
Citation: El Romeh, A.; Mirjalili, S.

Theoretical Framework and Practical

Considerations for Achieving

Superior Multi-Robot Exploration:

Hybrid Cheetah Optimization with

Intelligent Initial Configurations.

Mathematics 2023, 11, 4239. https://

doi.org/10.3390/math11204239

Academic Editors: Junyong Zhai and

António Lopes

Received: 23 August 2023

Revised: 23 September 2023

Accepted: 9 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Theoretical Framework and Practical Considerations for Achieving
Superior Multi-Robot Exploration: Hybrid Cheetah
Optimization with Intelligent Initial Configurations
Ali El Romeh 1 and Seyedali Mirjalili 1,2,3,*

1 Centre for Artificial Intelligence Research and Optimization, Torrens University Australia,
Brisbane, QLD 4006, Australia; ali.romeh@student.torrens.edu.au

2 Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
3 University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
* Correspondence: ali.mirjalili@torrens.edu.au

Abstract: Efficient exploration in multi-robot systems is significantly influenced by the initial start po-
sitions of the robots. This paper introduces the hybrid cheetah exploration technique with intelligent
initial configuration (HCETIIC), a novel strategy explicitly designed to optimize exploration effi-
ciency across varying initial start configurations: uniform distribution, centralized position, random
positions, perimeter positions, clustered positions, and strategic positions. To establish the effective-
ness of HCETIIC, we engage in a comparative analysis with four other prevalent hybrid methods
in the domain. These methods amalgamate the principles of coordinated multi-robot exploration
(CME) with different metaheuristic algorithms and have demonstrated compelling results in their
respective studies. The performance comparison is based on essential measures such as runtime,
the percentage of the explored area, and failure rate. The empirical results reveal that the proposed
HCETIIC method consistently outperforms the compared strategies across different start positions,
thereby emphasizing its considerable potential for enhancing efficiency in multi-robot exploration
tasks across a wide range of real-world scenarios. This research underscores the critical, yet often
overlooked, role of the initial robot configuration in multi-robot exploration, establishing a new
direction for further improvements in this field.

Keywords: robotics; multi-agent systems; exploration algorithms; pathfinding; cost function; hybrid
techniques; optimization; performance metrics; simulation-based research; environmental mapping;
cooperative exploration; dynamic environment mapping; distributed robotics; real-time simulation;
advanced algorithmic solutions; metaheuristic approaches; scalable robot configurations

MSC: 68W20

1. Introduction

The last decade has witnessed an exponential rise in interest in multi-robot systems,
driven by their potential to outperform single-robot systems in terms of efficiency, ro-
bustness, and resilience [1]. These systems are increasingly employed in a wide array of
applications. Their capabilities are demonstrated in search and rescue missions, where
multiple robots can cover larger areas faster than a single robot [2–5]. In surveillance
tasks [6], multi-robot systems can monitor larger perimeters, ensuring enhanced security.
Environmental monitoring and data collection also benefit from these systems as they
can gather more diverse and comprehensive data [7–9]. Further, multi-robot systems are
even used in space [10–14] and deep-sea explorations [15–18], reaching areas that are too
dangerous or distant for human researchers [19–21].

A particularly challenging task in these scenarios involves effective exploration and
mapping of unknown and potentially hazardous environments [22,23]. While the dy-
namic nature of exploration and mapping, such as simultaneous localization and mapping
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(SLAM) [24], plays a pivotal role in mobile robotics, our research specifically delves into the
nuanced impact of initial configurations on exploration efficiency. Real-world scenarios,
such as time-sensitive rescue missions or intricate surveillance tasks, often underscore the
significance of these initial configurations. Recent research has introduced numerous
strategies aimed at optimizing the process of multi-robot exploration. These techniques pri-
marily employ hybrid methods, merging principles of coordinated multi-robot exploration
(CME) [25,26] with different metaheuristic algorithms [27]. While these strategies employ
diverse approaches, they share a common objective: to enhance real-time decision making,
coordination, and task distribution among the robots involved in the exploration [28].
However, there remains a largely untapped potential in these exploration strategies—the
strategic configuration of the initial start positions [29], a critical aspect that significantly
influences the exploration’s efficiency and effectiveness.

Nevertheless, an often-overlooked aspect of multi-robot exploration is the role of the
initial start positions. Conventional methods [30–32] typically employ a simplistic start
position. While these methods offer the advantage of simplicity, they may not always yield
optimal exploration outcomes, especially in complex or constrained environments [33,34].
The interplay between initial configurations and dynamic exploration is intricate. While
dynamic exploration techniques adapt to evolving environments, the initial configuration
can offer a strategic advantage. Especially in scenarios where the environment’s broad
layout is known, but specific details evolve, starting with an optimal configuration can
expedite the exploration process. In response to this gap, we introduce the hybrid cheetah
exploration technique with intelligent initial configuration (HCETIIC). This novel method
combines the merits of the cheetah optimization (CO) [35] with a unique strategy for
determining the initial configuration of the robots. We propose that this hybrid approach
can significantly enhance the exploration efficiency and robustness, thereby pushing the
boundaries of what multi-robot systems can achieve.

This paper details a comprehensive comparative analysis of the performance of the pro-
posed hybrid cheetah exploration technique with intelligent initial configuration (HCETIIC)
against four other prominent hybrid methods in the multi-robot exploration domain. While
the exploration rate can be influenced by a myriad of factors such as robot capabilities, en-
vironment complexity, and communication mechanisms, our study delves into the specific
impact of initial configurations. The performance is assessed across various initial start
positions using three essential metrics: runtime, the percentage of the explored area, and
failure rate. Our results highlight the robustness of HCETIIC in multi-robot exploration,
demonstrating consistent superior performance across different start positions. These find-
ings not only emphasize the transformative potential of HCETIIC in multi-robot exploration
but also underscore the often underestimated significance of the initial robot configuration
in exploration efficiency. As such, this study offers crucial insights and presents a new
direction for both practitioners and researchers in the field of multi-robot exploration

This paper is organized as follows: Section 2 discusses related works in the field of
multi-robot exploration and start position selection. Section 3 elaborates on the proposed
HCETIIC method. Section 4 presents our experimental design, results, and a comprehensive
analysis. Section 5 concludes the paper with a discussion on our findings, their implications,
and prospective future research directions.

2. Literature Review and Related Work

Multi-robot exploration, being at the nexus of robotics, optimization, and coordinated
control, has witnessed significant advancements propelled by a myriad of research efforts.
The domain’s intricacies necessitate a keen understanding of algorithms and methodolo-
gies, ensuring efficient exploration and mapping. The literature, as it stands, is replete
with strategies ranging from metaheuristic algorithms inspired by nature to coordinated
strategies designed for multi-robot orchestration. Additionally, recent studies have un-
derscored the emergence of hybrid methods that meld the strengths of deterministic and
metaheuristic algorithms, offering robust solutions. Yet, amid these advancements, the
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pivotal role of robots’ initial start positions remains an area in need of deeper insights. This
section delves into the key contributions and overarching themes in multi-robot exploration,
laying the foundation for our proposed HCETIIC approach.

2.1. Metaheuristic or Stochastic Algorithms

Metaheuristic algorithms, characterized by their stochastic nature, have established
themselves as a compelling alternative to conventional deterministic optimization tech-
niques, especially in the face of large-scale, intricate problems often marked by nonlinearity,
multimodality, or the profusion of local optima [36]. These algorithms, typically inspired by
natural phenomena or biological processes, adeptly balance exploration and exploitation
mechanisms to approach near-optimal solutions [37].

Within the realm of multi-robot exploration, numerous metaheuristic algorithms have
been used to considerable effect, contributing significantly to advancements in real-time
decision making, exploration efficiency, and task allocation.

Renowned as one of the earliest metaheuristics, the genetic algorithm (GA) draws its
inspiration from Darwin’s theory of natural evolution [38]. Owing to its inherent capacity
for efficient search and optimization, GA has found extensive applications in multi-robot
systems, contributing to progress in areas such as task allocation, path planning, and
formation control.

The particle swarm optimization (PSO) algorithm [39], another prominent metaheuris-
tic, mirrors the social behavior exhibited in bird flocking or fish schooling. Its application
in multi-robot systems is widely documented [40], with its simplicity, efficiency, and broad
applicability receiving particular acclaim. Further, adaptations of PSO such as quantum-
behaved PSO and binary PSO have amplified its applicability [41].

Taking a leaf out of the book of ants’ foraging behavior, the ant colony optimization
(ACO) [42] has carved out a place for itself in multi-robot path planning and task allo-
cation. Its resilience against local optima and dynamic environmental changes has been
particularly lauded.

