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Abstract: Hybrid contractions serve as a flexible and versatile framework for establishing fixed-point
Theorems and analyzing the convergence of iterative algorithms. This paper demonstrates the
adapted form of the admissible hybrid fuzzy Z-contraction in the perspective of £-fuzzy set-valued
maps for extended [-metric spaces. Sufficient criteria for obtaining £-fuzzy fixed points for this
contraction have been established. In addition, the hypotheses of its main result are endorsed by
some nontrivial supportive examples featuring graphical illustrations. Consequently, the concept
of graphical extended [-metric spaces is introduced and a £-fuzzy fixed point result in the context
of newly defined space is derived. Illustrative examples, incorporating relevant graphs, are pro-
vided with the support of a computer simulation to validate the established results, enhancing the
understanding of the underlying notions and investigations. The concepts presented here not only
considerably improve, enrich, and extend a number of well-known pre-existing fixed-point results
but also assemble and merge several ones in the corresponding domain.

Keywords: extended [-metric space; metric space equipped with a graph; £-fuzzy set-valued map;
£-fuzzy fixed point; hybrid contraction; simulation function; Z-contraction; graphic contraction

MSC: 03G10; 46S40; 47H10

1. Introduction

Metric fixed-point theory has its roots traced back to the Banach contraction principle
(BCP, in short), which is considered as its foundational concept and is a crucial technique for
determining the existence and solutions of multiple problems, together with differential and
integral equations. A number of articles have since been published on the expansion and
advancement of Banach’s Theorem for mappings, both single and set valued. This has been
achieved through modifications to the contraction conditions or by expanding the metric
space (MS)’s structural definition, see [1]. This exceptional Theorem has been explored and
generalized to increase its applicability in numerous other ambient spaces (see, for instance,
refs. [2,3] and the references therein). In this setting, through their respective contributions,
Czerwik [4] and Bakhtin [5] developed the idea of a [-MS by relaxing the triangle inequality
of an MS. Following that, a number of articles covered fixed-point (FP, in short) Theorems
for single-valued and set-valued mappings by considering [-MS, which is a generalized
form of MS, see [6–9]. Later, Fagin [10] used this type of relaxed triangular inequality to
combine with pattern matching. A similar approach was implemented to measure ice floes
and trade measures. In this context, Kamran et al. [11], in 2017, proposed the concept of
extended [-MS by generalizing the structure of [-MS. He weakened the [-metric’s triangular
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inequality and developed FP Theorems for a class of contractions. It is helpful to extend
the Banach contraction principle from MSs to [-MSs, and subsequently to extended [-MSs,
in order to demonstrate the existence and uniqueness of Theorems for various integral and
differential equation types.

Since Zadeh’s [12] discovery of fuzzy set (FS) theory in 1965, real-world problems
have been solved more easily and effectively because it makes the description of ambiguity
and inaccuracy more precise and understandable. When dealing with the uncertainties
and imprecision in given data, FS theory is regarded as a crucial tool to handle a variety
of challenges. The system is now extensively utilized to comprehend confusions arising
from various materialistic circumstances. FS theory has made notable advancement in
recent years. Not only does FS theory have applications in physical and applied sciences,
but it also has applications in mathematical evaluation, decision making, clustering, data
mining, and soft sciences, which can easily be found in [13,14] and the references therein.
Afterward, Heilpern [15] presented the theory of fuzzy mapping (FM) by utilizing the idea
of FSs and furnished an FP Theorem for fuzzy contraction maps which is considered as a
fuzzy version of Nadler’s [16] and Banach’s [17] FP Theorems. After that, a wide number of
researchers worked for the existence of FPs for FMs, see, for example, [18,19]. Later, in 1967,
the concept of £-FSs was furnished by Goguen [20], which is an intriguing generalization
of FSs because it replaced the interval [0, 1] by a complete distributive lattice. So, it makes
£-FSs superior to FSs.

On the other hand, Samet et al. [21] introduced the notion of β-admissibility for
single-valued mappings and applied it to illustrate the validity of FP Theorems. After that,
Asl et al. [22] expanded this idea to α− ψ-multi-valued mappings. Later, Mohammadi
et al. [23] inaugurated the above-mentioned concept for multi-valued mappings in the
sense it was different from the one given in [22].

Recently, Phiangsungneon et al. [24] used Mohammadi’s concept of β-admissibility [23]
and demonstrated some FFP Theorems. Then, Rashid et al. [25], in 2014, launched its
generalized version for a pair of £-FS-valued maps and named it βF£-admissible. By us-
ing this idea, they evinced the existence of a common £-FFP result. In the same year,
for £-FSs, Rashid et al. [26] initiated the theories of Hausdorff distances for α-cuts and the
δ∞

£ -metric. The authors investigated a few coincidence and FP Theorems for £-FMs and
a crisp mapping along with a sequence of £-FMs, respectively. Equivalently, coincidence
Theorems for fuzzy and multi-valued mappings have been yielded as the consequence
of the main result. In 2016, Azam et al. [27] examined some £-FFP results by using local
and global contractions. Later, in 2017, Rashid et al. [28] presented some £-FFP results by
involving £-fuzzy contractive mappings. Then, in 2018, Rawashdeh et al. [29] applied the
idea of an integral β-admissible to derive a few coincidence and common FP Theorems
for a pair of £-FMs and to also generalize an integral contraction. In 2019, Kanwal and
Azam [30] established common coincidence points for £-FMs under a generalized con-
tractive condition and obtained many beneficial results as corollaries of the main result.
For more results in this regard, see [31,32].

The present article inaugurates the modified form of an admissible hybrid fuzzy
Z-contraction in the bodywork of £-FS-valued maps for extended [-MSs and furnished the
sufficient criteria for £-FFP results. Some special cases of the main result are also discussed
in the form of corollaries. The application lies in the £-FFP result in the framework of
an extended [-MS equipped with a graph. All the results in this paper are followed by
nontrivial examples to validate the hypotheses of the results. As far as we are aware, FP
Theorems within the framework of £-FSs using simulation functions have not been covered
yet. Consequently, the concepts presented here are novel and specifically complement the
main results provided in [4,15,16,21,33–38] and a lot more in the corresponding domain.

2. Preliminaries

Within this particular section, we provide a brief summary of key definitions, out-
comes, and instances from the existing literature that are vital for a proper understanding of
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the subject matter. Throughout this article, R+,R, and N represent the sets of non-negative
real, real, and natural numbers, respectively.

2.1. Basic Framework

Definition 1 ([4,5]). Let Ξ be a non-empty set and [ ≥ 1 be a predetermined real number. If all the
listed below criteria are fulfilled for all σ, ν, ω ∈ Ξ, then the real-valued function δ : Ξ× Ξ −→ R+

is referred to as a [-metric on Ξ.

(δ1) δ(σ, ν) = 0 if and only if σ = ν;
(δ2) δ(σ, ν) = δ(ν, σ);
(δ3) δ(σ, ν) ≤ [[δ(σ, ω) + δ(ω, ν)].

