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Abstract: Minimax fractional semi-infinite programming is an important research direction for semi-
infinite programming, and has a wide range of applications, such as military allocation problems,
economic theory, cooperative games, and other fields. Convexity theory plays a key role in many
aspects of mathematical programming and is the foundation of mathematical programming research.
The relevant theories of semi-infinite programming based on different types of convex functions have
their own applicable scope and limitations. It is of great value to study semi-infinite programming on
the basis of more generalized convex functions and obtain more general results. In this paper, we de-
fined a new type of generalized convex function, based on the concept of the K−directional derivative,
that is, uniform (BK , ρ)−invex, strictly uniform (BK , ρ)−invex, uniform (BK , ρ)−pseudoinvex, strictly
uniform (BK , ρ)−pseudoinvex, uniform (BK , ρ)−quasiinvex and weakly uniform (BK , ρ)−quasiinvex
function. Then, we studied a class of non-smooth minimax fractional semi-infinite programming
problems involving this generalized convexity and obtained sufficient optimality conditions.

Keywords: non-smooth programming; fractional semi-infinite programming; K−directional
derivative; uniform (BK,ρ)−invexity; optimality conditions
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1. Introduction
1.1. Background

Semi-infinite programming is an optimization problem with finite decision variables
and infinite constraints. Its mathematical model is

(SIP) min f (x)

s.t.g(x, y) ≤ 0, y ∈ Y

where f : Rn → R, g : Rn × Rm → R, Y is a non-empty bounded closed set in Rm.
The study of semi-infinite programming can be traced back to 1924, when Haar [1] first

considered linear systems with infinite constraints in the study of Chebyshev approxima-
tion, that is, linear semi-infinite programming, which was then called "Haar" programming.
Later, John [2] also mentioned optimization problems with infinite constraints when study-
ing Fritz John conditions. In 1962, Charnes, Cooper, and Kortanek [3] put forward this type
of problem and called it "semi-infinite programming", which marked semi-infinite program-
ming becoming one of the independent research branches of mathematical programming.
Semi-infinite programming arises in some engineering problems, such as robot trajectory
planning [4], vibrating membranes [5], and air pollution control [6]. Once proposed, it
attracted extensive attention from many scholars and became a research hotspot. Minimax
fraction semi-infinite programming is an important research direction for semi-infinite
programming, and is widely used in engineering design, information technology, optimal
control, cooperative games, and other fields.
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1.2. The Related Work

Convexity plays an important role in optimization theory because it is the basis for
studying the optimization, duality, and other related theories of various programming
problems. Based on convexity assumptions, mathematical programming problems can
be solved efficiently. To weaken the convexity assumption, various generalized convex
functions have been introduced. Hanson introduced the invex function [7]. Bector and
Singh presented the b−convex function [8]. Hanson defined the F−convex function [9].
Vial introduced the ρ−convex function [10]. Preda introduced the (F, ρ)−convex function
as an extension of the F−convex function and the ρ−convex function [11]. Liang, Huang,
and Pardalos introduced (F, α, ρ, d)−convexity [12]. Yuan, Liu, Chinchuluun, and Parda-
los defined (C, α, ρ, d)−convexity, which is a generalization of (F, α, ρ, d)−convexity [13].
Antczak defined the (Φ, ρ)−invex and (Φ, ρ)−V−invex function [14,15]. Yang defined the
K− (Fb, ρ)−convex function and established duality results for multi-objective semi-infinite
programming involving the generalized convexity assumptions [16].