In recent times, bio-inspired algorithms that mimic the behavior of various animal
species have gained widespread attention. For instance, the grey wolf optimizer (GWO) [43],
which replicates the leadership hierarchy and hunting behavior of grey wolves, and the
salp swarm algorithm (SSA) [44], modeled after the swarming behavior of salps in oceans,
have found significant utility. The mountain gazelle optimizer (MGO) [45], simulating the
vigilance and evasion behaviors of mountain gazelles, and the African vultures optimiza-
tion algorithm (AVOA) [46], inspired by the opportunistic foraging and flight patterns of
African vultures, have added to this burgeoning collection of bio-inspired algorithms.

Among this wealth of nature-inspired strategies, the cheetah optimizer (CO) [35]
stands out due to its unique traits. Inspired by the hunting tactics of cheetahs, the CO
seamlessly integrates modes of searching, sitting-and-waiting, and attacking, mirroring the
natural behavior of its feline counterpart. Furthermore, its distinct ‘leave the prey and go
back home’ strategy enhances population diversification, convergence performance, and
algorithmic robustness. Empirical evaluations using multiple benchmark functions and
intricate optimization challenges underscore the CO’s superiority over both conventional
and improved algorithms. Its inherent capability to address large-scale and challenging
optimization problems makes it particularly suitable for optimizing initial configurations in
multi-robot exploration. This rationale drives the integration of the CO into our proposed
HCETIIC approach, with a specific focus on addressing the significant gap in the literature
concerning optimal robot starting positions.

2.2. Challenges of Reactive Control and the Role of Set-Based Approaches in Robotic Exploration
and Trajectory Planning

Traditionally, trajectory planning in multi-robot systems often combines individual
robot trajectory techniques with reactive algorithms for collision handling. However,
this approach poses challenges, especially in robotic systems with limited computational
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capabilities. Set-based approaches are gaining traction in trajectory planning for networked
robotic mobile robots. These methods, leveraging set mathematics, ensure that trajectories
adhere to robot dynamics, constraints, and environmental factors [47]. They offer a robust
solution against uncertainties, particularly vital in scenarios with computational limitations.
In contrast, reactive control strategies, while providing immediate environmental responses,
can be computationally demanding, leading to decision-making delays in intricate multi-
robot environments [48].

To address these challenges, recent algorithms ensure feasible trajectories under spe-
cific initial conditions [49]. These are pivotal in multi-robot systems, emphasizing collision
prevention and coordination. In the evolving landscape of multi-robot exploration, set-
based approaches stand out, underscoring the need for efficient trajectory planning methods
in computationally constrained scenarios.

2.3. Coordinated Multi-Robot Explorations

Coordinated multi-robot exploration (CME) pertains to the strategic orchestration
of multiple robots to optimize the exploration and mapping of unfamiliar or potentially
hazardous environments [50,51]. The field of CME, characterized by its extensive variety of
strategies, encompasses an array of approaches, each distinguished by its unique benefits
and potential areas of development.

Frontier-based exploration [52–54] constitutes a seminal approach within CME re-
search. It serves as a cornerstone for many exploratory strategies, with its core principle
revolving around directing robots towards “frontiers”, or the boundaries between explored
and unexplored regions. This method ensures systematic coverage of the entire space, with
its simplicity,and efficacy being widely acknowledged. However, its performance might
be compromised in more complex environments or scenarios where aspects like energy
efficiency are paramount.

Drawing inspiration from economics, market-based approaches [55] have gained
considerable traction in CME. These techniques model exploration tasks as ‘goods’ and
the robots as ‘bidders’, where robots bid for tasks based on their cost evaluations. Market-
based methods have exhibited improvements in task distribution and adaptability to
dynamic environments. However, they often come with the caveat of requiring substantial
computational resources and complex negotiation processes.

The advancement of machine learning (ML) and artificial intelligence (AI) technologies
has ushered in distributed reinforcement learning techniques in CME [56]. Through these
methods, a team of robots can learn optimal exploration strategies via interactions with
their environment, potentially enhancing their adaptability and robustness over time. Yet,
these techniques often require extensive training periods and may suffer from the ‘curse of
dimensionality’ when dealing with larger, more intricate environments.

Despite the impressive array of strategies available within CME, a conspicuous area
of improvement is the incorporation of the initial robot configuration into the exploration
strategies. This aspect, which is currently under-represented, carries significant potential
for optimization. By paying close attention to the starting positions of the robots, we can
pave the way for novel and more effective CME techniques, opening the door to more
comprehensive exploration strategies, such as our proposed hybrid cheetah exploration
technique with intelligent initial configuration (HCETIIC).

2.4. Hybrid Methods

In the field of multi-robot exploration, hybrid methods have been developed that
blend deterministic coordinated multi-robot exploration (CME) [51] with a metaheuristic
algorithm. This fusion aims to leverage the advantages of deterministic strategies and
metaheuristic approaches, producing a more robust and effective exploration strategy.

One noteworthy hybrid method utilizes the coordinated multi-robot exploration and
grey wolf optimizer (CME-GWO) algorithms. Albina and Lee [57] proposed this method,
arguing that it provides a stochastic optimization technique for multi-robot exploration.
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Their work suggested that such hybrid models are capable of outperforming conventional
deterministic techniques, effectively utilizing the metaheuristic algorithm to improve
exploration outcomes. The method deploys a two-step exploration strategy: initially, it uses
a deterministic approach to evaluate the environment and then employs a metaheuristic
algorithm for robot movement.

Similarly, a study by Gul et al. [58] presented a novel framework that integrated the
deterministic CME technique with the metaheuristic frequency-modified whale optimiza-
tion algorithm (FMH-WOA). Their hybrid method mimicked the predatory behavior of
whales in exploration tasks. The efficacy of the FMH-WOA was corroborated by testing the
framework in various complex environmental conditions and comparing its performance
with other optimization techniques.

Furthermore, reinforcement learning has also been integrated with multi-robot ex-
ploration methods. Mete, Mouhoub, and Farid [59] devised a multi-agent reinforcement
learning (MARL)-based framework to manage the challenges of multi-UAV exploration in
unfamiliar, unstructured, and cluttered environments. Their approach highlights the capa-
bility of reinforcement learning techniques to improve temporal planning and inter-agent
coordination, contributing to more efficient exploration strategies.

More recently, Romeh and Mirjalili [60] presented a hybrid method that combines
the deterministic coordinated multi-robot exploration (CME) with the metaheuristic salp
swarm algorithm (SSA), resulting in the CME-SSA method. The SSA is an optimization
technique that mimics the swarming behavior of salps, marine animals known for their
efficient foraging tactics. In CME-SSA, the deterministic CME initially takes care of the
cost and utility values on the grid map. Then, the SSA comes into play to efficiently select
the next move of each robot and improve the overall solution. Notably, the CME-SSA
method outperformed several other methods in terms of exploration rate, time efficiency,
and obstacle avoidance.

Finally, Romeh, Mirjalili, and Gul [61] proposed the hybrid vulture-coordinated multi-
robot exploration (HVCME), a novel hybrid method combining the African vultures opti-
mization algorithm (AVOA) with CME. The AVOA, inspired by the intelligent foraging
behavior of vultures, uses a deterministic approach to locate potential targets, and then
leverages metaheuristic principles to optimize exploration. Experimental results demon-
strated that the HVCME approach surpassed other comparable algorithms in terms of
exploration coverage, time efficiency, and robustness.

Despite these advances, limitations persist in multi-robot exploration strategies. For
instance, achieving complete exploration in complex environments is a significant chal-
lenge. Additionally, the starting position of the robots plays a significant role in efficient
exploration. Different starting positions can significantly affect the time efficiency and
coverage rate of the exploration.The cited work, which emphasizes the importance of robot
exploration and its initial configurations, serves as a foundational reference for our research.
While it delves into both mapping and path generation, our study narrows down to the
initial configurations, elucidating their impact on the exploration efficiency. Recognizing
this, our proposed approach, hybrid coordinated exploration technique using intelligent
initial coverage (HCETIIC), builds upon the strength of these hybrid techniques while
strategically incorporating the aspect of the initial robot configuration, thus paving the way
for a more holistic and effective exploration strategy.

2.5. Start Positions

A relatively less explored area in the literature is the role of start positions in multi-
robot exploration. A few studies have experimented with different start position assign-
ments [62], such as uniform distribution, centralized position, random positions, perimeter
positions, and clustered positions [63–65]. While these methods offer the advantage of
simplicity, their performance in delivering optimal exploration outcomes, especially in
complex environments, is often suboptimal [66,67]. This has underscored the need for a
more intelligent strategy for determining the initial configuration of the robots.
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Recognizing the shortcomings of traditional start position methods, there emerges
a need for a robust and adaptive technique that optimizes initial robot configurations.
Our proposed HCETIIC addresses this by leveraging the cheetah optimizer’s capabilities,
aiming to provide an intelligent strategy that ensures effective exploration outcomes right
from the start.

In summary, this literature review reveals the gap in existing methods for multi-robot
exploration—while significant progress has been made in optimizing real-time decision
making, coordination, and task distribution, the role of initial start positions remains rela-
tively unexplored. This has motivated the proposed hybrid cheetah exploration technique
with intelligent initial configuration (HCETIIC), aiming to fill this gap by combining an
advanced optimization algorithm, like the cheetah optimization, with a unique strategy for
initial configuration selection.