The triple (Ξ, δ, [) is known as a [-MS.

Remark 1. The concept of a [-MS coincides with the concept of an MS in the case of [ = 1.

Example 1. Let Ξ = [0, 1] be a non-empty set and δ : Ξ × Ξ −→ R+ is defined as
δ(σ, ν) = |σ− ν|2 for all σ, ν ∈ Ξ. Then, (Ξ, δ, [ = 2) is a [-MS.

For more details on [-MSs, the readers are referred to [39,40]. Kamran et al. [11]
defined the notion of an extended [-MS by weakening the triangle inequality of a [-MS.

Definition 2 ([11]). Let Ξ be a non-empty set and e : Ξ× Ξ −→ [1, ∞) be a function. Then,
an extended [-metric is a function δe : Ξ× Ξ −→ R+ that fulfills the following conditions for every
σ, ν, ω ∈ Ξ:

(δe1) δe(σ, ν) = 0 if and only if σ = ν;
(δe2) δe(σ, ν) = δe(ν, σ);
(δe3) δe(σ, ν) ≤ e(σ, ν)[δe(σ, ω) + δe(ω, ν)].

The pair (Ξ, δe) is referred to as an extended [-MS.

Remark 2. The definition of extended [-MS reduces to that of [-MS if e(σ, ν) = [ for [ ≥ 1.

Example 2. Taking Ξ = {3, 4, 5}, we define the functions e : Ξ × Ξ −→ [1, ∞) and δe :
Ξ× Ξ −→ R+ as:

e(σ, ν) = σ + ν + 1 and

δe(3, 4) = δe(4, 3) = 40, δe(3, 5) = δe(5, 3) = 300, δe(4, 5) = δe(5, 4) = 3000.

Of course, δe(σ, σ) = 0, for all σ ∈ Ξ. Then, (Ξ, δe) is an extended [-MS.

Definition 3 ([11]). Let (Ξ, δe) be an extended [-MS. Then, the sequence {σn}n∈N ⊂ Ξ is said
to be as follows:

(i) Convergent to x ∈ X if for every ε > 0, there exists a natural number (depending on ε) N
such that δe(σn, σ) < ε for all n ≥ N.

(ii) A Cauchy sequence if for every ε > 0, there exists a natural number (depending on ε) N such
that δe(σn, σm) < ε for all n, m ≥ N.

If every Cauchy sequence converges in Ξ, then the extended [-MS (Ξ, δe) is said to be complete.

Definition 4 ([41]). A subset U of an extended [-MS (Ξ, δe) is termed as compact if, for any
sequence (σn) in U, there exists a subsequence (σnk ) and a point σ ∈ U such that limk→∞ σnk = σ.

Definition 5. Let ∇ be a non-empty subset of an extended [-MS (Ξ, δe). If for any σ ∈ Ξ there
exists an element b ∈ ∇ such that δe(σ,∇) = δe(σ, b), then ∇ is considered to be proximal (prox).
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Let k(Ξ) and P(Ξ) denote, respectively, the set of all non-empty compact and prox
subsets of Ξ.

Definition 6 ([41]). Let (Ξ, δe) be an extended [-MS. For Γ, Π ∈ k(Ξ), the real-valued function
H on k(Ξ)× k(Ξ), described by

H(Γ, Π) = max{sup
σ∈Γ

δe(σ, Π), sup
σ∈Π

δe(σ, Γ)},

is called the Pompeiu–Hausdorff metric induced by δe, where δe(σ, Γ) = inf{δe(σ, ν) : ν ∈ Γ}.

Khojasteh et al. [36] recently proposed a family of auxiliary functions known as
simulation functions (SF) in an effort to standardize various contraction types.

Definition 7 ([36]). An SF is a mapping ρ : R+ × R+ −→ R that satisfies the properties
listed below:

(S1) ρ(0, 0) = 0;
(S2) ρ(τ, κ) < κ − τ for all τ, κ > 0;
(S3) If {τn}n∈N and {κn}n∈N are two sequences with terms in the interval (0, ∞) in such a way

that limn−→∞ τn = limn−→∞ κn > 0, then

lim sup
n−→∞

ρ(τn, κn) < 0.

The set comprising all SFs can be represented by Z.

Example 3 ([42]). Take a function g : R+ ×R+ −→ R with g(τ, κ) < 1 for every τ, κ > 0 and
for any two sequences {τn} and {κn} in (0, ∞) such that limn−→∞ τn = limn−→∞ κn > 0, and
we have lim supn−→∞ g(τn, κn) < 1. Then, a function ρ : R+ ×R+ −→ R given by:

ρ(τ, κ) = κg(τ, κ)− τ for each τ, κ ∈ R+,

is an example of an SF.

Example 4 ([42]). Define a function ρ : R+ ×R+ −→ R by

ρ(τ, κ) = iκ − τ for each τ, κ ∈ R+,

where i ∈ [0, 1). Then, ρ is an SF.

We refer the readers to [36,43–45] for further and more interesting examples of SFs.
In 2015, Khojasteh [36] introduced the notion of a Z-contraction, which serves as a general-
ized version of the Banach contraction along with its corresponding FP Theorem.

Definition 8 ([36]). Let (Ξ, δ) be an MS. If the mapping T : Ξ −→ Ξ satisfies:

ρ(δ(Tσ, Tν), δ(σ, ν)) ≥ 0 for all σ, ν ∈ Ξ,

then it is identified as a Z-contraction with respect to ρ ∈ Z.

Theorem 1 ([36]). Let Ξ be a complete MS on which the self-map T : Ξ −→ Ξ is a Z-contraction,
and then T admits a unique FP in Ξ.

2.2. Fundamental Concepts from Fuzzy Set Theory

Definition 9 ([12]). An FS on a set Ξ is a kind of generalized characteristic function on Ξ, whose
degrees of membership may be more general than yes or no. Formally, it can be stated as follows: An
FS on Ξ is a function from a non-empty set Ξ to I where I = [0, 1]. If Γ is an FS and σ ∈ Ξ, then
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the function value Γ(σ) is known as the degree of membership of σ in Γ. The α-cut set of an FS Γ,
denoted by [Γ]α, is defined by

[Γ]α = {σ ∈ Ξ : Γ(σ) ≥ α},

where α ∈ (0, 1].

The family of all the fuzzy subsets of Ξ is represented by IΞ or F(Ξ).

Definition 10 ([15]). For a non-empty set Ξ and an MS ∇, a function T : Ξ −→ F(∇) is called
an FS-valued map.

Definition 11 ([15]). An element σ∗ ∈ Ξ is said to be the FP of an FM T : Ξ −→ F(Ξ) if
σ∗ ∈ [Tσ∗]α where α ∈ (0, 1].

Definition 12 ([20]). Let (£,�) be a non-empty partially ordered set.