On the basis of various convexity assumptions, many scholars have studied the opti-
mality and duality of semi-infinite programming with different convexity and obtained
a series of research results. Ruckman and Shapiro established the first-order optimality
conditions for generalized convex semi-infinite programming [17]. Kim and Lee obtained
the optimality of non-smooth Lipschitz optimization problems [18]. Kuk, Lee, and Tanino
studied the optimality and duality for non-smooth multi-objective fractional programming
with generalized invexity [19]. Nader obtained the necessary conditions for the optimality
of non-smooth semi-infinite programs [20]. Liu and Wu derived the sufficient optimality
conditions for minmax fractional programming in the framework of the (F, ρ)−convex
function and invex function [21,22]. Mishra discussed the duality of non-differentiable min-
imax fractional programming involving generalized α−uniform convexity [23]. Vazquez,
Ruckman, and Werner studied the saddle points of non-convex semi-infinite programs [24].
Mordukhovich, Boris, and Nghia discussed the application of non-smooth cone-constrained
optimization [25]. Mishra and Jaiswal discussed the optimality conditions and duality
for non-differentiable multi-objective semi-infinite programming problems with general-
ized (C, α, ρ, d)−convexity [26]. Yang, Chen, and Zhou studied the optimality conditions
for semi-infinite and generalized semi-infinite programs via lower-order exact penalty
functions [27]. Liu and Goberna presented asymptotic optimality conditions for linear
semi-infinite programming [28]. Mishra, Singh, and Verma discussed the saddle point
criteria in non-smooth semi-infinite minimax fractional programming problems [29]. Fan
and Qin studied the stability of generalized semi-infinite optimization problems under
functional perturbation [30].

1.3. Our Contributions

Many scholars have studied the problem of semi-infinite programming in which
both the objective function and the constraint function are differentiable. However, for
some practical problems, such as flood discharge from a water dam, or multi-input-multi-
output control system and seismic structure design, the situation that the objective function
or constraint function is not differentiable will be involved. However, it is impossible
to study this kind of semi-infinite programming problem only via a set of theories in
the differentiable case. Therefore, it is necessary to do special research on non-smooth
semi-infinite programming.

As mentioned above, many scholars have studied the optimality theory and duality
results of non-smooth semi-infinite programming involving different convexity, and have
achieved results. Unfortunately, these research results have their own limitations and scope
of application and a lack of systematization. Therefore, it is necessary to define a new type
of non-smooth generalized convex functions, which makes some existing convex functions
its special cases. Based on the newly defined non-smooth generalized convex function, the
results for the optimality, duality, and other related theories of semi-infinite programming
involving such convexity are more general and valuable.
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In the present paper, we define a new type of convexity based on the concept of the
K−directional derivative and obtained sufficient optimality conditions for non-smooth
minimax fractional semi-infinite programming involving uniform (BK, ρ)−invexity. Com-
pared with the results in [21,22], the optimality conditions of non-smooth minimax fraction
semi-infinite programming in this paper are more general, because the new generalized
convex functions defined in this paper are a generalization of many existing convex func-
tions, such as the b−convex function, invex function, (F, ρ)−convex function, etc. The
research is helpful for enriching the relevant theories of non-smooth fractional semi-infinite
programming.

1.4. Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we first introduced the
notions of local cone approximation and the K−directional derivative. Then, we defined
a new type of generalized convex function based on the concept of the K−directional
derivative that is used in this paper, that is, the uniform (BK, ρ)−invex, strictly uniform
(BK, ρ)−invex, uniform (BK, ρ)−pseudoinvex, strictly uniform (BK, ρ)−pseudoinvex, uni-
form (BK, ρ)−quasiinvex, and weakly uniform (BK, ρ)−quasiinvex functions. In Section 3,
we study a class of non-smooth minimax fractional semi-infinite programming involving
the generalized convexities defined in Section 2 and obtain sufficient optimality conditions.
Finally, we conclude this paper in Section 4.

2. Definitions and Preliminaries

Let us, first, recall the definition of local cone approximation and the K−directional
derivative, which will be needed subsequently.

Definition 1 ([31]). Let X = [X, τ] be a local convex Hausdorff space. A mapping K : 2X × X → 2X

is called a local cone approximation if a cone K[M, x] is associated with each set M ∈ 2X and each
x ∈ X such that

(i) K(M− x, 0) = K(M, x).
(ii) K(M ∩U, x) = K(M, x), ∀U ∈ N(x), where N(x) is a system of neighborhoods of x.
(iii) K(M, x) = X, ∀x ∈ intM, where intM is the interior of the set M.
(iv) K(M, x) = ∅, ∀x /∈ M.
(v) K(ϕ(M), ϕ(x)) = ϕ(K(M, x)), where ϕ : X → X is any linear homeomorphism.
(vi) 0+M ⊂ 0+K(M, x), where 0+M is Rockafellar’s recession cone of M.