3. Problem Formulation and Proposed Method

The domain of multi-robot exploration has witnessed several methodologies that,
despite their significant contributions, have faced certain limitations. These shortcom-
ings encompass inefficiencies in exploration, failure to achieve complete exploration, the
challenge of building an optimal finite map, and the predisposition to be trapped in local
optima. To address these challenges, we propose an advanced hybrid approach that marries
coordinated multi-robot exploration (CME) and the cheetah optimizer (CO) to optimize
the exploration process. This method, designated as the hybrid cheetah exploration tech-
nique with intelligent initial configuration (HCETIIC), aspires to augment the accuracy and
efficacy of multi-robot exploration across diverse contexts.

3.1. Deterministic CME

The process of multi-robot exploration employs several mobile robots to survey an
environment, transitioning from a state of complete ignorance to a comprehensive map
creation. Centralized and decentralized explorations are the two primary modes utilized
for this purpose.

In the centralized exploration mode, a shared map accessible to all robots is used,
allowing real-time monitoring of each robot’s progress. This technique promotes efficient
exploration by enhancing inter-robot communication. On the other hand, decentralized
exploration is based on individual map construction by each robot, with data exchange
facilitated only when robots’ paths intersect. While this reduces coordination complexity,
it could result in a less effective exploration due to the limited information exchange
among robots.

In the context of this study, we employ the centralized exploration approach due to its
potential to foster better coordination and inter-robot communication. HCETIIC capitalizes
on this aspect by continuously updating utility values and real-time travel costs for each
robot, thereby optimizing the exploration process.

Under CME, the environment’s representation is undertaken using an occupancy
grid map. The robot, initially placed in an indoor setting devoid of any knowledge about
its surroundings, is equipped with a sensor with a limited coverage range. The sensor
identifies frontier cells essential for finite map construction in an unknown space.

The occupancy grid map houses numerical values indicating the probability of en-
countering an obstacle in each grid cell, in addition to the utility and travel cost for each
cell. Owing to the sensor’s limited coverage, only a few cells surrounding the robot are
included in the occupancy grid map. An illustrative representation of the sensor’s view on
the occupancy grid map is provided in Figure 1.
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(a) (b) (c)
Figure 1. The figure visualizes the sensor’s limited range within grid cells. (a) Confined sensor range (V1
to V8) encircling the robot. (b) Eight cells surrounding the robot, with cell 9 denoting the robot’s position.
(c) Robot moving from right to left; sensor range does not cover cost values of V3, V4, and V5.

3.1.1. Establishment of the Cost Function

Determining the most efficient path from a robot’s present location to all frontier cells
is a critical step in our proposed HCETIIC method. This path-finding task relies on a
deterministic version of a cost function that integrates various factors, including occupancy
grid probability, sensor view range, and the straight-line distance between points.

The initial cost function is formulated as in Equation (1). It accounts for grid occupancy
probability, sensor range, and Euclidean distance. If a cell has been previously explored,
the cost from the previous step for that cell is added to the cost of the current position. But
for a cell identified as a frontier cell, it does not bear any backward costs from earlier ray
traces that opened it initially (as seen in Equation (3)).

In the three-dimensional occupancy grid map, (i, j, k) is used to denote the ith cell
along the x-axis, the jth cell along the y-axis, and the kth cell along the z-axis. However,
since the utility and cost values are stored on the i–j plane of the 3D occupancy grid map, k
is set to zero. The grid map provides a representation of the environment that the robot
is navigating.

The cost for traversing a cell (i, j, k) is inversely related to the occupancy probability
value, Prob_occijk. The algorithm conducts two steps (outlined in Equations (1) and (2)) to
ascertain the least-cost path.

Initialization:

F(i, j, k) =

{
0, if (i, j, k) is the robot’s location,
∞, otherwise

(1)

The algorithm will perform an iterative process to update the status of each grid cell
at (i, j, k).

F(i, j, k) = min
[

F(i + δi, j + δj, k + δk) + (∆i2 + ∆j2 + ∆k2)× Prob_occi+∆i,j+∆j,k+∆k

]
(2)

F(i, j, k) = min
[
(∆i2 + ∆j2 + ∆k2)× Prob_occi+∆i,j+∆j,k+∆k

]
(3)

where δi, δj, δk ∈ [−1, 0, 1], Prob_occi+∆i,j+∆j,k+∆k ∈ [0, Max_occ], and Max_occ denotes
the maximum occupancy probability.

Choosing the next position for the robot is based on identifying the least cost from the
neighboring cells. In the context of multi-robot systems, achieving effective exploration
necessitates an organized collective effort, contrasting with single-robot systems that pri-
marily need a low-cost search for localization. The CME approach incorporated in our
HCETIIC method allows for efficient task distribution among multiple robots.

3.1.2. Valuation of Utility

This section introduces the concept of the utility value, integral to the HCETIIC method.
The utility value gauges whether a cell in the grid map has been explored. At the outset,
all grid cells are assigned identical utility values, which are later modified as portrayed
in Equation (4). As robots navigate towards new positions, the utility values of frontier



Mathematics 2023, 11, 4239 8 of 33

cells decline. This prompts robots to give precedence to the exploration of new positions by
gravitating towards grid cells with heightened utility values.

Each grid cell’s cost is influenced by its relative distance from the robot. Notably, a
frontier cell’s utility is shaped both by its immediate surroundings and the number of robots
advancing towards it. In pursuit of optimal utility values, robots proactively search for pre-
viously uncharted locations. This strategy uncovers new data and broadens environmental
understanding, underpinning efficient exploration, as detailed in Equation (4).

Ut
ijk = Ut−1

ijk −
n−1

∑
i=1

∣∣∣Prob_occcurrent
ijk − Prob_occrobot

ijk

∣∣∣ (4)

Here, Ut
ijk signifies the contemporary utility value of a cell, denoting its importance in

the exploration. Concurrently, Ut−1
ijk denotes the utility of the analogous cell in the preceding

exploration phase. Prob_occ represents the occupancy probability of the current cell i, j, k.
The summand captures the difference in the perceived environment’s occupancy probability
from the robot’s perspective at two distinct time instances. To refine the exploration, the cell
with the predominant utility at iteration t is pinpointed using Equation (5), encompassing
both the occupancy probability and the cell’s antecedent utility value.(

cell∗ijk, t
)
= argmax

{
Ut

ijk − Fijk

}
(5)

To facilitate effective cooperative exploration, it is essential for robots to start in close
proximity to each other, allowing their sensor ranges to overlap. This initial positioning
strategy allows the robots to radiate out in diverse directions, advancing towards various
target locations and leading to a reduction in utility values. The testing maps were con-
strained to a 50 m × 50 m dimension with limited sensor ray lengths. The explored area is
represented in blue, while dark gray regions signify obstacles.

3.2. The Cheetah Optimizer (CO)

The cheetah optimizer (CO) [35] stands out among metaheuristic algorithms for its
unique approach inspired directly by the hunting behavior of cheetahs in their natural
habitat. The unparalleled speed, stealth, and agility exhibited by cheetahs during a hunt
have found an algorithmic counterpart in CO. These animals have a systematic approach
to hunting that involves a mix of patience, swift attack, and periods of rest and observance.
By dissecting the cheetah’s behavior, researchers have encapsulated its essence into dif-
ferent phases within the CO algorithm, each mirroring a specific aspect of the cheetah’s
hunting strategy.

3.2.1. Social Behavior

Cheetahs in the wild have a unique approach to hunting. Their process includes a
patient search, a swift attack, and a return to lower speed after capturing their prey. This
hunting cycle is directly reflected in the CO algorithm’s structure, which involves a similar
iterative process of searching, attacking, and resting.

Initially, cheetahs move slowly and stealthily towards their prey, trying to remain
hidden. This behavior is translated into the ‘search’ phase of the CO algorithm, where the
algorithm explores the solution space, slowly approaching the optimal solution.

Then, at the right moment, cheetahs launch a rapid attack to capture their prey. This is
reflected in the ‘attack’ phase of the CO algorithm, where the algorithm makes a significant
leap towards the optimal solution in the solution space.

Post-attack, cheetahs significantly reduce their speed, and remain observant of their
surroundings. This is translated into the ‘rest’ phase of the CO algorithm, where the
algorithm slows down the exploration, allowing for local search around the current
best solution.
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3.2.2. Mathematical Model

The mathematical modeling of the cheetah optimizer (CO) [35] consists of three central
hunting strategies represented by distinct equations. Each equation consists of specific
parameters that are updated at each iteration to steer the search agents towards the optimal
solution.

