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Abstract: In this paper it is shown, that if a possibly inhomogeneous Markov chain with continuous
time and finite state space is weakly ergodic and all the entries of its intensity matrix are locally
integrable, then, using available results from the perturbation theory, its time-dependent probability
characteristics can be approximately obtained from another Markov chain, having piecewise constant
intensities and the same state space. The approximation error (the taxicab distance between the state
probability distributions) is provided. It is shown how the Cauchy operator and the state probability
distribution for an arbitrary initial condition can be calculated. The findings are illustrated with the
numerical examples.
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1. Introduction

Operations research possesses a great deal of applications for which continuous-time
Markov chains (CTMC) with discrete state space serve as adequate mathematical models
(see, for example, [1] (Section 5) and [2]). The scope of use of CTMC is broadened if one
allows for inhomogeneity, i.e., if one allows some (or all) transition intensities to be non-
random functions of time and depend on the state of the chain. A large body of works
exists on the analysis of inhomogeneous CTMCs, which covers all the vital questions:
existence, numerical solution, asymptotics, and approximations (for a systematic view see,
for example, [1] and [3] (Sections 1 and 1.2)).

In this paper, we revisit the problem of the computation of the time-dependent prob-
ability distributions of inhomogeneous CTMCs. It is well-known that for such chains
analytical solutions are usually not possible and one must resort to other approaches.
There exist various techniques to calculate performance measures for CTMCs (See, for
example, [4] (Introduction) and [5,6], for a short review related to queuing theory): point-
wise stationary approximation [7], uniformization [8,9], heavy-traffic approximation [10,11],
robust optimization [3] (Section 2), Monte Carlo simulation, stationary independent period
by period approach, state-space enrichment, etc. Probably the most widely applicable tech-
nique (or at least popular currently due to the increasing computer power) is comprised
of numerical methods for systems of ordinary differential equations (ODEs) [12–16]. In
this paper the novel variation of the method for the computation of the Cauchy matrix
is proposed for the case when the intensity matrix of a Markov chain is time–dependent.
The main requirement for the method to work is that the Markov chain under consideration
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is weakly ergodic and the entries of its intensity matrix are locally integrable. If these con-
ditions are satisfied then the (approximate) computation of the main characteristics of the
chain can be brought down to the computation of those in another chain with the intensity
matrix, having piecewise-constant entries. This method is, of course, not new and can be
found already in [17]. The main contribution of this paper comes from the observation that
the new chain can be considered as the perturbed version of the original chain. Therefore,
the estimates for perturbed chains available from the literature can be used (see [18]). Thus,
if the chains start from the same state, then the “difference” between them (in l1-norm) for
any time t > 0 does not exceed the constant, obtained here for the first time in the literature
(see (7)). Since exact solutions are rarely available, here we show what difference in the
solutions can be expected (see (6)): the main contribution into the approximation error
comes from approximate computation of the Cauchy operators (see (17)). These effects
are illustrated in the numerical section. Here, a comparison is made with the well-known
Runge–Kutta method: the numerical results show that the performance (with respect to
the accuracy) is almost identical. Finally, the new approximation method can be executed
in parallel and therefore can be efficiently used in a chain with a large number of states.

The paper is structured as follows. In the next section, the preliminary notation and
the required definitions are given. Section 3 contains the main result of the paper, i.e., the
bounds for the difference between the two chains, original with time-varying intensities
and the new one with the piecewise constant intensities. Section 4 discusses the solution
algorithm, which is illustrated in the Section 5 with three numerical examples. In the
concluding section, a summary and further direction of research is given.

2. Preliminaries

Let X(t), t ≥ 0, be, in general, an inhomogeneous continuous-time Markov chain
with a finite or countable state space ES = 0, 1, . . . , S, S < ∞. The transition probabilities
for X(t) will be denoted pij(s, t) = Pr{X(t) = j|X(s) = i}, i, j ≥ 0, 0 ≤ s ≤ t. Let
pi(t) = Pr{X(t) = i} be the state probabilities of the chain and p(t) = (p0(t), p1(t), . . . )T

be the corresponding vector of state probabilities. In what follows, it is assumed that

Pr{X(t + h) = j|X(t) = i} =


qij(t)h + αij(t, h), if j 6= i

1−∑
k 6=i

qik(t)h + αi(t, h), if j = i, (1)

where all αi(t, h) are o(h) uniformly in i, that is, supi |αi(t, h)| = o(h). Moreover, if X(t)
is inhomogeneous, then all its infinitesimal characteristics (intensity functions) qij(t) are
integrable in t on any interval [a, b], 0 ≤ a ≤ b.