Definition 2 ([31]). Let K(·, ·) be a local cone approximation, the function f K(x, ·) : X → R with

f K(x; y) := inf{ξ ∈ R|(y, ξ) ∈ K(epi f , (x, f (x)), y ∈ Rn)}

is called K−directional derivative of f at x.

In order to study the optimality of minimax fraction semi-infinite programming in
Section 3, we will use the following important concepts. Throughout this paper, we suppose
that C ⊂ Rn is a non-empty set, f K(x, ·) : C → R is the K−directional derivative of f at
x0 ∈ C, b : C× C× [0, 1]→ R+, φ : R→ R, lim

λ→0+
b(x, x0; λ) = b(x, x0), η : C× C → Rn,

ρ ∈ R, θ : C× C → Rn. Elster and Thierfelder defined the K−directional derivative and
the K−subdifferential and pointed out that the K−subdifferential is the most generalized.
Using the K−directional derivative introduced in [31], some new generalized convex
functions are defined as follows:

Definition 3. The function f : C → R is said to be uniform (BK, ρ)−invex at x0 ∈ C, if for any
x ∈ C, there exist b, φ, η, θ and ρ, such that

b(x, x0)φ[ f (x)− f (x0)] ≥ f K(x0; η(x, x0)) + ρ‖θ(x, x0)‖2.
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Definition 4. The function f : C → R is said to be strictly uniform (BK, ρ)−invex at x0 ∈ C, if
for any x ∈ C and x 6= x0, there exist b, φ, η, θ and ρ, such that

b(x, x0)φ[ f (x)− f (x0)] > f K(x0; η(x, x0)) + ρ‖θ(x, x0)‖2.

Definition 5. The function f : C → R is said to be uniform (BK, ρ)−pseudoinvex at x0 ∈ C, if
for any x ∈ C, there exist b, φ, η, θ and ρ, such that

b(x, x0)φ[ f (x)− f (x0)] < 0⇒ f K(x0; η(x, x0)) + ρ‖θ(x, x0)‖2 < 0.

Definition 6. The function f : C → R is said to be strictly uniform (BK, ρ)− pseudoinvex at
x0 ∈ C, if for any x ∈ C and x 6= x0, there exist b, φ, η, θ and ρ, such that

b(x, x0)φ[ f (x)− f (x0)] ≤ 0⇒ f K(x0; η(x, x0)) + ρ‖θ(x, x0)‖2 < 0.

Definition 7. The function f : C → R is said to be uniform (BK, ρ)−quasiinvex at x0 ∈ C, if for
any x ∈ C, there exist b, φ, η, θ and ρ, such that

b(x, x0)φ[ f (x)− f (x0)] ≤ 0⇒ f K(x0; η(x, x0)) + ρ‖θ(x, x0)‖2 ≤ 0.

Definition 8. The function f : C → R is said to be weakly uniform (BK, ρ)− quasiinvex at
x0 ∈ C, if for any x ∈ C, there exist b, φ, η, θ and ρ, such that

b(x, x0)φ[ f (x)− f (x0)] < 0⇒ f K(x0; η(x, x0)) + ρ‖θ(x, x0)‖2 ≤ 0.

Remark 1. The uniform (BK, ρ)− invexity defined on the basis of K−directional derivatives is a
kind of non-smooth generalized convex function, and many generalized convex functions are its
special cases, such as b−convexity, F−convex function, ρ−convex function, (F, ρ)−convexity, etc.

3. Sufficient Optimality Conditions

We consider the following minimax fractional semi-infinite programming problem:

(SIFP)

 minF(x) = sup
y∈Y

f (x,y)
h(x,y) ,

s.t.g(x, u) ≤ 0, u ∈ U, x ∈ X.

where X 6= ∅ is an open subset of Rn, Y is a compact subset of Rm. f (·, ·) : X×Y → R,
h(·, ·) : X×Y → R, f (x, ·), h(x, ·) are continuous on Y for every x ∈ X, g : X×Y → R,
U ⊂ R is an infinite index set. f (x, y) ≥ 0 and h(x, y) > 0 for each (x, y) ∈ X×Y.

