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Abstract: The DNVGL-RP-F105 guidelines provide essential techniques for the preliminary design of
undersea pipelines. However, its approximations for static displacement and the natural frequency
of the pipe are restricted to cases where the ratio of the pipe’s diameter to its length (L/D) is less
than 140. This limitation poses challenges for longer spans, which, although rare, can sometimes be
unavoidable. This study introduces a novel analytical method, rooted in the energy method and cable
theory, for computing the static deformation and natural frequency of long free-span underwater
pipelines. We conducted a comprehensive verification of our proposed method by comparing its
outcomes with those of 212 finite element analysis simulations. The results reveal excellent predictions
for long spans. However, for shorter spans, traditional methods remain more accurate. Additionally,
we explored the influence of pipeline’s diameter, thickness, and boundary conditions on both static
displacement and frequency, providing valuable insights for design considerations. We found that
the boundary conditions’ impact on the fundamental frequency becomes negligible for long spans,
with up to a 10% difference between pinned–pinned and fixed–fixed conditions. In essence, this
research offers a vital enhancement to the existing DNV guidelines, becoming particularly beneficial
during the preliminary design phases of pipelines with L/D ratios exceeding 140.

Keywords: free spanning; submarine pipeline; buoyancy; natural frequency; static deformation;
vortex-induced vibration (VIV)

MSC: 74H10

1. Introduction

Submarine pipelines are an indispensable component of the oil and gas industry [1–4],
and are the primary mode of transporting hydrocarbon products from offshore wells
to onshore processing facilities and end-users [5–8]. Compared to other transportation
modes, such as tanker ships [9–11], submarine pipelines are a cost-effective solution for the
transportation of oil and gas [12–15]. Submarine pipelines may be in various diameters,
with small-diameter pipelines usually employed for transporting hydrocarbon products
from manifold to manifold, or from manifold and wellhead to the platform. In contrast,
large-diameter pipelines are commonly used for transporting products from the platform
to the shore. These pipelines can stretch over thousands of kilometers, making them a
crucial component of the oil and gas industry. During the installation stage, harsh seabed
conditions or budget constraints may prevent submarine pipelines from being buried
below the ground. As a result, they may be subjected to free spans, which can arise due
to the unevenness of the seabed, erosion of the seabed, pipeline crossings, and tie-ins to
other structures [16,17]. For instance, free-spanning pipelines, due to the roughness of the
seafloor, can be distinguished as single free-span and multiple free-span pipelines [1–8].
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From an engineering point of view, one of the more widely recognized root causes of
structural pipeline collapse is a free span in which the unsupported pipeline becomes very vul-
nerable, due to (1) being over-stressed by the pipe’s self-weight and its contents [15,18,19] and
(2) vortex-induced vibration-based fatigue from the current varying with time [20–23]. In
this sense, if the free span cannot be avoided, it is important to determine the maximum al-
lowable length and justify the actual free span accordingly. Consequently, many researchers
and practical engineers have performed studies to justify the length of free-span pipelines
in order to guarantee their safety by providing a reliable free-span design. For example,
DNVGL-RP-F105 Sect. 6.8 [24] recommends that a lengthy free-span pipeline might be
justified by installing grout bags, sandbags, mechanical rigid supports, etc. However, it is
clearly noted that the aforementioned measures employed to justify these excessive span
lengths become unachievable and very costly if the pipeline is lain in deep and very deep
water depths (i.e., 1500 to 2000 m) by lying over a submarine valley [25,26]. Consequently,
the stability issue of free-spanning pipelines has become a potential study area for all oil
and gas industries. Therefore, studies have revealed that when a current flows across a
pipeline, it forms vortex shedding in two ways at low-flow velocities, and symmetric and
asymmetric vortex shedding at high velocities [25,26].