The search phase is modeled by the equation

Xt+1
i,j = Xt

i,j + r−1
i,j · α

t
i,j (6)

r−1
i,j is a random parameter that prevents the premature convergence of the algorithm

and adds diversity in the searching strategy, symbolizing the unpredictable movement of a
cheetah during the search. αt

i,j represents the step length taken by the ith cheetah in the
jth dimension at the tth iteration during the searching phase. It is a random parameter
that changes at each iteration to replicate the varying pace of a cheetah’s approach towards
its prey.

And the rest phase is represented by

Xt+1
i,j = Xt

i,j (7)

Xt
i,j is the current position of the ith cheetah in the jth dimension at the tth iteration.

Xt+1
i,j is the updated position of the ith cheetah in the jth dimension for the next iteration.

In the sit-and-wait strategy, the updated position remains the same as the current position,
reflecting the cheetah’s waiting phase.

The attack phase is represented by

Xt+1
i,j = Xt

i,j + ri,j · βt
i,j (8)

ri,j is another random parameter that represents the variability in a cheetah’s direction
during an attack. βt

i,j symbolizes the step length taken by the ith cheetah in the jth dimen-
sion at the tth iteration during the attack. It is another random variable that alters at each
iteration, mimicking the unpredictable, swift movement of a cheetah during its attack on
the prey.

Moreover, there are several other parameters in the algorithm that need to be defined
and adjusted as per the problem’s needs:

r2 and r3: These are uniformly distributed random numbers from [0, 1] which deter-
mine the choice of hunting strategy. As the iterations progress and the cheetah’s energy
level decreases, the searching strategy becomes more likely due to the decreasing value
of r2.

H: This parameter is calculated based on r1, another uniformly distributed random
number from [0, 1], and t (the current iteration number). It assists in switching between
searching and attacking strategies. Higher values of H increase the chance of the attacking
strategy being chosen.

r4: This is a random number between 0 and 3, which influences the selection between
the attacking and searching strategies. Higher values lead to a more focused exploration of
the problem space, whereas lower values encourage exploration.

These parameters, through their incorporation in the algorithm’s equations, allow the
CO to efficiently balance exploration and exploitation in a way that mirrors the intelligent
hunting behavior of cheetahs. They contribute to the algorithm’s strength and adaptability
in dealing with complex optimization problems.

3.2.3. Hypotheses

The CO algorithm is predicated on several hypotheses that attempt to mimic the
hunting behavior of cheetahs:
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1. The cheetah population is considered as a group of agents, each representing a
solution. Their performance is evaluated through a fitness function, mirroring the
hunting success of a cheetah.

2. The algorithm acknowledges that cheetah behaviors during hunting can vary. To
prevent premature convergence, random parameters are introduced to depict the
cheetah’s energy and create diversity in their behaviors.

3. The hunting strategies of cheetahs are modeled as random. The algorithm uses
random parameters and turning factors to capture the sudden change in direction
during hunting.

4. The choice between hunting strategies (searching or attacking) depends on a set
of random numbers and evolves over time. This approach embodies the dynamic
nature of the cheetah’s behavior and conserves the hunting energy of cheetahs in
the algorithm.

5. The sit-and-wait strategy, a significant component of cheetah hunting, is incorporated
into the algorithm, indicating a period of no movement.

6. The algorithm is designed to encourage exploration when the leader (the best solution)
fails to improve after several iterations. It achieves this by shifting the position of a
randomly selected cheetah to the last successful hunting spot.

7. The CO algorithm introduces a strategy to avoid local optima. If a group of cheetahs
cannot find better solutions within a certain number of iterations, they return to the
initial position (home), rest, and start a new hunting process.

8. At each iteration, only a part of the cheetah population participates in the evolution
process, reflecting the real-world behavior of cheetah groups where not all members
are involved in every hunt.

3.2.4. Pseudo-Code

The pseudo-code for the CO algorithm encapsulates the aforementioned behaviors
and their respective mathematical models:

1. Define problem parameters (dimension, initial population size).
2. Generate initial population of cheetahs (solutions) and evaluate their fitness.
3. Initialize home, leader, and prey solutions.
4. For each iteration until the maximum number of iterations:

(a) Select a subset of cheetahs.
(b) For each selected cheetah:

i. Define the neighbor agent.
ii. For each dimension:

A. Calculate parameters f , r, a, B, and H.
B. Based on random numbers, decide if it is a search, attack, or rest

phase.
C. Calculate new position of cheetah in the dimension using respec-

tive equations.

iii. Update the solutions of the cheetah and the leader.
iv. If certain conditions are met, implement ‘leave the prey and go back

home’ strategy, changing the leader’s position and substituting the
cheetah’s position by the prey’s position.

(c) Update the global best (prey) solution.

5. Repeat from step 4 until the maximum number of iterations is reached.

This computational model provides an efficient and effective approach to finding opti-
mal solutions in the solution space, making the CO a valuable tool in the field of optimization.
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3.3. Hybrid Cheetah Exploration Technique with Intelligent Initial Configuration (HCETIIC)

The proposed HCETIIC method incorporates heuristic principles of the cheetah opti-
mization algorithm (CO) into the coordinated multi-robot exploration (CME) strategy. The
fundamental idea is to exploit the high-speed and precise hunting technique of cheetahs
to optimize the multi-robot system’s exploration process in unknown environments. The
method starts with the initialization of grid maps and follows with the determination of
the next optimal moves based on the probabilistic method.

The grid map is initially set up, assigning a utility value of 1 to all cells. The exploration
is limited by the sensor’s range; thus, eight candidate cells around the robot, covered by the
sensor, form the “cheetahs”. These cheetahs (Ch), represented by Ch1 to Ch8, are candidates
for the robot’s subsequent move.

Next, we assign the cost to each candidate cell and subtract the utilities from the cost
of the surrounding eight grid cells using the formula

Ch_Post+1
i,j = Probi,jt

occi+∆i,j+∆j,k+∆k + r1−1
i,j × αti,j (9)

where Ch_Post+1
i,j denotes the next position of the cheetah on the grid at time t + 1,

Probi,jt
occi+∆i,j+∆j,k+∆k signifies the probability of occupancy at position (i, j) at time t, r1−1

i,j
is the randomization parameter for cheetah i in arrangement j, and αti,j represents the step
length for cheetah i in arrangement j at time t.

The step length αti,j > 0 can typically be set at 0.001 × t/T as cheetahs are slow-
walking searchers. This value can also be adjusted based on the distance between cheetah i
and its neighbor or leader.

The formula for updating the position with the second random number is

Ch_Post+1
i,j = Probi,jt

occi+∆i,j+∆j,k+∆k + r2i,j.βti,j (10)

Here, r2i,j is the turning factor, and βti,j is the interaction factor associated with cheetah
i in arrangement j. The turning factor reflects the sharp turns of the cheetahs in the
capturing mode and is a random number equal to |ri,j| exp(ri,j/2) sin(2πri,j).

After calculating the new positions using these equations, the HCETIIC method
identifies the three highest utility values as the three best cheetahs. The priority among
these is determined based on their updated positions and their alpha and beta values.

In the presented diagram (Figure 2), we elucidate the intricate workflow underpinning
the hybrid cheetah exploration technique with intelligent initial configuration (HCETIIC).
This novel method embarks on the exploration by initializing grid maps and subsequently
assigning a utility value of 1 to every cell. As the exploration unfolds, the system delves into
an iterative loop. Within each iteration, for every robot, the coordinates of the target cell
are determined, costs associated with each cell are computed, and utilities are judiciously
updated. Upon the culmination of all requisite iterations, the exploration process reaches
its terminus. The HCETIIC method, as depicted, epitomizes a methodical and efficacious
strategy for multi-robot exploration, adeptly navigating the complexities of initial start
positions and other inherent constraints.
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Initialize Parameters

Set Utility of All Cells to 1

Iteration Over?

For Each Robot N

Set Coordinates of TargetCell

Calculate Cost of TargetCell

Update CurrentUtility and Cost of TargetCell

Calculate New Positions

Find Best Cheetahs

Determine Next Position for Roboti

Reduce Utility at New Position

End

No

Yes

Figure 2. Schematic representation of the proposed hybrid cheetah exploration technique with
intelligent initial configuration (HCETIIC) method. This diagram delineates the sequential steps
undertaken by the HCETIIC approach, from initialization to the full exploration process.
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The pseudo-code for the proposed HCETIIC method is (Algorithm 1):

Algorithm 1 HCETIIC Exploration Algorithm.
Input: Number of robots N, sensor range, iteration t, initial position
Output: Updated positions of robots and utility of cells
1: Initialize number of robots N, sensor range, iteration t, initial position
2: Set the utility of all cells to 1
3: while iteration is not over do
4: for each robot N do
5: Set coordinates of cost V_Cell
6: Calculate cost of V_Cell
7: Update Utility_celliteration and cost of V_Cell
8: Calculate r1 and r2, where r1 and r2 are the inverse of randomization parameters
9: Calculate the new positions using the above equations

10: Find the best cheetahs Ch_best1, Ch_best2. . . Ch_best8
11: Determine the next position for Roboti as max (Ch_best1, Ch_best2. . . Ch_best8)
12: Reduce utility at the new position
13: end for
14: end while
15: return Updated positions of robots and utility of cells

Through Algorithm 1, the exploration process can be optimized by rapidly selecting the
next best move for the robots, thereby improving the exploration efficiency. The utilization
of two randomization parameters r1 and r2 introduces an element of randomness to the
exploration process, helping to avoid local optima and improve overall exploration outcomes.