The feasible set of (SIFP) is denoted by X0, i.e.,

X0 = {x|g(x, u) ≤ 0, u ∈ U, x ∈ X}.

We let
∆ =

{
i
∣∣∣g(x, ui) ≤ 0, x ∈ X, ui ∈ U

}
,

I(x0) =
{

i
∣∣∣g(x0, ui) = 0, x0 ∈ X, ui ∈ U

}
,

U∗ =
{

ui ∈ U
∣∣∣g(x, ui) ≤ 0, x ∈ X, i ∈ ∆

}
is a countable subset of U,
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Λ =
{

µj
∣∣µj ≥ 0, j ∈ ∆, there is only finite µj such that µj > 0

}
,

Y(x) =

{
y ∈ Y

∣∣∣∣∣ f (x, y)
h(x, y)

= sup
z∈Y

f (x, z)
h(x, z)

}
,

Q = {(s, λ, y) ∈ N × Rs
+ × Rms|1 ≤ s ≤ n + 1, λ = (λ1, λ2, · · · , λs) ∈ Rs

+}

with
s

∑
i=1

λi = 1, and y = (y1, y2, · · · , ys) with yi ∈ Y(x), i = 1, 2, · · · , s
}

.

As Y is compact and f (x, ·) and h(x, ·) are continuous on Y, it is obviously that Y(x)
is a non-empty compact subset of Y for each x ∈ X. For any yi ∈ Y(x0), we let q∗ = f (x0,yi)

h(x0,yi)
,

which is always a constant.

Definition 9. A point x∗ ⊂ X0 is called an optimal solution for (SIFP), for any x ⊂ X0such that

sup
y∈Y

f (x∗, y)
h(x∗, y)

≤ sup
y∈Y

f (x, y)
h(x, y)

.

Theorem 1. Assume that x∗ ∈ X0, if for any x ∈ X0, there exist (s∗, λ∗, y) ∈ Q, q∗ ∈ R+,
µ∗j ∈ Λ, j ∈ ∆ and b1, φ1, b2, φ2, η, θ, ρ∗ ∈ Rs∗ , τ∗ ∈ R(∆), such that

(i) For any yi ∈ Y(x∗), ( f − q∗h)(·, yi) is uniform (BK, ρ∗i )− invex at x∗ with respect to b1
and φ1, i = 1, 2, · · · , s∗;

(ii) For any uj ∈ U∗, g(·, uj) is uniform (BK, τ∗j )−invex at x∗ with respect to b2 and φ2,
j ∈ I(x∗);

(iii)
s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) ≥ 0, ∀uj ∈ U∗, j ∈ ∆;

(iv) f (x∗, yi)− q∗h(x∗, yi) = 0, i = 1, 2, · · · , s∗;
(v) µ∗j g(x∗, uj) = 0, ∀uj ∈ U∗, j ∈ ∆;
(vi) α < 0⇒ φ1(α) < 0, α ≤ 0⇒ φ2(α) ≤ 0, b1(x, x∗) > 0, b2(x, x∗) ≥ 0;

(vii)
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

Then x∗ is an optimal solution of (SIFP).

Proof. If we suppose that x∗ is not an optimal solution of (SIFP), then there exists x ∈ X0,
such that

sup
y∈Y

f (x, y)
h(x, y)

< sup
y∈Y

f (x∗, y)
h(x∗, y)

.

We observe that

sup
y∈Y

f (x∗, y)
h(x∗, y)

=
f (x∗, yi)

h(x∗, yi)
= q∗, ∀yi ∈ Y(x∗), i = 1, 2, · · · , s∗.

Because
f (x, yi)

h(x, yi)
≤ sup

y∈Y

f (x, y)
h(x, y)

,

we thus have
f (x, yi)

h(x, yi)
< q∗, i = 1, 2, · · · , s∗.
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That is,
f (x, yi)− q∗h(x, yi) < 0, i = 1, 2, · · · , s∗.

