the common node is l too. Reducing the weight of the truss
structure is the chief objective, and the design parameters are A1 and A2. The objective
function is shown in (17), and the subjected constraints are shown in (18). The PSA is
applied to obtain the optimal cross-sectional areas that result in the minimum weight of
the three-bar truss. Table 8 displays the outcomes of the optimal areas and the minimum
weights obtained using eight algorithms. The statistical results (m and σ) show that the
offered PSA has a performance that is comparable with other algorithms, and even better.
Moreover, Figure 9 indicates that the PSA converges to the minimum result after only
85 iterations, which is quicker than most of the compared algorithms.

min f (x = [A1, A2]) =
(

2
√

2A1 + A2

)
× l (17)

g1(x) = 2
√

2A1+A2√
2A1

2+2A1 A2
P− σ ≤ 0 & g2(x) = A2√

2A1
2+2A1 A2

P− σ ≤ 0

g3(x) = 1
A1+
√

2A2
P− σ ≤ 0 , P = 2 kN, σ = 2 kN/cm2, l = 100 cm

(18)
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σ 4.11448E−04 4.21400E−02 9.00459E−02 0.00000E+00 6.82155E−02 7.34918E−07 1.49798E+00 9.00459E−02 2.21516E−03

x1 0.789005319 0.789674131 0.788484498 0.788675136 0.788960013 0.788681652 0.787476956 0.788484498 0.789351215
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4.2. Compression Spring Design

The structure of the compression spring, which is made of steel wire in a spiral form
with several coils (N), a material diameter (d), and outer diameter of coil (D), is depicted in
Figure 10. Reducing the weight of the compressional spring is the chief objective, where the
controlling design parameters are D, d, and N. However, there are constraints to minimizing
the weight of the spring, such as the torsional stress, deflection, traveling waves, and
dimension. The objective function and the constraint functions of the compression spring
design are expressed in (19) and (20). The PSA and other algorithms are applied to find
the minimum weight of the compression spring, and the optimal outcomes are presented
in Table 9. Furthermore, Figure 11 compares the PSA’s convergence speed with other
algorithms, showing that the PSA offers a quicker convergence than most of the compared
algorithms, and the PSA converges to the minimum solution after 10 iterations only.

min f (x = [D, d, N]) = D2d(N + 2) (19)

g1(x) = 1− d3 N
71785D4 ≤ 0 and g2(x) = 4d2−Dd

12566D3(d−D)
+ 1

5108D2 − 1 ≤ 0

g3(x) = 1− 140.45D
Nd2 ≤ 0 and g4(x) = D+d

1.5 − 1 ≤ 0

0.05 ≤ D ≤ 2 & 0.25 ≤ d ≤ 1.3 & 2.00 ≤ N ≤ 15

(20)
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Table 9. Optimal weight and parameters of compression spring design.

GWO SCA SSA CS WOA PSO TSO AEFA PSA

Best 0.0177757 0.0127331 0.0178723 0.0126721 0.0127984 0.0178487 0.0126668 0.0196575 0.0127226

m 0.0177873 0.0128085 0.0219118 0.0126977 0.0136459 0.0179014 0.0139309 0.0336801 0.0132851

σ 0.0000080 0.0000546 0.0082340 0.0000195 0.0011371 0.0000373 0.0015793 0.0137893 0.0006535

D 0.0689962 0.0500000 0.0691542 0.0515176 0.0544458 0.0690812 0.0519697 0.0572892 0.0500000

d 0.9335070 0.3172711 0.9404314 0.3525262 0.4267345 0.9370252 0.3635050 0.5068545 0.3174241

N 2.0000000 14.0532354 1.9739055 11.5439263 8.1174138 1.9914889 10.9019563 9.8167597 14.0323211
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4.3. Welded Beam Design

The structure of the welded beam, which is made by welding a beam to a rigid support
member, is depicted in Figure 12. Therefore, reducing the fabrication cost of the welded
beam, including labor and material costs, is the main objective, where the controlling design
parameters are the dimensions of welding (h) and (l) and the dimensions of the member
bar (t) and (b), as shown in Figure 10. However, there are constraints to lessening the cost of
the welded beam, such as the weld stress (τ), bending stress (σ), and bar buckling load (Pc).
The objective function and the constraint functions of welded beam design are expressed
in (21) and (22). The PSA and other algorithms are utilized to find the minimum cost of
the welded beam design, and the optimal outcomes are shown in Table 10. Furthermore,
Figure 13 compares the PSA algorithm’s convergence speed with other algorithms, showing
that the PSA offers a faster convergence speed than most different algorithms, and the PSA
converges to the best minimum after only 40 iterations.