Denote aij(t) = qji(t) for j 6= i and aii(t) = −∑j 6=i aji(t) = −∑j 6=i qij(t). Further,
in order to be able to obtain tighter estimates, its is assumed that

|aii(t)| ≤ L < ∞ (2)

for almost all t ≥ 0. The state probabilities then satisfy the forward Kolmogorov system

d
dt

p(t) = A(t)p(t), (3)

where A(t) = QT(t), and Q(t) is the infinitesimal matrix of the process.
Let ‖ · ‖ be the usual l1-norm, i.e., ‖x‖ = ∑ |xi|, and ‖B‖ = supj ∑i |bij| for B = (bij)

∞
i,j=0.

Denote Ω =
{

x : x ∈ l+1 & ‖x‖ = 1
}

. Therefore, ‖A(t)‖ = 2 supk|akk(t)| ≤ 2L for almost
all t ≥ 0, and we can apply the results of [19] to Equation (3) in the space l1. Namely,
in [19] it was shown that the Cauchy problem for Equation (3) has a unique solution for an
arbitrary initial condition. Moreover, if p(s) ∈ Ω, then p(t) ∈ Ω, for any 0 ≤ s ≤ t and any
initial condition p(s).
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By X̄ = X̄(t), we will denote the “perturbed” Markov chain with the same state
space, state probabilities p̄i(t), transposed infinitesimal matrix Ā(t) =

(
āij(t)

)∞
i,j=0 and the

“perturbations” themselves, that is, the differences between the corresponding “perturbed”
and original characteristics will be denoted by âij(t), Â(t).

Let E(t, k) = E{X(t)|X(0) = k} be the conditional mean value of X(t) at an arbitrary
instant t. Recall that a Markov chain X(t) is weakly ergodic if ‖p∗(t)− p∗∗(t)‖ → 0 as
t→ ∞ for any initial condition, and it has the limiting mean φ(t) if |E(t, k)− φ(t)| → 0 as
t→ ∞ for any k.

3. Estimation through Piecewise Constant Approximation

Consider the system of linear differential equations in the vector-matrix form (3),
where all the elements aij(t) of the matrix A(t) are locally integrable non-random functions

on [0, ∞), i.e., |
∫ b

a aij(t)dt| < ∞ for any (a, b) ⊂ [0, ∞).
Let T be a real positive number and N be a positive integer. Put h = T/N and

denote Ā(t) = A
(⌊

N
T t
⌋

T
N

)
, where bxc returns the largest integer less than or equal to x.

Therefore, Ā(t) is the transposed intensity matrix, consisting of piecewise constant locally
integrable non-random functions on [0, ∞), which satisfies the forward Kolmogorov system
of equations

d
dt

p̄(t) = Ā(t)p̄(t). (4)

The difference between the systems (3) and (4) can be described by [18] (Theorem 1),
which repeat below without the proof. The basic idea behind this result is that if one knows
the rate of convergence of the original chain X(t), the estimate for the difference between
the systems can be calculated as well.

Theorem 1 ([18]). Let the Markov chain X(t) be exponentially weakly ergodic; that is, for any
initial conditions p∗(s) ∈ Ω,p∗∗(s) ∈ Ω and any s ≥ 0, t ≥ s, there holds the inequality

‖p∗(t)− p∗∗(t)‖ ≤ 2ce−b(t−s). (5)

Therefore, for the perturbations small enough (‖A(t) − Ā(t)‖ ≤ ε for almost all t ≥ 0),
the perturbed chain X̄(t) is also exponentially weakly ergodic, and the following perturbation bound
takes place:

‖p(t)− p̄(t)‖ ≤

{
‖p(s)− p̄(s)‖+ (t− s)ε, i f 0 < t−s < 1

b ln c
2 ,

c
2 e−b(t−s)‖p(s)− p̄(s)‖+ 1

b (ln
c
2+ 1−ce−b(t−s))ε, i f t−s ≥ 1

b ln c
2

(6)

and

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ (1 + log(c/2))ε
b

. (7)

Thus, if the uniform grid is used, one can apply the Theorem 1 to estimate the
difference between the state vectors of the original system and of the system with the
piecewise constant intensities. One can also notice the following. For large perturbations
in A(t) (large ε) and low rate of convergence b, the number of steps N must be large to
compensate ε and decrease the right-hand side of (6). If one does not pay attention to
such differences as (6), which always appear if the piecewise constant matrix replaces the
original one, the error in the final result can be severely underestimated.