More precisely, the vortices of the cross-section of a free-span pipeline can be observed
as symmetrical and asymmetrical vortices that, respectively, produce the in-line vibration
along the flow direction and simultaneously the in-line and the cross-flow vibrations with
the parallel and perpendicular to the flow directions [25,26]. In addition, it is observed
that in-line impulses occur in the in-line direction, while cross-flow impulses occur in the
perpendicular direction. Thus, the in-line excitation at a frequency can be twice compared
to that of cross-flow excitation and, consequently, it has a smaller stress and motion ampli-
tude [27]. From an engineering perspective, it is noted that the synchronization of vortex
shedding or the resonance phenomenon can occur when the vortex shedding frequency,
which is the frequency of the hydrodynamic forces governed by the flow velocity, the pipe’s
outer diameter, and Strouhal’s number, is close to the natural frequency of the free-spanning
pipeline [12,28–34]. Consequently, if the pipeline starts to resonate, significant deformation
and severe stress can occur, leading to potential collapse.

Consequently, to ensure the safety and stability of a free-spanning pipeline, it is
essential to compute its natural frequency to determine the vibration amplitude and cyclic
stresses. Numerous studies have been conducted to compute the natural frequency, with a
focus on the fundamental frequency, which is the first mode of frequency and is important
for computing the reduced velocity to observe the structure’s stability [12,26,35]. For
instance, Palmer and King [12] developed a closed-form solution to compute the frequency
based on a linear elastic beam with no axial force, while Xiao and Zhao [26] proposed a
simplified equation that considers the boundary condition factors and the axial forces for
a free-spanning pipeline with a maximum span of 50 m. The authors concluded that the
frequency increases and decreases with the tensile and compressive axial forces, respectively.
In addition, Yaghoobi et al. [35] suggested a closed-form solution to calculate the frequency
of offshore pipelines with a free span of up to 80 m by taking into account seabed soil
characteristics, and found that the soil type has a strong influence on the frequency, as the
frequency increases with the increase in the soil stiffness. Nevertheless, Sarkar and Roy [36]
performed parametric studies for computing the frequencies with various magnitudes of
parameters (i.e., thickness, diameter, span length, and homogeneous soil stiffness) up to a
maximum free span of 100 m using the finite element method and the DNVGL-RP-F105 [24]
guidelines. Additionally to these, Sarkar and Roy [37] also determined the frequency by
considering the nonhomogeneous soil stiffness using Abaqus. Last but not least, DNVGL-
RP-F105 [24], which is the design guideline for free-spanning offshore pipelines used by the
most dominant oil and gas industries, developed an empirical equation for computing the
frequency by including the effects of the static deformation of the pipe, axial forces, and the
stiffness of the supporting soil. However, it is observed that all studies mentioned above
compute the natural frequency of the free-spanning pipeline, which is limited to the ratio
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L
D ≤ 140 [24], where L is the length of the free span and D is the diameter of the pipe, owing
to the unreliable computed deformation of the pipe for L

D > 140. Moreover, it is worth
stating that, for some applications, a long free-spanning pipeline will be necessary to cross
over a submarine valley or a canyon [25]; consequently, the length of the free span might
reach 500 m, and the gap between the pipeline and the seabed might be up to 50 m [38].

In addition, for such long free-spanning pipes (i.e., L
D > 140), DNVGL-RP-F105

Sect. 6.8 [24] recommends employing the finite element method (FEM), which is widely
recognized to be an effective method of solving geotechnical [39,40] and structural [41]
engineering problems. In this sense, the three-dimensional (3D) FEM-based pipeline free
span analysis is usually performed in Abaqus, Reflex, Offpipe, OrcaFlex, etc. [21,42,43].
However, in many simulations, the employment of these commercial finite element pro-
grams becomes frustrating and time-consuming in terms of model definition as well as data
processing due to the burdensome Graphical User Interface (GUI) [16,44]. To elucidate this,
the establishment and resolution of an FEM model can generally take hours and minutes,
respectively. In contrast, closed-form solutions are nearly instantaneous. Therefore, a more
convenient and time-saving approach may be represented by a simple closed-form solution
for a preliminary design.