min f (x = [h l t b]) = 1.10471× h2 × l + 0.04811t× b(14.0 + l) (21)

g1(x) = τ − τmax ≤ 0 and g2(x) = σ− σmax ≤ 0
g3(x) = δ− δmax ≤ 0 and g4(x) = h− b ≤ 0
g5(x) = P− Pc ≤ 0 and g6(x) = 0.125− h ≤ 0
g7(x) = 0.10471× h2 + 0.04811× l × b× (14.0 + l)− 5.0 ≤ 0
0.1 ≤ h ≤ 2 & 0.1 ≤ l ≤ 10 & 0.1 ≤ t ≤ 10 & 0.1 ≤ b ≤ 2

(22)
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where
P = 6, 000 lb; L = 14 in; E = 30× 106 psi; G = 12× 106 psi
τmax = 13, 600 psi; σmax = 30, 000 psi; δmax = 0.25 in

M = P(L + l
2 ); R =

√
l2

4 + ( h+t
2 )

2
; τ
′
= P√

2h×l
; τ” = MR

J

J = 2
√

2h× l( l2

12 + ( h+t
2 )

2
); τ =

√
τ
′2 + τ

′
τ” l

R + τ” 2

Pc = 4.013 E
L2

√
t2×b6

36 (1− t
2L

√
E

4G )

σ = 6PL
b×t2 ; δ = 4PL3

E×b×t2
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Table 10. Optimal cost and parameters of welded beam design. 
 GWO SCA SSA CS WOA PSO TSO AEFA PSA 

Best 1.7261166637 1.7789887672 2.4719864210 1.7318832346 1.7332745737 1.7248523086 1.7338377644 2.4719864210 1.7250306573 
m 1.7267581063 1.8287256087 3.0407655957 1.7378652824 1.7947045480 1.7248523088 1.7835502505 3.0407655957 1.7327229652 
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4.4. Pressure Vessel Design

The structure of the pressure vessel, which is made of stainless steel plates that are
welded to form a cylindrical shape, is depicted in Figure 14. Therefore, reducing the weight
of the pressure vessel is the chief objective, where the controlling design parameters are
the dimensions of the vessel, comprising the thickness of the shell (ts), thickness of the
head (th), inner radius (r), and length of the vessel (l). However, there are constraints
to minimizing the cost of the pressure vessel design, such as the inner volume and the
overall size of the vessel. The cost function and the constraint functions of pressure vessel
design are expressed in (23) and (24). The PSA and other algorithms are utilized to find
the lowest weight of the pressure vessel, and the optimal outcomes are shown in Table 11.
Additionally, Figure 15 compares the convergence curve of the PSA with other algorithms,
where the PSA offers a quicker convergence than the most of compared algorithms, and
the PSA converges to the best minimum after only 50 iterations.

min f (x = [Ts, Th, R, L]) = 0.6224TsThL + 1.7781ThR2 + 3.1661Ts
2L + 19.84Ts

2R (23)

g1(x) = −Ts + 0.0193R ≤ 0 & g2(x) = −Th + 0.00954R ≤ 0
g3(x) = −πR2L− 4

3 πR3 + 1, 296, 000 ≤ 0 & g4(x) = L− 240 ≤ 0
0 ≤ Ts ≤ 99 & 0 ≤ Th ≤ 99 & 10 ≤ R ≤ 200 & 10 ≤ L ≤ 200

(24)
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Table 11. Optimal weight and parameters of pressure vessel design.

GWO SCA SSA CS WOA PSO TSO AEFA PSA

Best 5889.3161636 6084.9664550 6288.2580937 5886.5458106 6033.9780276 5942.1267062 6713.1969272 26533.6320741 5886.9897087

m 5894.1446757 6307.2406394 7009.5719313 5893.2120452 6631.8600064 6101.1999200 7102.4268313 96354.3822355 6077.8295567

σ 6.1000446 139.9687665 874.9974107 3.8547414 493.3610049 140.4149521 893.3723107 44235.2712807 308.1664002

ts 0.7784311 0.7895409 0.9652823 0.7782347 0.7910326 0.8100689 1.0831728 2.8963402 0.7783762

th 0.3848615 0.3983170 0.4771401 0.3847895 0.4320066 0.4004175 0.5158489 1.1004971 0.3846826

r 40.3285572 40.7806669 50.0145885 40.3216202 40.9557154 41.9724803 54.0592595 64.9921818 40.3199574

l 200.0000000 200.0000000 98.2297744 200.0000000 191.3306399 178.2037836 69.0821101 51.8458794 200.0000000
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5. Conclusions