In what follows, we consider two ways to obtain the estimation of the state vector.
One is through the discretization of the intensity matrix and exact solution of the system
with constant coefficients. The other is through the discretization of the intensity matrix
and the approximate calculation of the Cauchy operator.
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4. Estimation of the State Probabilities

Theorem 2. If conditions of the [18] (Theorem 1) are satisfied and p(0) = p̄(0), then the following
bound holds:

‖p(T)− p̄(T)‖ ≤
{

Tε, i f 0 < T< 1
b ln c

2 ,
1
b (ln

c
2+ 1−ce−bT)ε, i f T≥ 1

b ln c
2 .

(8)

Theorem 3. If conditions of the [18] (Theorem 1) are satisfied and A(t) and Ā(t) are T-periodic, then
the following bound for periodic limiting solutions of the corresponding systems (3) and (4) holds:

sup
0≤t≤T

‖p(t)− p̄(t)‖ ≤ (1 + log(c/2))ε
b

. (9)

Exact solutions of the system with the constant intensities can (in principle) be found
using computer algebra systems. However, as it is demonstrated in Example 1, even in the
simplest cases the solution may turn out to be too cumbersome. Therefore, in what follows
we dwell on the direct numerical method for the solution of the system and provide the
bound of its approximation error. Firstly, from (3) and (4) we have the relations

p(t) = U(t, s)p(s) (10)

p̄(t) = Ū(t, s)p̄(s) (11)

which imply that
Ū(h(k + 1), hk) = Ūn(h(k + 1), hk) + Gk, (12)

where Gk is a matrix and Ūn(t + h, t) = I + ∑n
k=1

(Ā(t)h)k

k! . Note that the column-sum of a
column in Un(t) is always equal to 1 unless n is small; in the latter case, negative values
may appear. Therefore, during calculations a non-negativity check is required, otherwise
‖Un(t)‖ can become larger than one. Henceforth, we can assume that Ūn(h (i + 1), h i) ≥ 0
for ∀i and thus ‖Ūn(h (i + 1), h i)‖ = 1.

Let us estimate the approximation error on [0, T]. By using the Cauchy operator’s
property we have

Ū(T, 0) =
N−1

∏
i=0

(Ū(h (i + 1), h i) =
N−1

∏
i=0

(Ūn(h (i + 1), h i) + Gi), (13)

or, after the expansion and collection of the common terms,

Ū(T, 0) =
N−1

∏
i=0

Ūn(h (i + 1), h i) +
N−1

∑
i=0

Gi

N−1

∏
k=0; k 6=i

Ūn(h (k + 1), h k) + · · · (14)

If one denotes G = max0≤k≤N−1 ‖Gk‖, then it follows that

‖Ū(T, 0)− Ūn(T, 0)‖ ≤ (1 + G)N − 1. (15)

Therefore, the following theorem holds.

Theorem 4. If conditions of the [18] (Theorem 1), are satisfied, then for sufficiently large n, such
that Ūn(h(i + 1), hi) ≥ 0, i = 1, · · · , n, and if p(0) = p̄(0), the following bound holds:

‖p(T)− p̄(T)‖ ≤ (1 + G)N − 1 +

{
Tε, i f 0 < T< 1

b ln c
2 ,

1
b (ln

c
2+ 1−ce−bT)ε, i f T≥ 1

b ln c
2 .

(16)
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Therefore, to construct the Cauchy operator it is sufficient to compute Ūn(t+ h, t) = I +

∑n
k=1

(Ā(t)h)k

k! and Ūn(kh, 0) =
k−1
∏
i=0

Ūn(h(i + 1), hi). A specific solution is found by multiply-

ing the Cauchy operator by the initial condition, i.e., p(kh) =
(

k−1
∏
i=0

Ūn(h(i + 1), hi)
)

p(0).