Intelligent Initial Configuration (IIC)

For single-objective optimization, intelligent initial configuration (IIC) plays a critical
role in establishing an initial population of solutions that possess a wide range of diverse
and potentially successful characteristics. The objective is to leverage the knowledge from
previously successful solutions to formulate an initial population that is more suitable for
the problem space at hand.

Let us consider a single-objective optimization problem (SOP) where the aim is to
find an optimal solution s∗ which maximizes or minimizes a particular objective function
f (s). The search space of the SOP is denoted by S and each solution si is in S, where
i = 1, 2, . . . , N and N is the total number of solutions. Each solution si represents a potential
solution to the SOP.

In the context of IIC, a database DB is maintained, which stores a set of previously
found optimal or near-optimal solutions from previous iterations of the algorithm. The
database DB is continuously updated as the algorithm discovers new potential optimal
solutions. DBt signifies the database at the tth iteration of the algorithm. DBt consists
of a set of solutions {s1, s2, . . . , sn}, where each si is a highly performing solution from a
previous iteration.

The IIC component of the HCETIIC algorithm leverages the solutions stored in DBt
to construct the initial population for the tth iteration of the algorithm. This is achieved
by randomly choosing solutions from DBt and utilizing these as seeds for generating new
solutions through slight perturbations. This diversity injection, facilitated by a mutation
operator, allows the exploration of different regions of the search space.

The initial population for the tth iteration, denoted by Pt, is generated using the
following steps:

1. Randomly select k solutions from DBt, where k < N. Let this selected set of solutions
be represented as St.

2. For each solution si in St, generate a new solution s′i by applying a mutation operator
to si.
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3. The set of all new solutions {s′1, s′2, . . . , s′k} form the initial population Pt for the tth
iteration of the algorithm.

Through this approach, the IIC draws on the wisdom of previously high-performing
solutions to direct the search process during its initial stages. The mutation operator
ensures that the initial population is not merely a clone of the previous solutions, thereby
maintaining diversity and fostering exploration of the search space. As such, the IIC
contributes to enhancing both the speed of convergence and the quality of the solutions
generated by the HCETIIC algorithm.

4. Results and Discussion

The inherent complexity and stochastic nature of multi-robot exploration pose sig-
nificant challenges to performance evaluation, particularly for metaheuristic algorithms.
Comprehensive testing under various conditions, ranging from simplistic to intricate
environments, is needed to accurately gauge the effectiveness of the implemented methods.

In the context of our research, we present an empirical analysis of the hybrid chee-
tah exploration technique with intelligent initial configuration (HCETIIC), an innovative
approach that merges the principles of coordinated multi-robot exploration (CME) with a
unique method of determining the initial configuration of robots. Our method transcends
the capabilities of traditional approaches by optimizing exploration efficiency across differ-
ent initial start configurations, including uniform distribution, centralized position, random
positions, perimeter positions, clustered positions, and strategic positions.

The performance of HCETIIC is compared with four other hybrid methods, namely
coordinated multi-robot exploration with grey wolf optimizer (CME-GWO), coordinated
multi-robot exploration with salp swarm algorithm (CME-SSA), hybrid vulture-coordinated
multi-robot exploration (HVCME), and coordinated multi-robot exploration with mountain
gazelle optimization (CME-MGO). The comparative analysis hinges upon three perfor-
mance indicators: execution time, the percentage of the explored area, and the number
of unsuccessful runs. The exploration rate, as defined in our study, primarily focuses on
the role of initial configurations. However, in practical scenarios, it is a result of various
factors including robot capabilities, the intricacy of the environment, and the efficiency of
inter-robot communication.

To quantify the explorative performance of each method, we employed a measure
represented by ‘P’, the exploration rate, defined as follows:

P =
T − E

T
× 100 (11)

where ‘T’ represents the total utility of the unexplored area, and ‘E’ denotes the utility of
the explored area. This measure captures the effectiveness of each algorithm in terms of the
extent of exploration achieved.

In our study, the experiments were conducted on a consistent map size of 30 m× 30 m,
with identical parameters applied to all simulations. The map was represented in a grid-
based format where free space was denoted by light gray cells, obstacles by dark gray cells,
and the explored area by blue cells.

In all the mapped environments, each color on the map corresponds to an individual
robot. Since three robots were used in this simulation, three distinct colors were employed
to distinguish between them, with each color representing a different robot.

Our investigations were conducted under four distinct scenarios, each designed to
probe a different aspect of the algorithms’ performance.

Scenario 1: This baseline scenario involved all the methods being evaluated under the
same starting position (uniform distribution) on a constant map layout, aiming to establish
a foundational performance for each method.

Scenario 2: Building on the first scenario, the map layout remained constant, but the
starting positions for HCETIIC varied. This scenario examined how adaptable HCETIIC is
to different starting positions and how that impacts its performance.
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Scenario 3: In this scenario, the starting positions were held constant, but the map
layouts were varied to challenge the methods under different environmental contexts.

Scenario 4: This final scenario presented the most significant challenge, as both
the starting positions of HCETIIC and the map layouts varied. It pushed the bounds
of the exploration task by incorporating variations in both the initial configuration and
environment.

To ensure reliable and statistically significant results, we ran each algorithm 30 times,
following the guidelines of the central limit theorem [68]. Given the stochastic nature of
the algorithms, multiple iterations helped to attain a reasonably normal distribution and a
robust representation of the algorithms’ performance.

In the following subsections, we delve into the detailed outcomes and analyses of
each scenario, assessing the performance of HCETIIC and the other methods based on the
total number of explored grid cells, the time taken for map exploration, and the instances
where a method failed to complete a full run. These comprehensive evaluations provide a
well-rounded analysis of our proposed method and pave the way for meaningful insights
and discussions.

4.1. Scenario 1: Uniform Distribution

The inaugural scenario of this comprehensive analysis establishes a common baseline
for the performance evaluation of each method. All the participating methods, namely,
hybrid cheetah exploration technique with intelligent initial configuration (HCETIIC),
hybrid vulture-coordinated multi-robot exploration (HVCME), coordinated multi-robot
exploration with salp swarm algorithm (CME-SSA), coordinated multi-robot exploration
with grey wolf optimizer (CME-GWO), and coordinated multi-robot exploration with
mountain gazelle optimization (CME-MGO), are examined within the same conditions.
These conditions include a uniform distribution starting position and 250 iterations as well
as a static map layout of dimensions 30 m × 30 m.

The uniform distribution arrangement sees the deployment of three robots, evenly
distributed across the map (Figure 3). This strategic positioning ensures each robot com-
mences its exploration journey from a different section of the map, reducing overlap in
their exploration paths and fostering an increased coverage rate.

The outcomes of the simulation for this scenario are represented visually in Figure 4,
which is composed of five subfigures (a–e). Each subfigure corresponds to a specific aspect
of the scenario, either illustrating the initial distribution of the robots or representing the
exploration progress made by a particular method.

Figure 3—uniform distribution: This subfigure depicts the initial placement of the
robots following the uniform distribution strategy. It showcases the spatial distribution
of the three robots, strategically placed to cover distinct sections of the map, thereby
minimizing the overlap of their exploration domains.

Figure 4a—HCETIIC: HCETIIC, leveraging the optimal positioning provided by the
uniform distribution, was successful in achieving an exploration rate of 92% of the total
map area. This accomplishment sets a high benchmark for exploration efficiency under
these specific conditions, displaying the remarkable capabilities of HCETIIC.

Figure 4b—HVCME: Following closely behind HCETIIC, the HVCME method suc-
cessfully explored 90% of the map. This impressive achievement attests to the robust
capabilities of HVCME in terms of exploration efficiency.

Figure 4c—CME-SSA: The CME-SSA method, with an exploration rate of 88%, signals
a slight dip in exploration efficiency when compared to HCETIIC and HVCME. However,
the performance remains commendable, given the ideal scenario conditions.

Figure 4d—CME-GWO: The CME-GWO method accomplished an exploration rate of
86%. This result reflects a gradual decrease in performance when compared to the other
methods within this scenario, yet it maintains a high standard of exploration efficiency.

Figure 4e—CME-MGO: Rounding out the scenario, the CME-MGO method achieved
an exploration rate of 83%. Although it scored the lowest among the five methods, it
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maintains a reasonable level of exploration efficiency within the controlled confines of this
uniform distribution scenario.