(£1) If τ ∨ κ ∈ £ and τ ∧ κ ∈ £ for all τ, κ ∈ £, then £ is known as a lattice.
(£2) If ∨Γ ∈ £ and ∧Γ ∈ £ for all Γ ⊆ £, then £ is termed as a complete lattice.
(£3) If τ ∨ (κ ∧ ι) = (τ ∨ κ) ∧ (τ ∨ ι), τ ∧ (κ ∨ ι) = (τ ∧ κ) ∨ (τ ∧ ι) for all τ, κ, ι ∈ £, then £

is said to be a distributive lattice.
(£4) If τ ∨ (∧iκi) = ∧i(τ ∨ κi), τ ∧ (∨iκi) = ∨i(τ ∧ κi) for all τ, κi ∈ £, then £ is a complete

distributive lattice (or simply CDL).
(£5) If in addition to a lattice, £ satisfies 0£ �£ τ �£ 1£, for each τ ∈ £, where 1£ and 0£ are,

respectively, the top and bottom elements of lattice £, then £ is referred to as a bounded lattice.

Example 5. Consider the set (N0,�) of non-negative integers, partially ordered by division, that
is, τ � κ if τ divides κ. Let the join and meet for any τ, κ ∈ N0, be defined as:

τ ∨ κ = {τ, κ} and τ ∧ κ = gcd{τ, κ}.

Then, (N0,�) is a lattice. Moreover, this is a CDL with 0 and 1 as the top and bottom elements,
respectively. Figure 1 depicts a finite sublattice having integer divisors of 60.

1

23

4

5

6
10

12

15

2030

60

Figure 1. Lattice of integer divisors of 60, ordered by “divides”.

Definition 13 ([20]). Consider a non-empty set Ξ and a CDL L having 1£ and 0£. Then, the func-
tion Γ : Ξ −→ £ is said to be a £-FS on Ξ.

The set of all the £-fuzzy subsets of Ξ is indicated by F£(Ξ).

Remark 3. The family of £-FSs is bigger than that of FSs as a £-FS becomes an FS by considering
£ = [0, 1].
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The α£-cut set of a £-FS Γ, symbolized by Γα£ , is characterized as:

[Γ]α£ =

{
{σ ∈ Ξ : α£ �£ Γ(σ)}, if α£ ∈ £ \ {0£};
cl({σ ∈ Ξ : 0£ �£ Γ(σ)}), if α£ = 0£,

where cl(Γ) indicates the closure of set Γ.
The characteristic function χ£Γ of a £-FS Γ is defined as:

χ£Γ =

{
0£, if σ /∈ Γ,
1£, if σ ∈ Γ.

Definition 14 ([26]). In a metric linear space Λ, a £-FS Γ is considered an approximate quantity if
and only if two conditions are met: First, [Γ]α£ must be both compact and convex in Λ, and second,
supσ∈Λ Γ(σ) = 1£. The set comprising all the approximate quantities in Λ is represented by
W£(Λ). For α£ ∈ £ \ {0£} such that [Γ]α£ , [Π]β£ ∈ P(Ξ), define

Dα£(Γ, Π) = H([Γ]α£ , [Π]β£)

δ∞
£ (Γ, Π) = sup

α£

DαL(Γ, Π).

Definition 15 ([25]). Consider an arbitrary set Ξ and any MS ∇. A mapping T is called a £-FM
if T is a mapping from Ξ into F£(∇). A £-FM T is a £-fuzzy subset of Ξ×∇ with a membership
function T(σ)(ν). The function value T(σ)(ν) is called the degree of membership of ν in T(σ).

The concept is better understood through Figure 2.

Ξ

σ1

σ2

σ3
.
.
.

F£(Ξ)

Ξ £

Tσ1 :
σi

σj

Tσ1(σi)

Tσ1(σj)

Tσ2 :
σk

σl

Tσ2(σk)

Tσ2(σl)

.

.

.

Figure 2. An illustration of L-FM.

Definition 16 ([25]). Consider an MS Ξ and a £-FM T : Ξ −→ F£(Ξ), and then a point u ∈ Ξ is
referred to as a £-FFP of T if there exists an α£ ∈ £ \ {0£} such that u ∈ [Tu]α£.

In an effort to extend the range of contraction-type mappings, Rus [46] first pro-
posed the notion of a comparison function, which has since been thoroughly explored by
several authors.

Definition 17 ([46]). A nondecreasing function ϑ : R+ −→ R+ is said to be a comparison
function (CF) if the condition limn−→∞ ϑn(t) = 0 is fulfilled for all t ∈ R+.
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Example 6. For all t ≥ 0, consider the below-defined functions as examples of CFs.

(i) ϑ(t) = ηt, where η ∈ (0, 1).
(ii) ϑ(t) = t

t+1 .

Definition 18 ([35]). A function ϑ : R+ −→ R+ is called a c-CF if it is nondecreasing and
satisfies the requirement ∑∞

n=0 ϑn(t) < ∞ for each t > 0.

Definition 19 ([47]). Consider a real number [ ≥ 1 and a CF ϑ for which there exists a convergent
series of positive terms ∑∞

n=0 vn and a real number α, with 0 < α < 1 such that

[i+1ϑi+1(t) ≤ α[iϑi(t) + vi, for each t ∈ R+ and each i ≥ N(fixed),

and then ϑ is called a [-CF.

Lemma 1 ([47]). A function ϑ : R+ −→ R+ is called a [-CF if it is nondecreasing and the series
∑∞

i=0 [
iϑi(t) converges for each t > 0.

Definition 20 ([48]). Let (Ξ, δe) be an extended [-MS and S ⊂ Ξ, and then a nondecreasing
function ϑ : R+ −→ R+ is said to be an extended [-CF if there exists a mapping h : S −→ Ξ such
that for some σ0 ∈ S, O(σ0) ⊂ S, and the series ∑∞

k=0 ϑk(t)∏k
j=1 e(σj, σs) converges for every

s ∈ N and for all t ∈ R+ . Here, σk = hkσ0 for k = 1, 2, . . ., and ϑ is an extended [-CF for h at σ0.

Remark 4 ([48]). By taking e(p, q) = [ ≥ 1 for any p, q ∈ Ξ, the notion of an extended [-CF
coincides with that of a [-CF for any arbitrary self-map h on Ξ.

Example 7 ([48]). Let (X, de) be an extended [-metric space and h a self-map on X, and assume
that for x0 ∈ X, limn,m−→∞ e(xn, xm) exist. Define ϕ : R+ −→ R+ as

ϕ(t) = ηt, such that lim
n,m−→∞

e(xn, xm) <
1
η

. (1)

Then, by using the ratio test, one can easily see that the series ∑∞
n=0 ϕn(t)∏n

i=1 e(xi, xm) converges.

Let Ωe[ denote the collection of all the continuous extended [-CFs ϑ : R+ −→ R+

fulfilling

ϑ(t) = 0 if and only if t = 0;

Lemma 2 ([46]). For a CF ϑ : R+ −→ R+, every iteration ϑk, k ∈ N also serves as a CF.
Additionally, ϑ(t) < t for all t > 0.