In this work, a new physics-based metaheuristic optimization algorithm named the
propagation search algorithm (PSA) is offered and utilized to optimize different engineer-
ing design problems. First, the exploration and exploitation capabilities of the PSA are
confirmed using 23 famous testing functions. The obtained outcomes for the Rosenbrock
and Rastrigin functions have confirmed that the PSA has a balanced capability between
exploration and exploitation in the optimization procedure. The propagation constant of
the PSA controls this balancing capability. The statistical tests are applied to verify the supe-
riority of the PSA among other compared algorithms. The PSA has succeeded in finding the
optimal solution for 17 functions out of 23; however, the second-ranked algorithm solved
only 9 functions. The Wilcoxon signed-ranked test is applied to confirm the significance
level of the outcomes of the PSA compared with those of other algorithms, where 90% of
the computed p-values are less than 5%. The PSA and the compared algorithms are utilized
to obtain the optimum design of four famous engineering problems, including the three-bar
truss, compression spring, welded beam, and pressure vessel. The PSA has succeeded
in finding competitive results and fast convergence to the minimum fitness values. The
optimization results have shown that the proposed PSA is a promising optimizer that
can be easily applied in engineering fields. Finally, the simple form of the PSA limits its
performance in some engineering applications. Therefore, the future work will present
different enhancements to the PSA and will apply it in power systems.

Author Contributions: Conceptualization, M.H.Q. and H.M.H.; methodology, M.H.Q. and S.A.;
software, M.H.Q. and K.H.L.; validation, M.H.Q. and H.M.H.; formal analysis, H.M.H.; investiga-
tion, K.H.L. and S.A.; resources, S.A. and H.M.H.; data curation, M.H.Q.; writing—original draft
preparation, M.H.Q.; writing—review and editing, H.M.H., K.H.L. and S.A.; visualization, K.H.L.
and H.M.H.; supervision, K.H.L., H.M.H. and S.A.; project administration, K.H.L. and M.H.Q. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deputyship for Research and Innovation, “Ministry of
Education” in Saudi Arabia (IFKSUOR3-328-1).

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research and
Innovation, “Ministry of Education”, in Saudi Arabia for funding this research (IFKSUOR3-328-1).

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 4224 25 of 26

References
1. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
2. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
3. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477.
4. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.

[CrossRef]
5. Yang, X.-S. Firefly Algorithms for Multimodal Optimization BT—Stochastic Algorithms: Foundations and Applications; Watanabe, O.,

Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.
6. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature and Biologically Inspired

Computing, NABIC 2009, Coimbatore, India, 9–11 December 2009; pp. 210–214.
7. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
8. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
9. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
10. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
11. Abdel-Basset, M.; Mohamed, R.; Zidan, M.; Jameel, M.; Abouhawwash, M. Mantis Search Algorithm: A novel bio-inspired

algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 2023, 415, 116200.
[CrossRef]

12. Abdel-Basset, M.; Mohamed, R.; Jameel, M.; Abouhawwash, M. Nutcracker optimizer: A novel nature-inspired metaheuristic
algorithm for global optimization and engineering design problems. Knowl.-Based Syst. 2023, 262, 110248. [CrossRef]

13. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-
heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

14. Hayyolalam, V.; Pourhaji Kazem, A.A. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving
engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [CrossRef]

15. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm
for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]

16. Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70. [CrossRef]
17. Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic

algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [CrossRef]
18. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
19. Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems.

Expert Syst. Appl. 2022, 188, 116026. [CrossRef]
20. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global

and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [CrossRef]
21. Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm

for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [CrossRef]
22. Eusuff, M.; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim.

2006, 38, 129–154. [CrossRef]
23. Qi, X.; Zhu, Y.; Zhang, H. A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 2017, 23, 226–239. [CrossRef]
24. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications.

Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]
25. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired

meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]
26. Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic

algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [CrossRef]
27. Rabie, A.H.; Mansour, N.A.; Saleh, A.I. Leopard seal optimization (LSO): A natural inspired meta-heuristic algorithm. Commun.