Therefore, this paper presents a new closed-form solution for computing reliable static
deformation and the natural frequency of a long free-spanning submarine pipeline, using
the energy method based on the uniform linear-elastic beam with only the axial effect
in conjunction with the analytical solution produced by DNVGL-RP-F105 Sect. 6.8 [24].
Specifically, this study extends DNVGL-RP-F105 Sect. 6.8 [24] to compute the reliable
frequency for L/D ≥ 140. In addition, the purpose of this article is to fill the gap in the
analytical expression used for computing the frequency of a long free-spanning pipeline
with L/D > 140, which has never been reported in the literature, and is challenging due
to the limited prior research, the inherent complexity of the problem, and the need for
validation. Consequently, a verification of this study is also provided and discussed
thoroughly by the comparison of the computed static displacement and frequency of
the pipelines with those values calculated by the existing methods; and it is found to
be in a reasonable agreement. This rigorous verification introduced an added layer of
complexity, necessitating the creation of a specialized computational framework. This
framework encompasses algorithms for both pre- and post-processing the FEM simulations
automatically. It is worth noting that even though this proposed closed-form solution is
simple and easy to implement, this solution has never been presented in the literature, in
particular for a long free-span pipeline. Specifically, it should be noted that this solution
only considers the axial force generated by the configuration form of a long pipeline
and does not take into account external axial forces or those generated by pressure and
temperature, which are outside the scope of this study. This limitation is discussed further
in Section 2.

2. Methodology
2.1. Derivation of Deformation Profile of a Long Free-Spanning Pipeline

Logically, a long free-spanning pipeline can be considered a cable due to its configura-
tion and shape. To determine its deformation, in this study, it is treated as a long cable, as
shown in Figure 1. The figure presents a free-body diagram of an infinitesimal segment of
a long free-spanning pipeline in equilibrium under a vertical load. Consequently, the equa-
tion of this long pipeline’s profile can be derived as follows, where T(x) is the axial force
generated by the configurational shape of the pipeline (see Figure 1), H(x) is the constant
horizontal force (y(x)), v1 and v2 are the vertical forces at points 1 and 2, respectively, and q
is the uniformly distributed load.
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Figure 1. Free body of the infinitesimal segment of a long free-spanning pipeline at equilibrium
under uniform load.

In relation to Figure 1, the equilibrium equation in the x direction can be written as

H = H +
dH
dx
→ H = const (1)

tanα1 =
dy
dx

=
v1

H
= slope at point 1 (2)

tanα2 =
dy
dx

+
d2y
dx2 dx =

v2

H
= slope at point 2 (3)

and the forces of the equilibrium in the y direction can be written as

v1 − qdx− v2 = 0 (4)

Extrapolating from Equations (1)–(3), Equation (4) becomes

d2y
dx2 = − q

H
(5)

Therefore,
y = − q

2H
x2 + ax + b (6)

By applying boundary condition at both ends with the same height, the coefficients a
and b can be defined, as in Equation (7).

yx=0 = 0 =⇒ b = 0 (7a)

yx=L = h = 0 =⇒ a =
qL2

2HL
(7b)

Therefore, the equation of a long free-spanning pipeline profile is expressed as

y(x) = − q
2H

x2 +
qL2

2HL
x (8)

The deformation of the long pipeline is found to be highly influenced by the horizontal
force H, which must be calculated using a simplified approach. To achieve this, a shallow
and horizontal pipeline is assumed, as shown in Figure 2. Consequently, the cable’s slope
angles are small, and therefore T ≈ H. The force on the increment dx is q·dx, and the work
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done by the virtual displacement y(x) is q·y(x)·dx/2 (for quasi-static loading). Therefore,
the virtual work performed by the complete pipeline can be written as Equation (9).

W =
∫ L

0

q·y
2

dx (9)
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Similarly, by considering only the axial effect, the strain energy of the pipeline can
be expressed.

U =
k
2

∆L2 (10)

k =
AE
L

and ∆L =
HL
EA

(11)

Therefore, Equation (10) becomes

U =
H2L
2EA

(12)

By equating the work conducted on the system to the strain energy (see Equation (13)),
the virtual work of the system can be expressed as in Equation (14). By substituting
Equation (8) into Equation (14), the horizontal force in the case of uniformly distributed
load is given as in Equation (15).