Lemma 3 ([49]). For an extended [-MS (Ξ, δe) and Γ, Π, Σ ∈ k(Ξ), the below-listed properties
always hold for all σ, ν ∈ Ξ.

(i) δe(σ, Π) ≤ H(Γ, Π), for each σ ∈ Γ.
(ii) δe(σ, Π) ≤ δe(σ, ν), for any ν ∈ Π.
(iii) δe(σ, Γ) = 0 if and only if σ ∈ Γ.
(iv) H(Γ, Π) = 0 if and only if Γ = Π.
(v) H(Γ, Π) = H(Π, Γ).
(vi) H(Γ, Π) ≤ e(Γ, Π)[H(Γ, Σ) + H(Σ, Π)].

where e : k(Ξ)× k(Ξ) −→ [1, ∞) is defined as

e(Γ, Π) = sup{e(σ, ν) : σ ∈ Γ, ν ∈ Π},

with e(Γ, Π) = e(Π, Γ).
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Definition 21 ([32]). Let Ξ be a non-empty set and T : Ξ −→ F£(Ξ) be a £-FM. Then, T is
called β-admissible with respect to a real-valued function β : Ξ× Ξ −→ R+, if there exists an
α£ ∈ £ \ {0£} such that for each σ ∈ Ξ and ν ∈ [Tσ]α£ with β(σ, ν) ≥ 1 we have β(ν, ω) ≥ 1 for
all ω ∈ [Tν]α£ .

3. Main Results

Within this section, we introduce the concept of modified admissible hybrid £-fuzzy
Z-contractions, along with the necessary definitions needed to establish the results.

Definition 22. Let (Ξ, δe) be an extended [-MS and T : Ξ −→ F£(Ξ) be a £-FS-valued map.
Then, T is termed as a modified admissible hybrid £-fuzzy Z-contraction with respect to ρ ∈ Z,
if there exists α£ ∈ £ \ {0£}, a function β : Ξ× Ξ −→ R+, and an extended [-CF ϑ : R+ −→ R+

such that it satisfies the following inequality:

ρ(β(σ, ν)H([Tσ]α£ , [Tν]α£), ϑ(Mr
T(σ, ν))) ≥ 0, (2)

for each σ, ν ∈ Ξ, where

Mr
T(σ, ν) =

{
[Γ(σ, ν)]

1
r , for r > 0, σ, ν ∈ Ξ

Π(σ, ν), for r = 0, σ, ν ∈ Ξ,

Γ(σ, ν) = max



(δe(σ, ν))r, (δe(σ, [Tσ]α£))
r, (δe(ν, [Tν]α£))

r,(
δe(ν,[Tν]α£ )(1+δe(σ,[Tσ]α£ ))

1+δe(σ,ν)

)r
,(

δe(ν,[Tσ]α£ )(1+δe(σ,[Tν]α£ ))

1+δe(σ,ν)

)r
,(

δe(ν,[Tσ]α£ ).δe(σ,[Tν]α£ )

1+δe(σ,ν)

)r


,

and

Π(σ, ν) = min



δe(σ, ν), δe(σ, [Tσ]α£), δe(ν, [Tν]α£),
δe(ν,[Tν]α£ )(1+δe(σ,[Tσ]α£ ))

1+δe(σ,ν) ,
δe(ν,[Tσ]α£ )(1+δe(σ,[Tν]α£ ))

1+δe(σ,ν) ,
δe(σ,[Tν]α£ )+δe(ν,[Tσ]α£ )

2e(σ,[Tν])


,

with r ≥ 0.

Remark 5.

(i) In the above definition, if β(σ, ν) = 1, then T is a modified hybrid £-fuzzy Z-contraction with
respect to ρ ∈ Z.

(ii) If T is a modified admissible hybrid £-fuzzy Z-contraction with respect to ρ ∈ Z, then by using
the second axiom of Definition 7, we can easily formulate:

β(σ, ν)H([Tσ]α£ , [Tν]α£) < ϑ(Mr
T(σ, ν)),

for all σ, ν ∈ Ξ.

The customary definition of continuity for a set-valued mapping typically relies on
the concepts of lower and upper semicontinuity, employing the notion of the Hausdorff
separation. Within the framework of extended [-MSs, we introduce a complementary
approach to this concept as follows.
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Definition 23. Let (Ξ, δe) be an extended [-MS and T : Ξ −→ F£(Ξ) is a £-FS-valued map. Then,
T is referred to as Hausdorff-continuous ( H-continuous ) at ς ∈ Ξ, if for any sequence {σn}n∈N
in Ξ,

lim
n−→∞

δe(σn, ς) = 0 implies lim
n−→∞

H([Tσn]α£ , [Tς]α£) = 0,

where α£ ∈ £ \ {0£}. A function T is considered to be H-continuous if it exhibits continuity at
every single point within the set Ξ.

The above definition can be rewritten as follows: T : Ξ −→ F£(Ξ) is known as H-
continuous at a point ς if for every ε > 0, there exists a ∂ > 0 and an α£ ∈ £ \ {0£}
such that

δe(σn, ς) < ∂ ⇒ H([Tσn]α£ , [Tς]α£) < ε.

Let us consider an example to aid our comprehension of the definition.

Example 8. Let Ξ = [0, ∞) be a non-void set. For each σ, ν ∈ Ξ, define δe : Ξ × Ξ −→ R+

as δe(σ, ν) = (σ − ν)2 and e : Ξ× Ξ −→ [1, ∞) as e(σ, ν) = σ + ν + 2. Then, (Ξ, δe) is an
extended [-MS. Moreover, let £ = {ξ, v, π, γ} with ξ �£ v �£ γ and ξ �£ π �£ γ, where v, π
are not comparable. Then, (£,�£) is a CDL. For each σ ∈ Ξ, define a £-FS, Tσ : Ξ −→ £ as:

(Tσ)(a) =


π, if 0 ≤ a ≤ σ/6;
γ, if σ/6 < a ≤ σ/2;
ξ, if σ/2 < a ≤ 2σ + 3σ2;
v, if 2σ + 3σ2 < a < ∞.

Let α£ = π, and then

[Tσ]α£ = [0, σ/2].

Suppose δe(σ, ν) < ∂ for ∂ > 0 and for all σ, ν ∈ Ξ. Then, we have

H([Tσ]π , [Tν]π) = H([0, σ/2], [0, ν/2])

=
1
4
(σ− ν)2

< (σ− ν)2 < ∂.

Let ∂ = ε
3 , and then δe(σ, ν) < ∂ implies H([Tσ]π , [Tν]π) < ε. Thus, T is H-continuous.

Let F£S(Ξ) be a subset of F£(Ξ) defined by

F£S(Ξ) = {Γ ∈ F£(Ξ) : [Γ]α£ ∈ k(Ξ), where α£ ∈ £ \ {0£}}.