By (iv), we have

f (x, yi)− q∗h(x, yi) < 0 = f (x∗, yi)− q∗h(x∗, yi), i = 1, 2, · · · , s∗.

By (vi), we get

b1(x, x∗)φ1[( f (x, yi)− q∗h(x, yi))− ( f (x∗, yi)− q∗h(x∗, yi))] < 0.

By (i), we have
( f − q∗h)K

x (x∗, yi; η(x, x∗)) + ρ∗i ‖θ(x, x∗)‖2 < 0.

As λ∗i ≥ 0 and
s∗

∑
i=1

λ∗i = 1, we have

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) +

s∗

∑
i=1

λ∗i ρ∗i ‖θ(x, x∗)‖2 < 0. (1)

Observing that g(x, uj) ≤ 0 = g(x∗, uj), ∀uj ∈ U∗, j ∈ I(x∗), we have

g(x, uj)− g(x∗, uj) ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By (vi), we can obtain

b2(x, x∗)φ2[g(x, uj)− g(x∗, uj)] ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By (ii), we get

gK
x (x∗, uj; η(x, x∗)) + τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

As µ∗j ∈ Λ, j ∈ I(x∗), we have

∑
j∈I(x∗)

µ∗j gK
x (x∗, uj; η(x, x∗)) + ∑

j∈I(x∗)
µ∗j τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By hypothesis (v), we known that as j ∈ ∆\I(x∗), µ∗j = 0 always holds for any uj ∈ U∗.
This implies that

∑
j∈∆

µ∗j gK
x (x∗, uj; η(x, x∗)) + ∑

j∈∆
µ∗j τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ ∆. (2)

Adding (1) and (2), we can obtain

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗))

+(
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j )‖θ(x, x∗)‖2 < 0, ∀uj ∈ U∗, j ∈ ∆.

By (vii), we have
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.
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So,

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) < 0, ∀uj ∈ U∗, j ∈ ∆. (3)

which contradicts (iii). Therefore, x∗ is an optimal solution for (SIFP). �

Theorem 2. Assume that x∗ ∈ X0, if for any x ∈ X0, there exist (s∗, λ∗, y) ∈ Q, q∗ ∈ R+,
µ∗j ∈ Λ, j ∈ ∆ and b1, φ1, b2, φ2, η, θ, ρ∗ ∈ Rs∗ , τ∗ ∈ R(∆), such that

(i) For any yi ∈ Y(x∗), ( f − q∗h)(·, yi) is uniform (BK, ρ∗i )−pseudoinvex at x∗ with respect to
b1 and φ1, i = 1, 2, · · · , s∗;

(ii) For any uj ∈ U∗, g(·, uj) is uniform (BK, τ∗j )−quasiinvex at x∗ with respect to b2 and φ2,
j ∈ I(x∗);

(iii)
s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) ≥ 0, ∀uj ∈ U∗, j ∈ ∆;

(iv) f (x∗, yi)− q∗h(x∗, yi) = 0, i = 1, 2, · · · , s∗;
(v) µ∗j g(x∗, uj) = 0, ∀uj ∈ U∗, j ∈ ∆;
(vi) α < 0⇒ φ1(α) < 0, α ≤ 0⇒ φ2(α) ≤ 0, b1(x, x∗) > 0, b2(x, x∗) ≥ 0;

(vii)
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

Then x∗ is an optimal solution of (SIFP).

Proof. If we suppose that x∗ is not an optimal solution of (SIFP), then there exists x ∈ X0,
such that

sup
y∈Y

f (x, y)
h(x, y)

< sup
y∈Y

f (x∗, y)
h(x∗, y)

.

We observe that

sup
y∈Y

f (x∗, y)
h(x∗, y)

=
f (x∗, yi)

h(x∗, yi)
= q∗, ∀yi ∈ Y(x∗), i = 1, 2, · · · , s∗.

Because
f (x, yi)

h(x, yi)
≤ sup

y∈Y

f (x, y)
h(x, y)

,

we thus have
f (x, yi)

h(x, yi)
< q∗, i = 1, 2, · · · , s∗.

That is,
f (x, yi)− q∗h(x, yi) < 0, i = 1, 2, · · · , s∗.