Figure 3. Uniform distribution. The figure illustrates robots with different colors: blue, pink, and
yellow. Each color represents a robot in a uniform initial configuration.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e)

Figure 4. Exploration rates of the different methods under a uniform distribution scenario.
(a) HCETIIC; (b) HVCME; (c) CME-SSA; (d) CME-GWO; (e) CME-MGO.

These findings offer an initial comparative understanding of the exploration efficien-
cies of the methods under study. It sets the stage for the forthcoming scenarios, which
will introduce varying starting positions and environmental complexities, thereby provid-
ing a comprehensive evaluation of the performance robustness and adaptability of the
HCETIIC method.

4.2. Scenario 2: Adaptability to Different Starting Positions

The second scenario adds another layer of complexity to the evaluation process,
maintaining the map layout identical to scenario 1 while incorporating variations in the
starting positions. This experimental design enables us to examine the robustness and
flexibility of the hybrid cheetah exploration technique with intelligent initial configuration
(HCETIIC) to adapt to changes in initial configurations and the ensuing effects on the
efficiency of exploration.

In this scenario, five distinct types of starting positions were investigated: strategic
positions, perimeter positions, random positions, clustered positions, and centralized
position. We visualized the exploration process associated with each of these configurations
in Figures 5–9, which comprises ten subfigures. Each pair of these subfigures offers a
snapshot of the robots’ initial placement and the ensuing exploration performance of
HCETIIC under that specific configuration.

Strategic Positions (Figure 5a,b): Strategic positions imply a calculated placement of
robots, designed to ensure broad coverage and minimal exploration time. Figure 5a shows
the strategic arrangement of robots at the beginning of the exploration. As a testament to
the efficacy of this approach, Figure 5b illustrates the remarkable exploration efficiency
of HCETIIC under this setup, recording an exceptional 99% exploration rate—the highest
among all the configurations tested in this scenario.
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(a)

(b)

Figure 5. Different starting positions and their corresponding HCETIIC values. (a) Strategic positions;
(b) Strategic positions HCETIIC 99%.

Perimeter Positions (Figure 6a,b): This arrangement positions the robots along the
boundary of the map, as depicted in Figure 6a. Despite the potential increased travel dis-
tance to reach the center of the map, HCETIIC demonstrated notable adaptability. Figure 6b
shows the exploration performance of HCETIIC under this configuration, achieving a com-
mendable 95% exploration efficiency.

(a) (b)

Figure 6. Different starting positions and their corresponding HCETIIC values. (a) Perimeter
positions; (b) Perimeter positions HCETIIC 95%.

Random Positions (Figure 7a,b): The challenge in this configuration lies in its inherent
unpredictability, with the robots placed at random points across the map (Figure 7a).
Nonetheless, HCETIIC effectively navigated through this uncertainty, as can be seen from
Figure 7b, which showcases an impressive exploration rate of 94%.
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(a) (b)

Figure 7. Different starting positions and their corresponding HCETIIC values. (a) Random positions;
(b) Random positions HCETIIC 94%.

Clustered Positions (Figure 8a,b): In this setup, the robots were grouped together
in a single cluster (Figure 8a), a placement that could potentially lead to overlapping
exploration paths and, consequently, reduced efficiency. However, the HCETIIC algorithm
maneuvered through this arrangement quite adeptly, achieving a solid exploration rate of
91%, as depicted in Figure 8b.

(a) (b)

Figure 8. Different starting positions and their corresponding HCETIIC values. (a) Clustered posi-
tions; (b) Clustered positions HCETIIC 91%.

Centralized Position (Figure 9a,b): The robots were initially positioned at a central
point within the map (Figure 9a), which could similarly result in overlapped exploration
paths and reduced efficiency. Yet, HCETIIC managed to maintain a respectable exploration
performance, securing an exploration rate of 89% (Figure 9b).

These results from scenario 2 substantiate the robustness and versatility of HCETIIC,
demonstrating its ability to adapt to and optimize its performance across diverse initial
configurations. Even under potential efficiency-compromising setups like clustered and
centralized position, HCETIIC displayed a notable capacity to manage and optimize the
exploration process. This scenario’s findings, hence, reinforce the potential of HCETIIC as a
formidable solution for multi-robot exploration tasks under varying initial configurations.
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(a) (b)

Figure 9. Different starting positions and their corresponding HCETIIC values. (a) Centralized
position; (b) Centralized position HCETIIC 89%.

4.3. Scenario 3: Exploration Performance under Complex Map Layouts

This scenario further broadens the testing spectrum of our multi-robot exploration
strategies, with an emphasis on their adaptability to intricate map layouts while maintaining
uniform initial robot positions. In a bid to imitate more realistic exploration tasks, the
chosen map layouts include various complexities, such as convoluted pathways, tight
corridors, and strategically positioned obstacles, creating a challenging environment for
exploration algorithms.

The initial uniform distribution of the robots, as illustrated in Figure 10, is kept
constant, enabling a clear comparison of the methods’ performances in differing map
structures. The consistent starting configuration mitigates any performance influence
originating from the initial placement of robots and ensures that the measured outcomes
are primarily driven by the exploration strategy and the adaptability of the respective
algorithms to the environment.

Figure 10. Uniform distribution.

The consequential impact of these environmental complexities on the exploration
techniques is illustrated in Figure 11, delineating the exploration efficiency of each method:
HCETIIC (Figure 11a), HVCME (Figure 11b), CME-SSA (Figure 11c), CME-GWO
(Figure 11d), and CME-MGO (Figure 11e).
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(a) (b)

(c) (d)

(e)

Figure 11. Exploration rates of the different methods under a complex map layout. (a) HCETIIC;
(b) HVCME; (c) CME-SSA; (d) CME-GWO; (e) CME-MGO.

In this challenging setup, HCETIIC exemplifies a remarkable resilience, securing an
exploration efficiency of 81% (Figure 11a), a testament to its robustness and adaptability
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to more intricate environments. This superior performance emphasizes the capability
of HCETIIC to effectively navigate through obstacles and coordinate robot actions for
efficient exploration.

The other methods demonstrated varying degrees of performance. HVCME, with
an exploration efficiency of 76% (Figure 11b), and CME-SSA, reaching 75% (Figure 11c),
were able to navigate the complex terrain with relative success. Conversely, CME-GWO
and CME-MGO encountered more challenges, achieving exploration efficiencies of 69%
(Figure 11d) and 63% (Figure 11e), respectively, demonstrating difficulties in maneuvering
through the elaborate map configurations.

These findings underscore the critical role of environmental context in multi-robot
exploration and the necessity for methods that can seamlessly adapt to varied and com-
plex scenarios. The strong performance of HCETIIC in this context further strengthens
its credibility as an effective and robust method for multi-robot exploration, capable of
handling complex environments while maintaining high exploration efficiency. This well-
rounded analysis further highlights the ability of HCETIIC to tackle both variations in
initial configuration and intricate environmental contexts, which is an essential quality for
any exploration method targeting real-world applications.

4.4. Scenario 4: Simultaneous Variation of Starting Positions and Map Layouts

The fourth and final scenario of our study presented a demanding test for the explo-
ration algorithms by simultaneously altering both the starting positions of the robots and
the configuration of the environment. This scenario aimed to assess the flexibility and
adaptability of the algorithms under variable and unpredictable conditions.

In order to showcase the diversity of starting positions and map layouts, this scenario
comprised five different initial configurations on a more complex map. The map layout
was characterized by an intricate array of corridors and obstacles, which required enhanced
strategic planning and coordination among the robots.

For the strategic positions configuration (Figure 12a), HCETIIC outperformed ex-
pectations by achieving an astounding exploration efficiency of 98% (Figure 12b). These
results underscored the advantage of using strategically informed positions for maximizing
exploration efficiency, even in the face of environmental complexity.

(a) (b)

Figure 12. The Strategic positions configuration on a complex map, along with the resultant high
exploration efficiency of 98% achieved by HCETIIC. (a) Strategic positions; (b) Strategic positions
HCETIIC 98%.

Similarly, HCETIIC demonstrated impressive performance with the perimeter po-
sitions configuration (Figure 13a), achieving a commendable 96% exploration efficiency
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(Figure 13b). This finding signifies the robustness of HCETIIC, its adaptability to different
initial configurations, and its ability to effectively navigate and explore the environment
despite the constraints.

(a) (b)

Figure 13. The perimeter positions configuration on a complex map and the impressive exploration
efficiency of 96% achieved by HCETIIC, demonstrating its robust adaptability. (a) Perimeter positions;
(b) Perimeter positions HCETIIC 96%.

When the robots were deployed in random positions (Figure 14a), HCETIIC still
demonstrated strong performance, achieving a 93% exploration efficiency (Figure 14b). This
result showcased the robustness of HCETIIC and its ability to handle unpredictability in
the initial placements, a characteristic that is immensely valuable in real-world applications
where the starting positions may not always be optimized.

(a) (b)

Figure 14. The random positions configuration on a complex map, with HCETIIC managing a strong
exploration efficiency of 93%, showcasing its robustness in handling unpredictable initial placements.
(a) Random positions; (b) Random positions HCETIIC 93%.