Theorem 2. Let (Ξ, δe) be a complete extended [-MS and T : Ξ −→ F£S(Ξ) be an admissible
hybrid £-fuzzy Z-contraction with respect to ρ ∈ Z. Also, consider the following:

(i) T is β-admissible;
(ii) There exists σ0 ∈ Ξ and σ1 ∈ [Tσ0]α£ such that β(σ0, σ1) ≥ 1, where α£ ∈ £ \ {0£};
(iii) T is H-continuous;
(iv) The set [Tσ]α£ is prox for each σ ∈ Ξ.

Then, T has at least one £-FFP in Ξ.
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Proof. Using (ii), we have α£ ∈ £ \ {0£}, σ0 ∈ Ξ, and σ1 ∈ [Tσ0]α£ such that β(σ0, σ1) ≥ 1.
If σ0 = σ1, then from (2) we obtain

0 ≤ ρ(β(σ0, σ1)H([Tσ0]α£ , [Tσ1]α£), ϑ(Mr
T(σ0, σ1)))

< ϑ(Mr
T(σ0, σ1))− β(σ0, σ1)H([Tσ0]α£ , [Tσ1]α£),

which is equivalent to

β(σ0, σ1)H([Tσ0]α£ , [Tσ1]α£) ≤ ϑ(Mr
T(σ0, σ1)). (3)

Then, by using the proximality of T for r > 0, we have that

Mr
T(σ0, σ1) = [Γ(σ0, σ1)]

1
r

=


max



(δe(σ0, σ1))
r, (δe(σ0, [Tσ0]α£))

r, (δe(σ1, [Tσ1]α£))
r,(

δe(σ1,[Tσ1]α£ )(1+δe(σ0,[Tσ0]α£ ))

1+δe(σ0,σ1)

)r
,(

δe(σ1,[Tσ0]α£ )(1+δe(σ0,[Tσ1]α£ ))

1+δe(σo ,σ1)

)r
,(

δe(σ1,[Tσ0]α£ ).δe(σ0,[Tσ1]α£ )

1+δe(σo ,σ1)

)r





1
r

=


max



(δe(σ0, σ1))
r, (δe(σ0, σ1))

r, (δe(σ1, [Tσ1]α£))
r,(

δe(σ1,[Tσ1]α£ )(1+δe(σ0,σ1))

1+δe(σ0,σ1)

)r
,(

δe(σ1,σ1)(1+δe(σ0,[Tσ1]α£ ))

1+δe(σ0,σ1)

)r
,(

δe(σ1,σ1).δe(σ0,[Tσ1]α£ )

1+δe(σ0,σ1)

)r





1
r

= [max{(δe(σ0, σ1))
r, (δe(σ1, [Tσ1]α£))

r}]
1
r

= [max{(δe(σ1, σ1))
r, (δe(σ1, [Tσ0]α£))

r}]
1
r (∵ σ0 = σ1)

= 0.

Similarly, Π(σ0, σ1) = 0. Hence, (3) becomes β(σ0, σ1)H([Tσ0]α£ , [Tσ1]α£) ≤ ϑ(0) = 0. This
implies that [Tσ0]α£ = [Tσ1]α£ , which means σ1 ∈ [Tσ0]α£ = [Tσ1]α£ , that is, σ1 is a £-FFP of
T. Hence, hereafter we presume that σ0 6= σ1 and σ1 /∈ [Tσ1]α£ ; therefore, δe(σ1, [Tσ1]α£) > 0.
Because [Tσ1]α£ ∈ k(Ξ) and σ1 ∈ [Tσ0]α£ , there exists σ2 ∈ [Tσ1]α£ with σ1 6= σ2 such that

δe(σ1, σ2) ≤ H([Tσ0]α£ , [Tσ1]α£) ≤ β(σ0, σ1)H([Tσ0]α£ , [Tσ1]α£). (4)

From (2), we have

β(σ0, σ1)H([Tσ0]α£ , [Tσ1]α£) ≤ ϑ(Mr
T(σ0, σ1)). (5)

Combining (4) and (5) generates

δe(σ1, σ2) ≤ ϑ(Mr
T(σ0, σ1)).

Given that T is β-admissible and σ2 ∈ [Tσ1]α£ , we have β(σ1, σ2) ≥ 1. If σ2 ∈ [Tσ2]α£ , then
taking σ1 = σ2, as we have proved earlier, we directly find out that σ2 is a £-FFP of T.
Therefore, assume that σ2 /∈ [Tσ2]α£ so δe(σ2, [Tσ2]α£) > 0. Because [Tσ1]α£ , [Tσ2]α£ ∈ k(Ξ)
and σ2 ∈ [Tσ1]α£ , there exists a point σ3 ∈ [Tσ2]α£ with σ2 6= σ3 such that

δe(σ2, σ3) ≤ H([Tσ1]α£ , [Tσ2]α£) ≤ β(σ1, σ2)H([Tσ1]α£ , [Tσ2]α£). (6)
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Putting σ = σ1 and ν = σ2 in (2), we obtain

0 ≤ ρ(β(σ1, σ2)H([Tσ1]α£ , [Tσ2]α£), ϑ(Mr
T(σ1, σ2)))

< ϑ(Mr
T(σ1, σ2))− β(σ1, σ2)H([Tσ1]α£ , [Tσ2]α£),

which is equivalent to

β(σ1, σ2)H([Tσ1]α£ , [Tσ2]α£) ≤ ϑ(Mr
T(σ1, σ2)). (7)

Combining (6) and (7), we obtain

δe(σ2, σ3) ≤ ϑ(Mr
T(σ1, σ2)).

In this way, a sequence {σn}n∈N can be generated in Ξ with σn ∈ [Tσn−1]α£ , σn+1 ∈ [Tσn]α£

and β(σn, σn+1) ≥ 1 such that

δe(σn, σn+1) ≤ ϑ(Mr
T(σn−1, σn)). (8)

Now, we examine (8) under the below-mentioned scenarios:

Case 1 : Taking r > 0 and utilizing the proximality of T, one obtains from (2) that

Mr
T(σn−1, σn) = [Γ(σn−1, σn)]

1
r

=


max



(δe(σn−1, σn))r, (δe(σn−1, [Tσn−1]α£))
r, (δe(σn, [Tσn]α£))

r,(
δe(σn ,[Tσn ]α£ )(1+δe(σn−1,[Tσn−1]α£ ))

1+δe(σn−1,σn)

)r
,(

δe(σn ,[Tσn−1]α£ )(1+δe(σn−1,[Tσn ]α£ ))

1+δe(σn−1,σn)

)r
,(

δe(σn ,[Tσn−1]α£ ).δe(σn−1,[Tσn ]α£ )

1+δe(σn−1,σn)

)r





1
r

=

max



(δe(σn−1, σn))r, (δe(σn−1, σn))r, (δe(σn, σn+1))
r,(

δe(σn ,σn+1)(1+δe(σn−1,σn))
1+δe(σn−1,σn)

)r
,(

δe(σn ,σn)(1+δe(σn−1,σn+1))
1+δe(σn−1,σn)

)r
,(

δe(σn ,σn).δe(σn−1,σn+1)
1+δe(σn−1,σn)

)r





1
r

= [max{(δe(σn−1, σn))
r, (δe(σn, σn+1))

r}]
1
r . (9)

From (8) and (9), we have

δe(σn, σn+1) ≤ ϑ([max{(δe(σn−1, σn))
r, (δe(σn, σn+1))

r}]
1
r ). (10)

Assume that δe(σn−1, σn) ≤ δe(σn, σn+1). Because ϑ is nondecreasing, from (10), we have

δe(σn, σn+1) ≤ ϑ([(δe(σn, σn+1))
r]

1
r )

= ϑ(δe(σn, σn+1)) < δe(σn, σn+1),

which is a contradiction. Therefore, (10) becomes

δe(σn, σn+1) ≤ ϑ(δe(σn−1, σn))

≤ ϑ2(δe(σn−2, σn−1))

...