W = U (13)

∫ L

0

q·y(x)
2

dx =
H2L
2EA

(14)

H =
3

√
q2EA

12
L2 (15)

Therefore, Equation (8) can be rewritten as

y(x) =
q

2·
(

q2EA
12 L2

)1/3 x(L− x) (16)

where E is the Young’s modulus, A is the cross-section area of the pipe, y is the pipe
deformation, x is the distance along the pipeline, q is the uniformly distributed load of the
pipe, and L is the total length of the pipe. It is noteworthy that even though this analytical
expression is straightforward to apply, it has not been previously reported in the literature,
particularly for a long free-span pipeline.
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2.2. Determination of Natural Frequency of a Long Free-Spanning Pipeline

It is well-known that DNVGL-RP-F105 Sect. 6.8 [24] provides an equation (Equation (17))
that can be used to compute the frequency of a free-span pipeline.

f ≈ C1

√√√√ EI
meL4

e f f

(
1 +

Se f f

Pcr
+ C3

(
δ

D

)2
)
(1 + CSF) (17)

where δ = C6
qsub ·L4

e f f
EI(1+CSF)

1(
1+

Se f f
Pcr

) is the static deformation of the pipe.

It should be noted that the recommended practice (i.e., DNVGL-RP-F105 Sect. 6.8 [24])
provides an analytical solution for calculating the frequency of a free-spanning pipeline,
but it is only applicable when the ratio of the pipe length over the pipe diameter is smaller
than 140 (i.e., L

D < 140). For longer pipelines (i.e., L
D > 140), this study proposes a new

equation, Equation (16), to compute the static deformation, which replaces the one used in
Equation (17). Therefore, by incorporating Equation (16), the expression in Equation (17)
can be modified as in Equation (18) to compute the natural frequency of a long free-
spanning pipeline. This new equation, Equation (18), is a hybrid of Equations (16) and (17),
and therefore it is subjected to both sets of assumptions detailed here and in DNV Sect. 6.8.

f ≈ C1

√√√√ EI
meL4

e f f

(
1 +

Se f f

Pcr
+ C3

( y
D

)2
)
(1 + CSF) (18)

yx= L
2
=

qsub

2·
(

q2
subEA

12 L2
e f f

)3

L2
e f f

2
(19)

Pcr = (1 + CSF)

(
C2π2EI

L2
e f f

)
(20)

CSF = kc

(
EIcon

EIsteel

)0.75
(21)

qsub = msub·g =
(

ms + mc + m f −mw,c

)
g (22)

where me is the effective mass, Le f f is the effective length, I is the moment of inertia for
the steel pipe, E is the Young’s modulus for a steel pipe, CSF is the concrete stiffness
enhancement factor, D is the outer diameter of the pipe, and Se f f is the effective axial
force, which is negative in compression. C1, C2, C3, and C6 are the boundary condition
coefficients, which are, respectively, 1.57, 1.0, 0.8, and 5/384 for pinned–pinned support,
and 3.56, 0.25, 0.2, and 1/384 for fixed–fixed support. Pcr is the critical buckling load, qsub
is the submerged weight, kc is the empirical constant for the deformation/slippage in the
corrosion coating and the cracking of the concrete coating, and f is the cross-flow natural
frequency, which becomes an in-line natural frequency when y = 0. Moreover, ms, mc,
m f , and mw,c are the mass of the steel pipe, the mass of the coating, the mass of the fluid
(hydrogen, oil, gas, etc.), and the mass of pushed water displaced by the pipe, respectively.

In addition, according to DNV-RP-F105 Sect. 6.8 [45], the effective length of a free span
can be determined using Equation (23). However, in the case of fixed–fixed support, the
effective length is equivalent to the length of the pipe (i.e., Le f f = L).

Le f f =


1.12·L, i f L

D ≤ 40(
1.12− 0.001

(
L
D − 40

))
·L

L, i f L
D > 160

, i f 40 ≤ L
D
≤ 160 (23)
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2.3. Determination of Natural Frequency in Finite Element

As mentioned earlier, DNVGL-RP-F105 Sect. 6.8 [24] suggests utilizing the FEM
for computing the responses of the long free-spanning undersea pipeline (i.e., L

D > 140).
However, the FEM might be time-consuming and unsatisfied when numerous computa-
tions are required, due to the heavy graphical user interface (GUI) and complex model
definition [16,44]. Consequently, in this study, the FEM-based Abaqus is used to ver-
ify the proposed closed-form solution for use in computing the static deformation and
fundamental frequency of long free-span submarine pipelines.