Using the associative property of matrices, and by multiplying them in a proper order,
the computation of p(kh) can be performed in parallel and thus can be made quite fast.
In particular, if A(t) contains many non-zero intensities, this method may outperform
standard ones (see the Introduction).

What is left is the estimation of G. From (12), it follows that Gk = ∑∞
i=n+1

(A(hk)h)i

i! .
Therefore,

G = max0≤k≤N−1 ‖Gk‖ ≤
∞
∑

i=n+1

(‖A(hk)‖h)i

i! ≤
∞
∑

i=n+1

(2Lh)i

i! = e2hL
(

1− Γ(n+1,2hL)
n!

)
, (17)

where Γ(s, x) denotes the incomplete Gamma function.

5. Numerical Examples

Below, three examples will be considered. Firstly, we consider the example in which
the original system is solved with the Runge–Kutta method and the exact solution of the
system with a piecewise constant is found. In the second example, we are concerned with
the computation of the value of the probability vector at a given time t = T. In the third
example, the same computation is carried out, except for the fact that here the intensity
matrix A(t) does not depend on t. This substantially reduces the approximation error: in
the right part of (16), ε becomes equal to 0 (since discretization is no longer needed) and
the only error left is due to (15).

5.1. Example 1

In this example, we will build the exact solution and obtain the exact form of the
limiting distribution of the process with piecewise constant intensity matrix and compare
it (see (20)) with the limiting distribution of the original process with the matrix A(t).
Assume a birth-death process has two states and the arrival and death intensities are equal
to λ(t) = 1− cos(t), µ(t) = 5− sin(t), respectively. Break the [0, 2π] interval into four
intervals of equal length, i.e., the breakpoints are 0, π

2 , π, 3π
2 , 2π. Then N = 4, h = π

2 ,
and ε = 2 The solutions of the system (4) in each of the intervals are

p0(t) = 1 + e−5ta, p0(t) =
4
5
+ e−5tb, p0(t) =

5
7
+ e−7tc, p0(t) =

6
7
+ e−7td.

Note that this solution can be continued on the whole interval [0, ∞), and it will be a
piecewise function comprised of elementary ones:

p0(t) =


1 + e−5tai 2iπ ≤ ai ≤ 2iπ + π

2
4
5 + e−5tbi 2iπ + π

2 ≤ bi ≤ 2iπ + π
5
7 + e−7tci 2iπ + π ≤ ci ≤ 2iπ + 3π

2
6
7 + e−7tdi 2iπ + 3π

2 ≤ di ≤ 2iπ + 2π

(18)

The constants must be chosen in such a way so that the solution is continuous. Ergod-
icity guarantees the existence of the unique (periodic) solution. Irrespectively of the initial
conditions for large t, the solution will be indistinguishable from the periodic. Therefore,
the idea is to construct the periodic solution, which will represent the system behavior
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when t is large. Note that since the (periodic) solution is unique, then the following system
of algebraic equations has a unique solution:

1 + e−
5π
2 a = 4

5 + e−
5π
2 b

4
5 + e−5πb = 5

7 + e−7πc
5
7 + e−

21π
2 c = 6

7 + e−
21π

2 d
6
7 + e−14πd = 1 + a

(19)

Since the solution is cumbersome, it is not stated here. The system (3) can be solved
numerically. The behavior of the p0(t) probability can be seen in the Figure 1.

Figure 1. Example 1. Behavior of p0(t): blue line—exact solution, orange line—approximate solution.

Since the convergence rate α(t) for the original process is α(t) = 6− sin(t)− cos(t),
then for M = 1, b = 4, ε = 2 from (9) we obtain

sup
0≤t≤2π

‖p(t)− p̄(t)‖ ≤ (1 + log(1))2
4

≤ 0.5. (20)

5.2. Example 2

Consider the birth–death process with 31 states, with arrival and death intensities
equal to λ(t) = 1− sin(t), µ(t) = 5− cos(t), respectively. Break the interval [0, 2π] interval
into N intervals of equal length. Let d = 3. Then, the convergence rate α(t) is equal to
α(t) = 4− 2

3 sin(t)− 2
3 cos(t). Put α = 8

3 , M = 1, N = 50, L = 8, ε ≤ 0.36. Then, for any
T > 0 we have the bound

‖p(T)− p̄(T)‖ ≤ (1 + G)N − 1 +

{
Tε, i f 0 < T< 1

b ln c
2 ,

1
b (ln

c
2+ 1−ce−bT)ε ≤ 0.136, i f T≥ 1

b ln c
2 .