≤ ϑn(δe(σ0, σ1)). (11)
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Let m, n ∈ Nwith m > n, and then

δe(σn, σm) ≤ e(σn, σm)[δe(σn, σn+1) + δe(σn+1, σm)]

≤ e(σn, σm)δe(σn, σn+1) + e(σn, σm)e(σn+1, σm)δe(σn+1, σn+2)

+ · · ·+ e(σn, σm)e(σn+1, σm)e(σn+2, σm) · · · e(σm−1, σm)δe(σm−1, σm).

Using (11), we obtain

δe(σn, σm) ≤ e(σn, σm)ϑ
n(δe(σ0, σ1)) + e(σn, σm)e(σn+1, σm)ϑ

n+1(δe(σ0, σ1))

+ · · ·+ e(σn, σm)e(σn+1, σm) · · · e(σm−1, σm)ϑ
m−1(δe(σ0, σ1))

≤
m−1

∑
i=n

(
i

∏
j=n

e(σj, σm)

)
ϑi(δe(σ0, σ1))

≤
∞

∑
i=1

(
i

∏
j=1

e(σj, σm)

)
ϑi(δe(σ0, σ1)). (12)

Because ϑ is an extended [-CF, the series ∑∞
i=1

(
∏i

j=1 e(σj, σm)
)

.

ϑi(δe(σ0, σ1)) is therefore convergent. Setting S = ∑∞
i=1

(
∏i

j=1(σj, σm)
)

ϑi(δe(σ0, σ1)) and

Sk = ∑k
i=1

(
∏i

j=1 e(σj, σm)
)
(ϑi(δe(σ0, σ1)). Thus, (12) can be written as

δe(σn, σm) ≤ (Sm−1, Sn−1).

Applying limn,m→∞ on both sides of the above inequality, we obtain δe(σn, σm) −→ 0
indicating that {σn}n∈N is a Cauchy sequence in Ξ. Seeing that Ξ is a complete extended
[-MS, there exists an element u ∈ Ξ such that

lim
n−→∞

δe(σn, u) = 0.

Now, by using the triangle inequality in Ξ, we obtain

δe(u, [Tu]α£) ≤ e(u, [Tu]α£)[δe(u, σn) + δe(σn, [Tu]α£)]

≤ e(u, [Tu]α£)δe(u, σn) + e(u, [Tu]α£)H([Tσn−1]α£ , [Tu]α£). (13)

Because T is H-continuous, by applying lim as n −→ ∞ in (13), we obtain δe(u, [Tu]α£) = 0,
which implies u ∈ [Tu]α£ .

Case 2 : r = 0. In this case, take σ = σn−1 and ν = σn in (2), and then by the proximality
of T,

Mr
T(σn−1, σn) = Π(σn−1, σn)

= min



δe(σn−1, σn), δe(σn−1, [Tσn−1]α£), δe(σn, [Tσn]α£),
δe(σn ,[Tσn ]α£ )(1+δe(σn−1,[Tσn−1]α£ ))

1+δe(σn−1,σn)
,

δe(σn ,[Tσn−1]α£ )(1+δe(σn−1,[Tσn ]α£ ))

1+δe(σn−1,σn)
,

δe(σn−1,[Tσn ]α£ )+δe(σn ,[Tσn−1]α£ )

2e(σn−1,[Tσn ])


= min

{
δe(σn−1, σn), δe(σn−1, σn), δe(σn, σn+1),

δe(σn ,σn+1)(1+δe(σn−1,σn))
1+δe(σn−1,σn)

, δe(σn−1,σn+1)+δe(σn ,σn)
2e(σn−1,σn+1)

}

≤ min
{

δe(σn−1, σn), δe(σn, σn+1),
δe(σn−1, σn) + δe(σn, σn+1)

2

}
. (14)
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Using (14) in (8) and noting that ϑ is nondecreasing, we obtain

δe(σn, σn+1) ≤ ϑ

[
min

{
δe(σn−1, σn), δe(σn, σn+1),

δe(σn−1, σn) + δe(σn, σn+1)

2

}]
. (15)

We will take into consideration the following scenarios to clarify the inequality above:

(i) If min
{

δe(σn−1, σn), δe(σn, σn+1),
δe(σn−1,σn)+δe(σn ,σn+1)

2

}
= δe(σn, σn+1),

then from (15),

δe(σn, σn+1) ≤ ϑ(δe(σn, σn+1)) < δe(σn, σn+1),

a contradiction.
(ii) If min

{
δe(σn−1, σn), δe(σn, σn+1),

δe(σn−1,σn)+δe(σn ,σn+1)
2

}
= δe(σn−1,σn)+δe(σn ,σn+1)

2 .
Then, (15) implies,

min{δe(σn−1, σn), δe(σn, σn+1)} ≥
δe(σn−1, σn) + δe(σn, σn+1)

2
. (16)

Two subcases arise:

(a) Assume that min{δe(σn−1, σn), δe(σn, σn+1)} = δe(σn−1, σn), and then

δe(σn−1, σn) < δe(σn, σn+1). (17)

On the other hand, from (16), we have

δe(σn−1, σn) ≥
δe(σn−1, σn) + δe(σn, σn+1)

2
.

From the inequality mentioned above, we can easily calculate that

δe(σn−1, σn) ≥ δe(σn, σn+1),

which deviates from the assumption (17).
(b) Suppose that min{δe(σn−1, σn), δe(σn, σn+1)} = δe(σn, σn+1), then

δe(σn, σn+1) < δe(σn−1, σn). (18)

Additionally, we see from (16) that

δe(σn, σn+1) ≥
δe(σn−1, σn) + δe(σn, σn+1)

2
.

The above inequality leads to the simple evaluation that

δe(σn, σn+1) ≥ δe(σn−1, σn),

which contradicts the assumption (18).

(iii) If min
{

δe(σn−1, σn), δe(σn, σn+1),
δe(σn−1,σn)+δe(σn ,σn+1)

2

}
= δe(σn−1, σn), then (15) gives

δe(σn, σn+1) ≤ ϑ(δe(σn−1, σn)).
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Therefore, (15) becomes

δe(σn, σn+1) ≤ ϑ(δe(σn−1, σn))

≤ ϑ2(δe(σn−2, σn−1))

...