Consequently, 212 free-span undersea pipelines are modeled (i.e., 48 models are used
for the verification part and 164 for the results and discussion part) and simulated using
Abaqus [46], with a two-node beam model that includes many partitions and refined mesh
(i.e., one element for each meter) to speed up the simulations. During the analysis, it
is important to note that different masses, i.e., submerged mass and effective mass, are
employed for the static and dynamic analyses, respectively. Thus, only the effective mass,
which is defined in Equation (24), is used to compute the natural frequency in Abaqus,
while the positive vertical force vectors are applied to accurately determine the static
displacement of the pipeline in the dynamic analysis.

me = ms + mc + m f + mw,c (24)

where ms, mc, m f , and mw,c are the mass of the steel pipe, the mass of the coating, the
mass of the fluid (oil, gas, hydrogen, etc.), and the mass of pushed water displaced by
the pipe and concrete, respectively. Therefore, to compute the natural frequency of the
submarine pipeline in dynamic analysis, the added mass is employed to determine the
effective density in terms of effective mass, which is then set as input data in Abaqus [46].
However, the effective density can result in the incorrect static deformation of the pipeline.
Thus, the application of vertical upward forces on the pipeline can be utilized to rectify this
issue and obtain the correct static deformation.

3. Verification

Verification of the proposed closed-form solutions is carried out by computing the
static deformations and the natural frequencies of submarine pipelines with various lengths,
including 10, 15, 20, 30, 40, 50, 80, 120, 140, 200, 300, and 400 m. Table 1 lists the pipeline
properties and other important inputs used in the simulations. The simulations are per-
formed with both fixed–fixed (FF) (i.e., fully clamped displacements and rotations) and
pinned–pinned (PP) (i.e., fully clamped displacements and rotation above the x-axis in
Abaqus) supports at both ends, while the axial force is not considered. The static deforma-
tions are computed using Equation (16), while the natural frequencies are computed using
Equation (18).

Table 1. Properties for the pipeline simulation.

Input Data Magnitude

Pipe’s thickness (t) 0.015 m
Pipe’s radius (r) 0.25 m
Density of the steel pipe 7850 kg/m3

Pipe’s Young modulus (E) 206 GPa
Pipe’s Poisson ratio 0.3
Coating’s construction strength 30 MPa
Coating’s thickness 0.01 m
Density of the coating 3040 kg/m3

Density of the seawater 1025 kg/m3

Density of fluid inside the pipe 442.62 kg/m3
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Figures 3 and 4 illustrate comparisons of the static deformations of the free-span
pipeline calculated by the present solution and the existing solutions for various magni-
tudes of L

D , where D = 0.5 m for the fixed–fixed (FF) and pinned–pinned (PP) supports,
respectively. When the applied axial force and the axial forces produced by the pressure
and temperature are not considered, the deformations computed by DNVGL-RP-F105
Sect. 6.8 [24] are virtually the same as those computed by Timoshenko and Goodier [47],
employing the closed-form solutions as seen in Figures 3 and 4. In addition, it is somehow
found that the solutions produced by Timoshenko and Goodier [47] are in reasonable
agreement with those computed by the FEM for L/D < 150 for fixed–fixed support and
L/D < 100 for pinned–pinned support. On the contrary, their results become significantly
larger with the increase in L/D. Specifically, without an applied axial force, their results
are reliable for L/D < 160 for fixed–fixed support and L/D < 100 for pinned–pinned
support, and they are not reliable for the converse. On the other hand, the present solutions
are in logical agreement with those computed by the FEM for a long free-span pipeline,
i.e., L/D > 160 for FF support and L/D > 100 for PP support; however, they exhibit
large discrepancies for the converse case, as shown in Figures 3 and 4. For example, by
setting the FEM’s solution as the reference, the computed relative errors are, respectively,
49% and 21%; 56% and 694%; 57% and 178%; 62% and 54%; 93% and 19%; 170% and 3%;
670% and 20%; 1295% and 20%; 2886% and 20%; 5297% and 20%; 15,792% and 20%; and
34,128%, as calculated by the present solution, and the closed-form solutions produced by
Timoshenko and Goodier [47] for L/D = 20, 40, 60, 80, 100, 160, 240, 320, 400, 600, and
800 for the pinned–pinned support. Similarly, the errors in the case of fixed–fixed support
for L/D = 20, 40, 60, 80, 100, 160, 240, 320, 400, 600, and 800 are 20192%; 6% and 3248%;
2% and 1049%; 0.9% and 437%; 0.2% and 201%; 1.6% and 21%; 43% and 7%; 220% and 14%;
544% and 16%; 1038% and 18%; 3169% and 19%; and 6873%, as produced by the present
solution and the closed-form solutions calculated by Timoshenko and Goodier [47].
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D for pinned–pinned support.