By (iv), we have

f (x, yi)− q∗h(x, yi) < 0 = f (x∗, yi)− q∗h(x∗, yi), i = 1, 2, · · · , s∗.

By (vi), we get

b1(x, x∗)φ1[( f (x, yi)− q∗h(x, yi))− ( f (x∗, yi)− q∗h(x∗, yi))] < 0.

By (i), we have
( f − q∗h)K

x (x∗, yi; η(x, x∗)) + ρ∗i ‖θ(x, x∗)‖2 < 0.
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As λ∗i ≥ 0 and
s∗

∑
i=1

λ∗i = 1, we have

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) +

s∗

∑
i=1

λ∗i ρ∗i ‖θ(x, x∗)‖2 < 0. (4)

We observe that g(x, uj) ≤ 0 = g(x∗, uj), ∀uj ∈ U∗, j ∈ I(x∗), we have

g(x, uj)− g(x∗, uj) ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By (vi), we can obtain

b2(x, x∗)φ2[g(x, uj)− g(x∗, uj)] ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By (ii), we get

gK
x (x∗, uj; η(x, x∗)) + τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

As µ∗j ∈ Λ, j ∈ I(x∗), we have

∑
j∈I(x∗)

µ∗j gK
x (x∗, uj; η(x, x∗)) + ∑

j∈I(x∗)
µ∗j τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By hypothesis (v), we known that as j ∈ ∆\I(x∗), µ∗j = 0 always holds for any uj ∈ U∗.
This implies that

∑
j∈∆

µ∗j gK
x (x∗, uj; η(x, x∗)) + ∑

j∈∆
µ∗j τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ ∆. (5)

Adding (4) and (5), we can obtain

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗))

+(
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j )‖θ(x, x∗)‖2 < 0, ∀uj ∈ U∗, j ∈ ∆.

By (vii), we have
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

So,

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) < 0, ∀uj ∈ U∗, j ∈ ∆. (6)

which contradicts (iii). Therefore, x∗ is an optimal solution for (SIFP). �

Theorem 3. Assume that x∗ ∈ X0, if for any x ∈ X0, there exist (s∗, λ∗, y) ∈ Q, q∗ ∈ R+,
µ∗j ∈ Λ, j ∈ ∆ and b1, φ1, b2, φ2, η, θ, ρ∗ ∈ Rs∗ , τ∗ ∈ R(∆), such that

(i) For any yi ∈ Y(x∗), ( f − q∗h)(·, yi) is uniform (BK, ρ∗i )− in vex at x∗ with respect to b1
and φ1, i = 1, 2, · · · , s∗;

(ii) For any uj ∈ U∗, g(·, uj) isuniform (BK, τ∗j )− quasiinvex at x∗ with respect to b2 and φ2,
j ∈ I(x∗);



Mathematics 2023, 11, 4240 9 of 13

(iii)
s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) ≥ 0, ∀uj ∈ U∗, j ∈ ∆;

(iv) f (x∗, yi)− q∗h(x∗, yi) = 0, i = 1, 2, · · · , s∗;
(v) µ∗j g(x∗, uj) = 0, ∀uj ∈ U∗, j ∈ ∆;
(vi) α < 0⇒ φ1(α) < 0, α ≤ 0⇒ φ2(α) ≤ 0, b1(x, x∗) > 0, b2(x, x∗) ≥ 0;

(vii)
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

Then, x∗ is an optimal solution of (SIFP).

Theorem 4. Assume that x∗ ∈ X0, if for any x ∈ X0, there exist (s∗, λ∗, y) ∈ Q, q∗ ∈ R+,
µ∗j ∈ Λ, j ∈ ∆ and b1, φ1, b2, φ2, η, θ, ρ∗ ∈ Rs∗ , τ∗ ∈ R(∆), such that

(i) For any yi ∈ Y(x∗), ( f − q∗h)(·, yi) is uniform (BK, ρ∗i )−quasiinvex at x∗ with respect to
b1 and φ1,i = 1, 2, · · · , s∗;

(ii) For any uj ∈ U∗, g(·, uj) is strictly uniform (BK, τ∗j )−invex at x∗ with respect to b2 and
φ2,j ∈ I(x∗);