≤ ϑn(δe(σ0, σ1)). (19)

Repeating the process similar to Case r > 0, it can be deduced from (19) that {σn}n≥1 is a
Cauchy sequence in Ξ. As Ξ is complete, there exists an element u ∈ Ξ such that

lim
n−→∞

δe(σn, u) = 0.

Next, we demonstrate that u ∈ [Tu]α£ .

δe(u, [Tu]α£) ≤ e(u, [Tu]α£){δe(u, σn) + δe(σn, [Tu]α£)}
≤ e(u, [Tu]α£){δe(u, σn) + H([Tσn−1]α£ , [Tu]α£)}.

Applying limn−→∞ in the above inequality and using the H-continuity of T, one can easily
see that δe(u, [Tu]α£) = 0, which implies u ∈ [Tu]α£ .

The following result is established from Case 1 in the proof of Theorem 2.

Theorem 3. Let (Ξ, δe) be a complete extended [-MS and T : Ξ −→ F£S(Ξ) be a £-FS-valued
map satisfying the following:

(i) T is β-admissible;
(ii) There exists σ0 ∈ Ξ and σ1 ∈ [Tσ0]α£ such that β(σ0, σ1) ≥ 1, where α£ ∈ £ \ {0£};
(iii) T is H-continuous;
(iv) [Tσ]α£ is a prox set for every σ ∈ Ξ.

Furthermore, suppose that there exists ρ ∈ Z, ϑ ∈ Ωe[ and β : Ξ× Ξ −→ R+ such that for each
σ, ν ∈ Ξ,

ρ
(

β(σ, ν)H([Tσ]α£ , [Tν]α£), ϑ([Γ(σ, ν)]
1
r )
)
≥ 0. (20)

where Γ(σ, ν) is defined earlier. Then, T has at least one £-FFP in Ξ.

Example 9. Let Ξ = [0, ∞). Define δe : Ξ × Ξ −→ R+ and e : Ξ × Ξ −→ [1, ∞) as
δe(σ, ν) = (σ − ν)2 and e(σ, ν) = σ + ν + 2, for each σ, ν ∈ Ξ. Then, (Ξ, δe) is a complete
extended [-MS, which is not an MS, as by taking σ = 3, ν = 6, and ω = 5, we have

δe(3, 6) = 9 � 5 = δe(3, 5) + δe(5, 6).

Furthermore, it is worth noting that (Ξ, δe) is not a b-MS due to the fact that e(σ, ν) is not equal to
any constant term as it depends on σ and ν. Moreover, let £ = {ξ, v, π, γ} with ξ �£ v �£ γ and
ξ �£ π �£ γ, where v, π are non-comparable. Then, (£,�£) is a CDL. For each σ ∈ Ξ, consider a
£-FS Tσ : Ξ −→ £, which we define as:
If σ = 1

(Tσ)(a) =
{

γ, if a = 1;
v, if a 6= 1.
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If σ 6= 1

(Tσ)(a) =


γ, if 0 ≤ a ≤ σ2;
ξ, if σ2 < a ≤ σ2 + 2;
v, if σ2 + 2 < a ≤ 4σ2 + 9;
π, if 4σ2 + 9 < a < ∞.

Let α£ = γ, and then

[Tσ]α£ =

{
{1}, i f σ = 1;[
0, σ2], i f σ 6= 1.

(21)

Clearly, Tσ ∈ F£S(Ξ) for each σ ∈ Ξ. Define the functions β : Ξ×Ξ −→ R+ and ϑ : R+ −→ R+ by

β(σ, ν) =


3, if σ = ν = 1;

1
290 , if σ, ν ∈ {2, 3} and σ 6= ν;
0, elsewhere.

and ϑ(t) = t
4 , for every t > 0. Let ρ(τ, κ) = 2

5 κ − τ for every τ, κ ∈ R+. Obviously, ρ ∈ Z and
ϑ ∈ Ωe[. Next, we proceed to verify (20) in the subsequent cases:

Case 1 : If σ = ν = 1, then [Tσ]α£ = [Tν]α£ = {1}, and so, H([Tσ]α£ , [Tν]α£) = 0 for all
σ, ν ∈ Ξ. Therefore,

ρ
(

β(σ, ν)H([Tσ]α£ , [Tν]α£), ϑ([Γ(σ, ν)]
1
r )
)

= ρ
(

0, ϑ([Γ(σ, ν)]
1
r )
)

=
2
5

ϑ([Γ(σ, ν)]
1
r ) ≥ 0

Case 2: If σ, ν ∈ {2, 3} with σ 6= ν, then let σ = 2 and ν = 3 so [Tσ]α£ = [0, 4], [Tν]α£ = [0, 9],
β(σ, ν) = 1

290 , and H([Tσ]α£ , [Tν]α£) = H([0, 4], [0, 9]) = 25.

[Γ(2, 3)]
1
r =


max



(δe(2, 3))r, (δe(2, [T2]α£))
r, (δe(3, [T3]α£))

r,(
δe(3,[T3]α£ )(1+δe(2,[T2]α£ ))

1+δe(2,3)

)r
,(

δe(3,[T2]α£ )(1+δe(2,[T3]α£ ))

1+δe(2,3)

)r
,(

δe(3,[T2]α£ ).δe(2,[T3]α£ )

1+δe(2,3)

)r





1
r

= 1.

Thus, (20) becomes

ρ
(

β(2, 3)H([T2]α£ , [T3]α£), ϑ([Γ(2, 3)]
1
r )
)

= ρ

(
1

290
(25), ϑ(1)

)
=

2
5

ϑ(1)− 25
290

=
2
5

(
1
4

)
− 5

58
≥ 0.

Case 3: If σ, ν ∈ Ξ \ {1, 2, 3}, then β(σ, ν) = 0, and therefore

ρ
(

0, ϑ([Γ(σ, ν)]
1
r )
)
=

2
5

ϑ([Γ(σ, ν)]
1
r ) ≥ 0.

Additionally, it is clear that the £-FS-valued map T is β-admissible and H-continuous. It can also be
shown that [Tσ]α£ is prox for each σ ∈ Ξ. Because Theorem 3 meets all its assumptions, T possesses
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numerous £-FFPs within Ξ. It can also be observed by the Figure 3, where the red dot represents the
point [Tσ]α£ = {1} and the teal-colored region corresponds to [Tσ]α£ = [0, σ2].

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

Figure 3. Graphical illustration of (21) representing infinitely many fixed points.

Now, we provide another example supporting our results.

Example 10. Let Ξ = {1, 2, 3, ...}. Define e : Ξ× Ξ −→ [1, ∞) and δe : Ξ× Ξ −→ R+ by

e(σ, ν) =

{
|σ− ν|3, if σ 6= ν;
1, if σ = ν.

and δe(σ, ν) = (σ − ν)4, respectively, for each σ, ν ∈ Ξ. Then, (Ξ, δe) is a complete extended
[-MS. Additionally, let £ = {ξ, v, π, γ} with ξ �£ v �£ γ and ξ �£ π �£ γ, where v, π are
non-comparable. Then, (£,�£) is a CDL. For each σ ∈ Ξ, consider a £-FS Tσ : Ξ −→ £, which is
defined as:

(Tσ)(a) =


π, if a = σ;
γ, if 4σ− 3;
v, if a = σ2;
ξ, otherwise .