Figures 5 and 6 show comparisons of the natural frequencies of the free-span pipelines
calculated by the present solutions with the solutions available in the literature for the
various magnitudes of L

D (where D = 0.5 m) for the FF and PP supports, respectively.
Similar to the static deformation, it is observed that the frequencies calculated by Palmer
and King [12] are virtually the same as those for the in-line frequency computed by the
DNVGL-RP-F105 Sect. 6.8 [24] because they neglect deformation and the applied axial
force. However, Abaqus, which is based on the FEM, calculates frequency by taking into
account the axial force and static deformation, leading to significantly higher frequencies
than those calculated by Palmer and King [12], as seen in Figures 5 and 6. It is found that
the present solutions seem reasonably agreed with the FEM’s solution for a long free span;
however, the differences are also reported. For instance, when using the FEM solution as a
reference, the computed relative errors for the pinned–pinned supports are 19%; 19% and
18%; 20% and 17%; 21% and 20%; 28% and 28%; 39% and 44%; 63% and 46%; 73% and 49%;
81% and 51%; 86% and 52%; 91% and 52%; and 94%, produced by the present solution
and Palmer and King [12], for L/D = 20, 40, 60, 80, 100, 160, 240, 320, 400, 600 and 800,
respectively. Similarly, the computed errors for the FF support are 3%; 3% and 1%; 1% and
1%; 0.4% and 2%; 0.05% and 2%; 0.8% and 6%; 16% and 25%; 43% and 35%; 60% and 40%;
70% and 45%; 82% and 46%; and 87%, respectively.

Based on the comparison with the FEM solutions and without considering the applied
axial force, it is found that the solutions of the proposed method are more reliable and
reasonable than those of the existing methods when computing the static deformation and
the frequency of the long free-spanning pipelines, as presented above. Additionally, the
FEM-based Abaqus has been verified with closed-form solutions computed by Palmer and
King [12] for L ≤ 50 m, making its solutions reliable. Therefore, given that the analytical
expression proposed in this study has been verified with the FEM solutions (as seen in
Figures 3–6), it is also likely to be reliable for long free spans. This same trend is also
observed for D = 0.7 m, as illustrated in Figures S1–S4 in the supplemental material.
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4. Results and Discussion

This study presents a series of simulations aimed at demonstrating the effectiveness
and validity of the proposed method for computing the static deformation and natural
frequency of lengthy free-span pipelines. The simulations are conducted for a range of
pipeline lengths, diameters, and thicknesses. The material properties used in the simula-
tions are taken from Table 1, except for the pipe radius and thickness. The study delves
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into the influence of the pipe’s diameter on its natural frequency, which emerges from three
primary factors: the self-weight of the pipe, its structural stiffness, and the displaced water,
represented as an added mass. In all simulations, the supports at both ends of the pipeline
are assumed to be fully clamped, with fixed–fixed (FF) supports used for all movements
and pinned–pinned (PP) supports used for translation movements only.