In contrast, the centralized position configuration (Figure 15a) saw a drop in explo-
ration efficiency to 68% (Figure 15b), reflecting the challenges associated with a more
concentrated starting position.
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(a) (b)

Figure 15. The centralized position configuration on a complex map. The figure illustrates the
decrease in exploration efficiency to 68% due to the challenges associated with a concentrated
starting position. (a) Centralized position; (b) Centralized position HCETIIC 68%.

Similarly, the clustered positions configuration (Figure 16a) saw HCETIIC navigating
and exploring only 62% of the map (Figure 16b), suggesting that the method struggled
with close-knit initial placements in a complex environment.

(a) (b)

Figure 16. The clustered positions configuration on a complex map. The figure highlights a further
decrease in efficiency to 62%, suggesting the method’s struggle with close-knit initial placements in a
complex environment. (a) Clustered positions; (b) Clustered positions HCETIIC 62%.

Taken together, these results illuminate the performance dynamics of the HCETIIC
algorithm across diverse and challenging conditions. The superior performance observed in
strategic, perimeter, and random positions substantiate HCETIIC’s versatility and efficiency,
while the lower efficiencies in centralized and clustered positions point towards areas that
may require further optimization in the algorithm.

In conclusion, scenario 4 provides a rigorous evaluation of the HCETIIC method’s
capabilities in a complex, dynamic exploration context. Despite facing challenges, the
algorithm’s performance remains high, proving its value as a formidable approach for
multi-robot exploration. Future improvements could further enhance its performance,
making it a truly adaptable and efficient solution for complex multi-robot exploration tasks.
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4.5. Results, Analysis, and Discussion

In the intricate process of assessing various algorithmic strategies for multi-robot
exploration systems, the present study deploys a meticulous and multifaceted analysis. The
findings, encapsulated across five distinct tables, probe into the exploration percentages,
time efficiency, occurrences of failure, and the statistical significance through p-values. Key
metrics, including the mean (average) and standard deviation, are utilized to illuminate
the performance attributes and reliability of these algorithms.

The empirical foundation of this research is buttressed by a methodological design
inspired by principles akin to the central limit theorem. To ensure the integrity and
robustness of the findings, the study was constructed around 30 runs for each algorithm,
with 250 iterations per run. Such a design aligns with statistical practices, ensuring a
normal-like distribution, thus validating the chosen sample size and iteration count as
fitting for this particular investigation. The cheetah optimizer (CO), with its inherently
stochastic nature, was employed, and the variability across runs serves to underscore the
methodological rigor.

An essential aspect of evaluating the efficiency of multi-robot exploration algorithms
is understanding their computational complexity. This metric provides insights into the
algorithm’s scalability and its feasibility for real-world applications, especially when rapid
decision making is crucial.

This precisely crafted research approach not only supplies a rich and diverse dataset
but also endows the conclusions with a level of reliability and precision that is in concert
with the analytical demands of top-tier scientific exploration. It is the harmonious blend of
methodological stringency, analytical depth, and empirical sophistication that situates the
present study at the forefront of contemporary research into algorithmic methodologies for
multi-robot exploration, a position commensurate with the sophistication of the cheetah
optimizer. Our results showcase the significance of initial configurations on the exploration
rate. However, it is essential to interpret these findings considering that in real-world
scenarios, multiple factors concurrently influence this rate.

4.5.1. Exploration Percentage

• Significance of using average and standard deviation (Table 1): The average explo-
ration percentage encapsulates the typical performance of each algorithm across
multiple runs, providing a central tendency. This indicator offers a straightforward
comparison of how well each algorithm covers the exploration space. The standard de-
viation, conversely, conveys the variability or dispersion from this average, presenting
an understanding of the stability or inconsistency within the algorithm’s performance.

• Analysis by scenario

1. Scenario 1: HCETIIC exhibits supremacy both in average exploration and stabil-
ity, denoted by its highest mean and lowest standard deviation. CME-MGO lags
in exploration and displays higher volatility.

2. Scenario 3: All algorithms demonstrate a decrease in exploration percentage,
reflecting the complexity of the scenario. However, HCETIIC maintains the lead,
indicating its adaptability to varying conditions.

Table 1. Explored area in the uniform distribution scenario.

Scenario No HCETIIC HVCME CME-SSA CME-GWO CME-MGO
ave std ave std ave std ave std ave std

1 92.21 2.19 89.12 5.15 87.87 5.79 85.78 7.04 81.80 10.83
3 81.86 4.20 72.43 7.67 63.00 3.33 65.61 6.27 62.83 8.16
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4.5.2. Time Efficiency

• Significance of using average and standard deviation (Table 2): The average time taken
encapsulates the computational efficiency of each algorithm, reflecting how quickly
they can execute. A lower average time suggests a more efficient algorithm in terms
of computational complexity. The standard deviation, paralleling the exploration
analysis, indicates the reliability of this efficiency across multiple runs.

• Analysis by scenario—scenarios 1 and 3 (Table 2): HCETIIC consistently demonstrates
superior time efficiency, suggesting its potential for applications requiring rapid
responses. CME-MGO, conversely, is less time-efficient, particularly in scenario 3,
showing sensitivity to the environment’s complexity.

Table 2. Explored area per second.

Scenario No HCETIIC HVCME CME-SSA CME-GWO CME-MGO
ave std ave std ave std ave std ave std

1 23.73 0.35 26.02 0.83 25.67 0.47 26.94 0.84 27.92 0.57
3 23.60 0.39 27.02 0.54 26.24 0.39 26.31 0.46 28.33 0.32

4.5.3. Failure Analysis

• Failure rates offer insight into the algorithms’ robustness, reflecting their ability to
handle obstacles and unexpected situations (Table 3). Higher failure rates may suggest
a need for further refinement to increase dependability.

• Analysis by scenario—scenarios 1 and 3 (Table 3): HCETIIC exhibits flawless perfor-
mance, while CME-GWO and CME-MGO display higher failure rates, highlighting
the importance of algorithmic resilience.

Table 3. Failed to continue.

Scenario No HCETIIC HVCME CME-SSA CME-GWO CME-MGO

1 0 1 0 7 8
3 0 2 1 22 31

4.5.4. Percentage of Explored Area

• Analysis by scenario

1. Scenario 2 (Table 4): Strategic positions leads, with an efficient average percentage
of explored area of 99.55%. The uniform, perimeter, random, and clustered
positions have shown effectiveness, with percentages ranging from 90.22% to
96.07%. The centralized position showed an average explored area of 90.22%,
which may be effective in different environments or specific use cases.

2. Scenario 4 (Table 4): Strategic positions maintains a leading position with 97.93%.
For the uniform, perimeter, random, and clustered positions the performance
varies, but can be seen as adaptive to different environmental needs, with per-
centages ranging from 69.36% to 97.06%. For the centralized position, 76.07%
was explored, indicating potential effectiveness in specialized or contrasting
environments.

Table 4. Percentage of explored area.

Scenario No Strategic Uniform Perimeter Random Clustered Centralized
Positions Positions Positions Positions Positions Positions

ave std ave std ave std ave std ave std ave std

2 99.55 2.99 92.21 2.19 96.07 3.15 93.49 5.70 92.82 2.54 90.22 3.37
4 97.93 2.30 81.86 4.20 97.06 4.44 94.67 6.46 69.36 6.32 76.07 7.99
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The table illustrates the effectiveness of different exploration strategies across various
scenarios. “Strategic positions” consistently stands out, demonstrating the efficiency of the
proposed method.

The other positions, including “centralized”, show diverse performances, which could
mean they are adaptable and effective in different or specialized environments. The insights
derived from this table may guide future research in tailoring exploration strategies to
specific scenarios.

4.5.5. Exploration Repetition Rate

• Significance of using average and standard deviation (Table 5): The exploration rep-
etition rate is a measure of the efficiency of an exploration algorithm. A lower rate
indicates that the robots are exploring new areas more often, while a higher rate sug-
gests potential redundancies in the exploration paths. Furthermore, a higher repetition
rate might imply increased computational demands, as robots would need to process
redundant paths and make more decisions. The average repetition rate provides a
central point of comparison, and the standard deviation reveals the consistency of this
metric across multiple runs.

• Analysis by scenario:

1. Scenario 1 (Table 5): HCETIIC, with its optimized coordination strategies, shows
a minimized repetition rate, thus indicating its robustness in preventing over-
lapping paths. In contrast, CME-MGO has a higher repetition rate, signaling
possible inefficiencies in multi-robot coordination.

2. Scenario 3 (Table 5): With the increased complexity, the repetition rate generally
rises for most algorithms. However, HCETIIC still manages to maintain a com-
paratively lower repetition rate, showing its scalability and efficiency in diverse
environments.