(21)

In the figures below (see Figures 2 and 3), one can see the solution (blue lines) for the
initial conditions X(0) = X̄(0) = 0 using the Runge–Kutta method and the intensity matrix
A(t), solution (yellow lines) using the Runge–Kutta method and the piecewise constant
matrix, the solution (green dots) using matrix multiplication.
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Figure 2. Behavior of p0(t) for various values of n.
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Figure 3. Behavior of p1(t) for various values of n.
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From the Table 1, it can be seen that there is no sense in increasing the value of
n indefinitely, since the most significant part of the approximation error is due to the
substitution of the piecewise constant matrix instead of the original one. In general,
to reduce the approximation error, one should increase both n and N.

Table 1. Example 2: approximation error for various values of n.

n ‖p(2π)− p̄(2π)‖ G (1 + G)N − 1 (1 + G)N − 1 + 0.136

4 0.02144931153977276 ≤0.41 ≤28,903,845 ≤28,903,846

5 0.02137755886467509 ≤0.13 ≤450 ≤451

6 0.02138771528374614 ≤0.035 ≤5 ≤6

7 0.021386393661019132 ≤0.009 ≤0.57 ≤0.706

8 0.021386550440098923 ≤0.002 ≤0.11 ≤0.245

9 0.021386533366325292 ≤0.0004 ≤0.021 ≤0.157

10 0.02138653508102207 ≤0.00007 ≤0.004 ≤0.14

5.3. Example 3

The major contribution in the approximation error is made when the initial matrix
A(t) is changed to the piecewise constant matrix under condition that A(t) changes rapidly
due to the large value of ε. In this example will be made the same computation as in second
example, except for the fact that here the intensity matrix A(t) does not depend on t. This
substantially reduces the approximation error: in the right part of (16), ε becomes equal to
0 (since discretization is no longer needed) and the only error left is due to (15).

Consider the birth–death process with 31 states, with arrival and death intensities
equal to λ(t) = 1, µ(t) = 5, respectively. Break the interval [0, 2π] interval into N intervals
of equal length. The approximation error is bounded by

‖p(T)− p̄(T)‖ ≤ (1 + G)N − 1. (22)

The Table 2 demonstrates its quality for N = 40.

Table 2. Example 3: approximation error for various values of n.

n ‖p(2π)− p̄(2π)‖ G (1 + G)N − 1

4 ≤4 × 10−10 ≤0.283 21,333

5 ≤2 × 10−11 ≤0.09 31

6 ≤7 × 10−13 ≤0.022 1.34

7 ≤3 × 10−14 ≤0.005 0.23

8 ≤9.99 × e−14 ≤0.002 0.09

9 ≤9.99 × e−14 ≤0.0002 0.009

10 ≤9.99 × e−14 ≤0.00004 0.002

As can be seen from the second column, the solutions by the Runge–Kutta method
and the matrix method are identical; the approximation error, shown in the fourth column,
significantly overestimates the difference.

Note that in the considered context, i.e., when A(t) does not depend on t, the increase
of N makes the situation worse and increases the approximation error. For example,
for N = 1 and n = 10, we have that ‖p(T)− p̄(T)‖ ≤ 0.00004.

In the figures below (see Figures 4 and 5), one can see the solution (yellow lines) for
the initial conditions X(0) = X̄(0) = 0 using the Runge–Kutta method and the intensity
matrix A(t) (one can see that the solution for the system with the piecewise constant matrix
will be the same), the solution (green dots) using matrix multiplication.
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Figure 4. Behavior of p0(t) for various values of n. The initial conditions are X(0) = X̄(0) = 0.
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Figure 5. Behavior of p1(t) for various values of n. The initial conditions are X(0) = X̄(0) = 0.

6. Conclusions

In this paper, the novel variation of the well-known method for the computation of the
transient distribution of the finite state time-varying Markov chains has been proposed. Its
main advantage is that, if the two chains start in the same state, then within a finite horizon
one can bound the difference between their probability distributions. The generalization to
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the countable state space is the direction for further research and it seems to be feasible since
the truncation bounds are available for inhomogeneous CTMC with countable state space.
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