Figure 7 compares the static deformation (Def) and first natural frequency (Freq)
values of a free-spanning pipeline with D = 0.7 m, computed by the present solution (PS)
and the FEM-based Abaqus (2021), for various combinations of length (L = 10, 20, 50,
100, 200, 400, 600, and 800 m) and thickness (with D/t ratios of 10, 20, and 40) of pipe,
with fixed–fixed (FF) support. As expected, the deformation values calculated by both
methods gradually increase with the increasing length and thickness of the pipe. Notably,
significant differences can be observed in the deformation calculated by the two methods
for L < 100 m. However, a reasonable agreement is found for L ≥ 100 m, as depicted in
Figure 7. For instance, the relative errors computed for L = 20, 100, and 800 m are 3491%,
3855%, and 3760% for D/t = 10, 0.61%, 1.5%, and 12% for D/t = 20, and 23%, 26%, and 36%
for D/t = 40, respectively.
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Figure 7. Comparisons of the static deformation (Def) and the first natural frequency (Freq) of the
free-spanning pipelines with D = 0.7 m computed by the present solution (PS) and FEM-based Abaqus
for the fixed–fixed support.

Similarly, the frequency of the pipeline is observed to decrease gradually as the length
increases and the thickness decreases. The frequency errors computed for D/t = 10, 20,
and 40 are 0.9%, 2.7%, and 4.2% for L = 20 m, 0.6%, 1.5%, and 12% for L = 100 m, and
53%, 54%, and 60% for L = 800 m. Hence, it is evident that with FF support, the relative
errors in frequency also increase gradually with the increases in the length and thickness of
the pipeline.

Figures 8 and 9 present comparisons of the static deformation and frequency of the
lengthy free-span pipelines for D = 0.9 m and D = 1.1 m, respectively, using the proposed
method and FEM-based Abaqus for FF supports. These figures exhibit similar trends
as observed for D = 0.7 m, demonstrating the validity and effectiveness of the proposed
method for various pipe diameters. The frequency values calculated by this method for
various diameters with a constant D/t ratio and length of 800 m show negligible differences.
For example, with D/t = 40, the frequency values computed by the proposed method for



Mathematics 2023, 11, 4481 12 of 18

D = 0.7 m, 0.9 m, and 1.1 m are 0.027 Hz, 0.026 Hz, and 0.026 Hz, respectively. Similarly,
for D/t = 20, the frequencies calculated by the proposed method for D = 0.7 m, 0.9 m, and
1.1 m are 0.0393 Hz, 0.0394 Hz, and 0.0396 Hz, respectively. Therefore, it can be concluded
that the increase in pipe diameter with a constant D/t ratio has a negligible effect on the
frequency of a long free-spanning submarine pipeline with FF support.
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Figures 10–12 illustrate comparisons between the present solution (PS) and the FEM-
based solution [46] as regards the first natural frequency (Freq) and static deformation
(Def) of a free-spanning pipeline with pinned–pinned support and different combinations
of thickness and length of pipe, with diameters of D = 0.7, 0.9, and 1.1 m, respectively.
The results show that, in general, the deformation increases with increasing thickness and
length of the pipeline, while the frequency decreases with increasing length and thickness.
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of free-spanning pipelines with D = 0.7 m computed by the present solution (PS) and FEM-based
Abaqus for pinned–pinned support.

Furthermore, Figures 10–12 demonstrate that, with pinned–pinned support, the defor-
mation and frequency of the free-spanning pipeline computed using the present solution
(PS) and FEM [46] show a reasonable agreement at L ≥ 100 m, while a large differ-
ence is found at L < 100 m. Notably, simulating a pipeline with a small diameter and
a large thickness using FEM is challenging due to the pipeline’s excessive self-weight
(Figures 10 and 11); however, the proposed method can overcome this difficulty with rea-
sonable solutions, thanks to its analytical approach. Therefore, the present solution (PS)
can be used to compute the deformations and frequencies of a pinned–pinned-supported
pipeline, as shown in Figures 10–12. Similar to the FF support case of a long free-spanning
underwater pipeline, the increase in pipeline diameter with a constant D/t ratio has virtu-
ally no effect on the frequency computed for the PP support.