3. Research frontiers and future prospects: The variability in exploration repetition
rates across algorithms, especially in intricate scenarios, unveil an intriguing
lacuna warranting comprehensive exploration. In the present endeavor, we limit
our study to a single-objective multi-agent perspective. However, transitioning
to a multi-objective multi-agent paradigm might offer a holistic and nuanced
understanding, thereby emerging as a propitious avenue for future scholarly
pursuits. Delving into this domain might not only proffer optimized exploration
outcomes but also bolster the horizons of multi-agent robotic research, rendering
it an enticing prospect for academic communities.

Table 5. Exploration repetition rate.

Scenario No HCETIIC HVCME CME-SSA CME-GWO CME-MGO
ave std ave std ave std ave std ave std

1 3.56 0.32 4.65 1.51 4.27 0.46 6.21 2.75 5.42 2.67
3 4.84 0.89 6.01 0.88 5.68 1.58 6.97 1.71 7.12 2.76

4.5.6. p-Value Analysis

In the analytical realm of independent multi-robot exploration, this study introduces
an innovative technique known as HCETIIC, designed to function effectively across diverse
environmental complexities. By undertaking an interdisciplinary approach that harmonizes
qualitative insights with rigorous quantitative evaluations, the research elucidates the
facets of spatial exploration. The dual metrics of average and standard deviation have been
purposefully deployed to gauge the extent of the area explored and to compare the stability
of the proposed method against similar techniques (refer to Tables 6 and 7).

Moreover, this research enlists a nuanced statistical framework, utilizing the Wilcoxon
rank-sum test to dissect individual runs and discern underlying patterns. The ensuing
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analysis is guided by two pivotal hypotheses: H0, which postulates the HCETIIC tech-
nique’s potential inferiority in exploration rate and time utilization, and H1, which asserts
its superiority.

The outcomes reflected in Tables 6 and 7 present compelling evidence to challenge
the null hypothesis, with p-values manifestly below the threshold of 0.05. These findings
are further consolidated by the meticulous pairing and comparison of the best-performing
methods across various test functions.

• Statistical significance—p-values of exploration (Table 6):

1. Importance of p-values: These values provide statistical proof of the significance
of the exploration data, with lower p-values indicating a stronger rejection of the
null hypothesis.

2. Insights: The results across the scenarios validate the statistically significant
differences among the algorithms, with extremely low p-values for CME-SSA,
CME-GWO, and CME-MGO.

Table 6. p-values obtained from the rank-sum test for the results of the exploration data.

Scenario No HCETIIC HVCME CME-SSA CME-GWO CME-MGO

1 N/A 0.0191 4.22 × 10−4 9.06 × 10−8 1.69 × 10−5

3 N/A 5.61 × 10−5 5.49 × 10−11 3.20 × 10−9 1.63 × 10−8

• Statistical Significance: p-values for Time (Table 7)

1. Importance: The p-values for time give a statistical comparison of the efficiency
of different algorithms.

2. Statistically significant differences in exploration data and time efficiency can
hint at underlying computational complexities. Algorithms that consistently
perform better might be more optimized in terms of computational demands.

3. Insights: Low p-values across the board highlight significant differences in time
efficiency among the algorithms.

Table 7. Scenario No: p-valuesSize and Design of Robots: The use of Turtlebot 3, given its specific
size and design specifications, might not be representative of larger or differently structured robots.
The behaviors and results observed might vary if a different robot design is employed obtained from
the rank-sum test for the results for time.

Scenario No HCETIIC HVCME CME-SSA CME-GWO CME-MGO

1 N/A 3.69 × 10−11 7.39 × 10−11 3.02 × 10−11 2.90 × 10−11

3 N/A 2.92 × 10−11 5.57 × 10−10 3.12 × 10−11 3.32 × 10−11

In conclusion, the relentless consistency in methodological execution across the length
and breadth of this paper not only validates its analytical integrity but also manifests the
credibility of the insights. The judicious juxtaposition of qualitative finesse and quantitative
precision casts the study in an authoritative light, delivering a decisive contribution to the
field of multi-robot exploration.

4.5.7. Real-World Deployment of Laser-Guided Navigation Using MATLAB and ROS for
Turtlebot Robots

In this research, we introduced an advanced technique utilizing MATLAB’s robotic
system and navigation toolboxes, with all simulations conducted digitally. For tangible
real-world deployments, the Turtlebot 3 [69] which typically measures 138 mm in diameter
and 98 mm in height, provides a practical platform. This compact size allows for efficient
maneuverability in varied environments. Paired with the Hokuyo laser range scanner [70]
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it ensures precise navigation. Leveraging a powerful computing device like a tablet or
laptop with the robotic system toolbox enables a fluid connection between MATLAB and
the robot’s operating system (ROS) [71]. This arrangement allows sensor data, covering a
visual span of 240 to 360 degrees, to be sent to MATLAB. The data are then processed by the
HCETIIC algorithm to determine the robot’s movements. Importantly, our system operates
without external noise filters, meaning it directly uses raw data. Potential noise, though
unquantified, has shown minimal impact on the robot’s performance in our tests. Maintain-
ing robust Wi-Fi connectivity is paramount to ensuring consistent communication between
the robot and the computing device, especially in expansive indoor areas targeted for
exploration. Current frameworks address observational inaccuracies in the robot, ensuring
timely convergence while accounting for external disturbances and uncertainties [72].

4.5.8. Limitations of the Study

In our pursuit of an algorithmic exploration of multi-robot systems, certain limitations
became evident:

1. Simulation-Based Results: While our research utilized MATLAB’s robotic system
and navigation toolboxes, all simulations were conducted digitally. Real-world de-
ployments may present unpredictable challenges not captured in the simulated envi-
ronments.

2. Size and Design of Robots: The use of Turtlebot 3, given its specific size and design
specifications, might not be representative of larger or differently structured robots.
The behaviors and results observed might vary if a different robot design is employed.

3. Influence of Initial Configurations: Our results underline the significance of initial
configurations on the exploration rate. In practical, real-world scenarios, there are
numerous factors that might influence this rate simultaneously, which our study may
not fully encompass.

4. Single-Objective Perspective: The current study is bounded within a single-objective
multi-agent framework. Transitioning to a multi-objective multi-agent paradigm
could pave the way for a more encompassing and nuanced understanding of explo-
ration algorithms.

5. Dynamic Environments: Real-world scenarios frequently present dynamic environ-
ments with unpredictable changes. The current study does not extensively address
dynamic environmental changes, which can impact the exploration rate and efficiency
significantly.

6. Exploration Repetition Rates: Variances in exploration repetition rates, especially in
intricate scenarios, hint at potential gaps in our understanding that could impact the
efficiency and performance of exploration algorithms.

These limitations, while inherent in the current scope of our research, also serve as
potential avenues for further investigation and enhancement in subsequent studies.

5. Conclusions

This research has embarked on an unprecedented exploration into the often underval-
ued facet of multi-robot exploration: the influence of initial start positions. By introducing
the hybrid cheetah exploration technique with intelligent initial configuration (HCETIIC),
we have elucidated a transformative strategy for optimizing exploration efficiency across
varying configurations including uniform distribution, centralized position, random posi-
tions, perimeter positions, clustered positions, and strategic positions.

The empirical findings reveal a clear and consistent pattern: the proposed HCETIIC
method not only stands out in efficiency but also showcases adaptability across different
start positions. The strategic position, as manifested through our analysis, offers a particular
testament to the robustness of this approach.

Performance measures, such as runtime, the percentage of explored area, and failure
rate, were meticulously evaluated to engage in a thorough comparative analysis with
four other prominent hybrid methods. The results accentuate the significant potential
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of HCETIIC in enhancing efficiency in multi-robot exploration tasks across various real-
world scenarios.

In addition to the exploration efficiencies and strategies discussed, this study un-
derscores the importance of computational complexity in multi-robot exploration. As
the field advances, balancing exploration efficiency with computational demands will
be paramount.

The implications of this research are far-reaching. It underscores the critical role
of initial robot configuration, a component that has often been overlooked in the field.
By considering this variable, the study paves the way for new avenues in multi-robot
exploration, encompassing both theoretical advances and practical applications.

As we gaze into the future, the canvas of potential research avenues is expansive.
Integrating intricate environmental dynamics, tailoring HCETIIC to a broader spectrum
of robotic tasks, and delving into the interplay of metaheuristic algorithms and robot
configurations stand out as promising directions. Furthermore, assessing HCETIIC’s
scalability across varied indoor and outdoor map dimensions offers a nuanced perspective
on its universal applicability.

In conclusion, this research signifies a significant stride in multi-robot exploration,
bridging a vital gap in the understanding of how initial configurations influence overall
efficiency. The hybrid cheetah exploration technique with intelligent initial configuration
(HCETIIC) emerges not merely as a novel strategy but as a beacon for future endeavors,
illuminating the path towards a more nuanced, responsive, and effective multi-robot
exploration paradigm. The lessons learned here contribute to the broader discourse on
artificial intelligence, robotics, and optimization, reinforcing our collective pursuit of
innovation and excellence.
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