Nonlinear Sci. Numer. Simul. 2023, 125, 107338. [CrossRef]
28. Mohammadi-Balani, A.; Dehghan Nayeri, M.; Azar, A.; Taghizadeh-Yazdi, M. Golden eagle optimizer: A nature-inspired

metaheuristic algorithm. Comput. Ind. Eng. 2021, 152, 107050. [CrossRef]
29. van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated Annealing: Theory and Applications; Springer: Dordrecht, The Netherlands, 1987;

pp. 7–15. ISBN 978-94-015-7744-1.
30. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
31. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-

based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [CrossRef]

https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.cma.2023.116200
https://doi.org/10.1016/j.knosys.2022.110248
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.engappai.2019.103249
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.knosys.2022.108457
https://doi.org/10.1016/j.cie.2021.107408
https://doi.org/10.1016/j.eswa.2021.116026
https://doi.org/10.1016/j.cma.2022.114616
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1080/03052150500384759
https://doi.org/10.1016/j.jocs.2017.06.003
https://doi.org/10.1016/j.advengsoft.2017.05.014
https://doi.org/10.1016/j.eswa.2021.116158
https://doi.org/10.1016/j.knosys.2022.110011
https://doi.org/10.1016/j.cnsns.2023.107338
https://doi.org/10.1016/j.cie.2020.107050
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.future.2019.07.015


Mathematics 2023, 11, 4224 26 of 26

32. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110,
69–84. [CrossRef]

33. Kaveh, A.; Mahdavi, V.R. Colliding bodies optimization: A novel meta-heuristic method. Comput. Struct. 2014, 139, 18–27.
[CrossRef]

34. Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation
problem. Knowl.-Based Syst. 2019, 163, 283–304. [CrossRef]

35. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [CrossRef]
36. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray Optimization. Comput. Struct. 2012, 112–113, 283–294. [CrossRef]
37. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Transient search optimization: A new meta-heuristic optimization algorithm. Appl.

Intell. 2020, 50, 3926–3941. [CrossRef]
38. Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler optimization algorithm: A new meta-

heuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl.-Based Syst. 2023, 268, 110454. [CrossRef]
39. Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Antônio Oliver, G.; Cunha, S.S.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid

physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [CrossRef]
40. Abedinpourshotorban, H.; Mariyam Shamsuddin, S.; Beheshti, Z.; Jawawi, D.N.A. Electromagnetic field optimization: A

physics-inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 2016, 26, 8–22. [CrossRef]
41. Qais, M.H.; Hasanien, H.M.; Turky, R.A.; Alghuwainem, S.; Tostado-Véliz, M.; Jurado, F. Circle Search Algorithm: A Geometry-

Based Metaheuristic Optimization Algorithm. Mathematics 2022, 10, 1626. [CrossRef]
42. Anita; Yadav, A. AEFA: Artificial electric field algorithm for global optimization. Swarm Evol. Comput. 2019, 48, 93–108. [CrossRef]
43. Muthiah-Nakarajan, V.; Noel, M.M. Galactic Swarm Optimization: A new global optimization metaheuristic inspired by galactic

motion. Appl. Soft Comput. J. 2016, 38, 771–787. [CrossRef]
44. Formato, R.A. Central force optimization: A new nature inspired computational framework for multidimensional search and

optimization. Stud. Comput. Intell. 2008, 129, 221–238. [CrossRef]
45. Javidy, B.; Hatamlou, A.; Mirjalili, S. Ions motion algorithm for solving optimization problems. Appl. Soft Comput. J. 2015, 32,

72–79. [CrossRef]
46. Azizi, M. Atomic orbital search: A novel metaheuristic algorithm. Appl. Math. Model. 2021, 93, 657–683. [CrossRef]
47. Glover, J.D.; Overbye, T.; Sarma, M.S. Power System Analysis and Design, 6th ed.; Cengage Learning: Boston, MA, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.knosys.2018.08.030
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1007/s10489-020-01727-y
https://doi.org/10.1016/j.knosys.2023.110454
https://doi.org/10.1016/j.eswa.2020.114522
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.3390/math10101626
https://doi.org/10.1016/j.swevo.2019.03.013
https://doi.org/10.1016/j.asoc.2015.10.034
https://doi.org/10.1007/978-3-540-78987-1_21
https://doi.org/10.1016/j.asoc.2015.03.035
https://doi.org/10.1016/j.apm.2020.12.021

	Introduction 
	Propagation Search Algorithm 
	Background 
	PSA Inspiration 
	Search Agents Initialization 
	Exploration and Exploitation of PSA 
	Encircling Behavior of PSA 
	Computational Complexity of PSA 


	Optimization Results of Testing Functions 
	Statistical Analysis 
	Optimization Convergence 

	Renowned Engineering Problems 
	Three-Bar Truss Design 
	Compression Spring Design 
	Welded Beam Design 
	Pressure Vessel Design 

	Conclusions 
	References