(iii)
s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) ≥ 0, ∀uj ∈ U∗, j ∈ ∆;

(iv) f (x∗, yi)− q∗h(x∗, yi) = 0, i = 1, 2, · · · , s∗;
(v) µ∗j g(x∗, uj) = 0, ∀uj ∈ U∗, j ∈ ∆;
(vi) α < 0⇒ φ1(α) < 0, α ≤ 0⇒ φ2(α) ≤ 0, b1(x, x∗) > 0, b2(x, x∗) ≥ 0;

(vii)
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

Then, x∗ is an optimal solution for (SIFP).

Theorem 5. Assume that x∗ ∈ X0,if for any x ∈ X0, there exist (s∗, λ∗, y) ∈ Q, q∗ ∈ R+,
µ∗j ∈ Λ, j ∈ ∆ and b1, φ1, b2, φ2, η, θ, ρ∗ ∈ Rs∗ , τ∗ ∈ R(∆), such that

(i) For any yi ∈ Y(x∗), ( f − q∗h)(·, yi) is uniform (BK, ρ∗i )−quasiinvex at x∗ with respect to
b1 and φ1, i = 1, 2, · · · , s∗;

(ii) For any uj ∈ U∗, g(·, uj) is strictly uniform (BK, τ∗j )−pseudoinvex at x∗ with respect to b2

and φ2, j ∈ I(x∗);

(iii)
s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) ≥ 0, ∀uj ∈ U∗, j ∈ ∆;

(iv) f (x∗, yi)− q∗h(x∗, yi) = 0, i = 1, 2, · · · , s∗;
(v) µ∗j g(x∗, uj) = 0, ∀uj ∈ U∗, j ∈ ∆;
(vi) α < 0⇒ φ1(α) < 0, α ≤ 0⇒ φ2(α) ≤ 0, b1(x, x∗) > 0, b2(x, x∗) ≥ 0;

(vii)
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

Then, x∗ is an optimal solution for (SIFP).

The proofs of Theorems 3–5 are similar to Theorem 2.

Theorem 6. Assume that x∗ ∈ X0, if for any x ∈ X0, there exist (s∗, λ∗, y) ∈ Q, q∗ ∈ R+,
µ∗j ∈ Λ, j ∈ ∆ and b1, φ1, b2, φ2, η, θ, ρ∗ ∈ Rs∗ , τ∗ ∈ R(∆), such that

(i) For any yi ∈ Y(x∗), ( f − q∗h)(·, yi) is weakly uniform (BK, ρ∗i )− quasi in vex at x∗ with
respect to b1 and φ1, i = 1, 2, · · · , s∗;

(ii) For any uj ∈ U∗, g(·, uj) is strictly uniform (BK, τ∗j )−pseudoinvex at x∗ with respect to b2

and φ2, j ∈ I(x∗);
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(iii)
s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) ≥ 0, ∀uj ∈ U∗, j ∈ ∆;

(iv) f (x∗, yi)− q∗h(x∗, yi) = 0, i = 1, 2, · · · , s∗;
(v) µ∗j g(x∗, uj) = 0, ∀uj ∈ U∗, j ∈ ∆;
(vi) α < 0⇒ φ1(α) < 0, α ≤ 0⇒ φ2(α) ≤ 0, b1(x, x∗) > 0, b2(x, x∗) ≥ 0;

(vii)
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

Then, x∗ is an optimal solution for (SIFP).

Proof. If we suppose that x∗ is not an optimal solution of (SIFP), then there exists x ∈ X0,
such that

sup
y∈Y

f (x, y)
h(x, y)

< sup
y∈Y

f (x∗, y)
h(x∗, y)

.

Observe that

sup
y∈Y

f (x∗, y)
h(x∗, y)

=
f (x∗, yi)

h(x∗, yi)
= q∗, ∀yi ∈ Y(x∗), i = 1, 2, · · · , s∗.

As
f (x, yi)

h(x, yi)
≤ sup

y∈Y

f (x, y)
h(x, y)

,

we thus have
f (x, yi)

h(x, yi)
< q∗, i = 1, 2, · · · , s∗.