By and large, the frequency of PP supports is found to be significantly lower than that
of FF supports with a short span. However, there is hardly any difference in frequency
between the two supports with a long span, as mentioned earlier. It should be noted that
the proposed method does not aim to provide an exact solution for the static deformation
and natural frequency in comparison to the FEM solutions [46]. Nonetheless, it yields
more reasonable solutions than the existing ones—especially when compared to the FEM
solution [46]—for a long free-spanning submarine pipeline in the absence of applied
axial forces.
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5. Conclusions

A new closed-form solution for computing the approximated static deformation and
the fundamental natural frequency of a long free-span underwater pipeline was developed
by employing the energy method-based cable theory in conjunction with the analytical
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solution produced by DNVGL-RP-F105 Sect. 6.8 [24] (see Equation (18)). The proposed
analytical solution is straightforward to implement for long free pipelines and has not
been reported in the literature. To verify the proposed method, the static displacement
and frequency values for different pipeline lengths (i.e., L = 10, 15, 20, 30, 40, 50, 80, 120,
140, 200, 300, and 400 m) were computed and compared with those calculated using the
FEM-based Abaqus (2021), and they show better agreement than the existing solutions. For
instance, with L/D = 100 to 800 and using the FEM solution as a reference, the computed
relative errors do not reach 20% for deformation and 50% for frequency for both pinned–
pinned and fixed–fixed supports. Additionally, the proposed method was successfully
implemented to compute the deformation and frequency for long free-spanning undersea
pipelines with various combinations of lengths (i.e., L = 10, 20, 50, 100, 200, 400, 600 and
800 m), thicknesses (which have ratio D/t = 10, 20, and 40) and diameters (i.e., D = 0.7, 0.9
and 1.1 m).

It should be noted that DNVGL-RP-F105 Sect. 6.8 [24] provides an unreliable frequency,
yielded by the inaccurately calculated deformation of the pipe for L/D ≥ 140, where L and
D denote the length and diameter of the pipeline, respectively. Therefore, this study extends
the method proposed in DNVGL-RP-F105 Sect. 6.8 [24] to provide reliable frequency
calculations for L/D ≥ 140. Specifically, the current method provides reliable deformation
for L/D ≥ 100. Furthermore, it is evident that, when static deformation is not taken into
account in the dynamic analysis, the cross-flow natural frequency equals the in-line natural
frequency. Consequently, the in-line frequency is equivalent to the frequency calculated by
the closed-form solution (e.g., Palmer and King [12]).

In summary, the key findings reveal that longer pipelines have a lower frequency
due to the increase in length. Consequently, the diameter-to-thickness ratio (D/t) and
the increase in pipeline deformation have minimal effects on the fundamental frequency
of long free-spanning submarine pipelines. Furthermore, regarding support type, FF
supports yield a significantly higher frequency for short spans, but for long spans, the
frequencies are comparable. For example, for L/D = 800, the discrepancy between the FF
and PP supports is around 10%. It is important to note that this new method offers more
reasonable solutions compared to existing ones, especially for L/D > 140, which has not
previously been addressed. This could aid in mitigating vortex-induced vibration (VIV) in
the preliminary design of long free-spanning submarine pipelines.
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Nomenclature

A cross-section area of the pipe
C1 boundary condition coefficient (1.57 for pinned–pinned support and 3.56 for fixed–

fixed support)
C2 boundary condition coefficient (1.0 for pinned–pinned support and 0.25 for fixed–fixed

support)
C3 boundary condition coefficient (0.8 for pinned–pinned support and 0.2 for fixed–fixed

support)
C6 boundary condition coefficient (5/384 for pinned–pinned support and 1/384 for fixed–

fixed support)
CSF concrete stiffness enhancement factor
D outer diameter of pipe
dx infinitestimal change of pipeline in x direction
dy infinitestimal change of pipeline in y direction
E Young’s modulus
f natural frequency
g acceleration of gravity
H constant horizontal force
h different level of the pipeline supports
I moment of inertia of steel pipe
k constant stiffness
kc empirical constant
L length of pipeline
Le f f effective length
mc mass of coating
me effective mass
m f mass of fluid
ms mass of steel pipeline
mw.c mass of displaced water
Pcr critical buckling load of pipeline
qsub submerged weight
q uniformly distributed load
r radius of pipe
Se f f effective axial force
T axial force generated by configuration shape of pipeline
U strain energy
v Poisson’s ratio of steel pipe
v1 vertical force at point 1
v2 vertical force at point 2
W virtual work done
x variable length of pipeline
y static deformation of pipeline
δ static deformation of pipeline
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