That is,
f (x, yi)− q∗h(x, yi) < 0, i = 1, 2, · · · , s∗.

By (iv), we have

f (x, yi)− q∗h(x, yi) < 0 = f (x∗, yi)− q∗h(x∗, yi), i = 1, 2, · · · , s∗.

By (vi), we get

b1(x, x∗)φ1[( f (x, yi)− q∗h(x, yi))− ( f (x∗, yi)− q∗h(x∗, yi))] < 0.

By (i), we have
( f − q∗h)K

x (x∗, yi; η(x, x∗)) + ρ∗i ‖θ(x, x∗)‖2 < 0.

As λ∗i ≥ 0 and
s∗

∑
i=1

λ∗i = 1, we have

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) +

s∗

∑
i=1

λ∗i ρ∗i ‖θ(x, x∗)‖2 < 0. (7)

Observing that g(x, uj) ≤ 0 = g(x∗, uj), ∀uj ∈ U∗, j ∈ I(x∗), we have

g(x, uj)− g(x∗, uj) ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By (vi), we can obtain

b2(x, x∗)φ2[g(x, uj)− g(x∗, uj)] ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).
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By (ii), we get

gK
x (x∗, uj; η(x, x∗)) + τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

As µ∗j ∈ Λ, j ∈ I(x∗), we have

∑
j∈I(x∗)

µ∗j gK
x (x∗, uj; η(x, x∗)) + ∑

j∈I(x∗)
µ∗j τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ I(x∗).

By hypothesis (v), we known that as j ∈ ∆\I(x∗), µ∗j = 0 always holds for any uj ∈ U∗.
This implies that

∑
j∈∆

µ∗j gK
x (x∗, uj; η(x, x∗)) + ∑

j∈∆
µ∗j τ∗j ‖θ(x, x∗)‖2 ≤ 0, ∀uj ∈ U∗, j ∈ ∆. (8)

Adding (7) and (8), we can obtain

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗))

+(
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j )‖θ(x, x∗)‖2 < 0, ∀uj ∈ U∗, j ∈ ∆.

By (vii), we have
s∗

∑
i=1

λ∗i ρ∗i + ∑
j∈∆

µ∗j τ∗j ≥ 0.

So,

s∗

∑
i=1

λ∗i ( f − q∗h)K
x (x∗, yi; η(x, x∗)) + ∑

j∈∆
µ∗j gK

x (x∗, uj; η(x, x∗)) < 0, ∀uj ∈ U∗, j ∈ ∆. (9)

which contradicts (iii). Therefore, x∗ is an optimal solution for (SIFP). �

4. Discussion

Because there are many kinds of generalized convex functions, it is not easy to define
a new class of more generalized convex functions. To this end, we consulted a number of
relevant materials for inspiration. Finally, we chose to start with local cone approximation
and the K−directional derivative and defined a new class of more generalized convex
functions. On the basis of the newly defined generalized convex functions, the optimal-
ity of minimax fraction semi-infinite programming is studied, and more general results
are obtained.

5. Conclusions

In this paper, we first defined a new type of generalized convex function based on the
concept of the K−directional derivative, that is, the uniform (BK, ρ)−invex, strictly uni-
form (BK, ρ)−invex, uniform (BK, ρ)−pseudoinvex, strictly uniform (BK, ρ)−pseudoinvex,
uniform (BK, ρ)−quasiinvex, and weakly uniform (BK, ρ)−quasiinvex functions. Then,
we studied a class of non-smooth minimax fractional semi-infinite programming prob-
lems involving this generalized convexity and obtained sufficient optimality conditions.
Compared with existing results, the optimality conditions of the non-smooth minimax
fraction semi-infinite programming in this paper are more general. The research is helpful
for enriching the relevant theories of non-smooth fractional semi-infinite programming.



Mathematics 2023, 11, 4240 12 of 13

Minimax fraction semi-infinite programming is an important research direction for
semi-infinite programming. There are still some related problems that require further study.
Subsequently, we will continue to study the duality and saddle point theory of minimax
fraction semi-infinite programming involving this generalized convexity.
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