Then, for α£ = π, we obtain

[Tσ]α£ = {σ, 4σ− 3}.

Clearly, Tσ ∈ F£S(Ξ) for each σ ∈ Ξ. Define the functions β : Ξ×Ξ −→ R+ and ϑ : R+ −→ R+ by

β(σ, ν) =


1, if σ = ν = 1;

1
1650 , if σ, ν ∈ {3, 4} and σ 6= ν;
0, elsewhere.

and ϑ(t) = 9t
10 , for every t > 0. Let ρ(τ, κ) = 9

10 κ − τ for every τ, κ ∈ R+. Then, ρ ∈ Z

and ϑ ∈ Ωe[. By following the pattern described in the example above, it becomes evident that T
possesses £-FFPs within Ξ.

4. Consequences

In this section, we demonstrate how our main Theorem can be used to derive a number
of intriguing FP results existing in the literature, especially when using different forms of
SFs. That is, SFs are very beneficial to express different kinds of contractivity conditions.
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Corollary 1. Let (Ξ, δe) be a complete extended [-MS and T : Ξ −→ F£S(Ξ) be a £-FS-valued
map satisfying the condition:

β(σ, ν)H([Tσ]α£ , [Tν]α£) ≤ ϑ(Mr
T(σ, ν)), (22)

for all σ, ν ∈ Ξ, where ϑ ∈ Ωe[ and β : Ξ× Ξ −→ R+ is a function. Also, assume the following:

(i) T is a β-admissible £-FS-valued map;
(ii) There exists σ0 ∈ Ξ and σ1 ∈ [Tσ0]α£ such that β(σ0, σ1) ≥ 1, where α£ ∈ £ \ {0£};
(iii) T is H-continuous;
(iv) [Tσ]α£ is prox for each σ ∈ Ξ.

Then, T has at least one £-FFP in Ξ.

Proof. Set ρ(τ, κ) = ϑ(κ) − τ for all τ, κ ∈ R+ in Theorem 2. Then, (22) follows easily.
Note that ϑ(κ)− τ ∈ Z. Consequently, Theorem 2 can be applied to find u ∈ Ξ such that
u ∈ [Tu]α£ .

The below-mentioned corollary is the proper extension and fuzzification of the result
of Rhoades [38].

Corollary 2. Consider a complete extended [-MS (Ξ, δe) and let T : Ξ −→ F£S(Ξ) be a £-FS-
valued map such that there exists a lower semicontinuous function ϑ : R+ −→ R+ verifying
ϑ−1(0) = {0} and satisfying the following condition:

H([Tσ]α£ , [Tν]α£) ≤ ϑ(Mr
T(σ, ν))− ϑ2(Mr

T(σ, ν)),

for all σ, ν ∈ Ξ. Further, assume the following:

(i) T is H-continuous;
(ii) [Tσ]α£ is prox for each σ ∈ Ξ.

Then, there exists u ∈ Ξ such that u ∈ [Tu]α£ .

Proof. This result follows by taking ρ = ρΓ in Theorem 2 where the function
ρΓ : R+ × R+ −→ R is defined by ρΓ(τ, κ) = κ − ϑ(κ) − τ for all τ, κ ∈ R+. Clearly,
ρΓ ∈ Z.

The following corollary is the improvement in the first metric FP Theorem under
multi-valued contractions due to Nadler [16] by considering α£ = 1£ and defining a crisp
set-valued map H : Ξ −→ k(Ξ) as Hσ = [Tσ]1£ for all σ ∈ Ξ.

Corollary 3. Consider a complete extended [-MS (Ξ, δe) and suppose T : Ξ −→ F£S(Ξ) is a
£-FS-valued map that satisfies:

H([Tσ]α£ , [Tν]α£) ≤ iδe(σ, ν),

for all σ, ν ∈ Ξ, where i ∈ (0, 1). Moreover, assume the following:

(i) T is H-continuous;
(ii) [Tσ]α£ is prox for each σ ∈ Ξ.

Then, T has a £-FFP in Ξ.

Proof. It is the special case of Theorem 2 that is derived by using the SF ρ(τ, κ) = iκ − τ
for all τ, κ ∈ R+, β(σ, ν) = 1, ϑ(t) = it for all t ≥ 0 with i ∈ (0, 1) along with Mr

T(σ, ν) =
δe(σ, ν) (taking r = 1).

Given below is the definition of a single-valued β-admissible map raised by Samet
in [21].
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Definition 24 ([21]). Let z : Ξ −→ Ξ and β : Ξ× Ξ −→ R+ be mappings. Then, z is known
as β-admissible if for all σ, ν ∈ Ξ,

β(σ, ν) ≥ 1 implies β(zσ,zν) ≥ 1.

The main finding of Chifu and Karapinar [33] (Theorem 2) without involving the
triangular β-admissibility of z is stated as follows:

Corollary 4. Consider a complete extended [-MS (Ξ, δe) and let z : Ξ −→ Ξ be a β-admissible
single-valued map satisfying:

ρ(β(σ, ν)H(zσ,zν), ϑ(Mr
z(σ, ν))) ≥ 0,

for all σ, ν ∈ Ξ, where ϑ ∈ Ωe[,

Mr
z(σ, ν) =

{
[Σ(σ, ν)]

1
r , for r > 0, σ, ν ∈ Ξ

Ω(σ, ν), for r = 0, σ, ν ∈ Ξ,

Σ(σ, ν) = max



(δe(σ, ν))r, (δe(σ,zσ))r, (δe(ν,zν))r,(
δe(ν,zν)(1+δe(σ,zσ))

1+δe(σ,ν)

)r
,(

δe(ν,zσ)(1+δe(σ,zν))
1+δe(σ,ν)

)r
,(

δe(ν,zσ).δe(σ,zν)
1+δe(σ,ν)

)r
,


,

and

Ω(σ, ν) = min


δe(σ, ν), δe(σ,zσ), δe(ν,zν),

δe(ν,zν)(1+δe(σ,zσ))
1+δe(σ,ν) ,

δe(ν,zσ)(1+δe(σ,zν))
1+δe(σ,ν) ,

δe(σ,zν)+δe(ν,zσ)
2e(σ,zν)

,

with r ≥ 0. Then, there exists u ∈ Ξ such that zu = u.

Proof. Let α£ ∈ £ \ {0£} and consider a £-FS-valued map Tσ : Ξ −→ £ for each σ ∈ Ξ,
defined by

T(σ)(t) =
{

α£, if t = zσ
0£, if t 6= zσ.

Then,

[Tσ]α£ = {zσ}.

Clearly, {zσ} ∈ k(Ξ). In the present case, H([Tσ]α£ , [Tν]α£) = δe(zσ,zν). Hence,
Theorem 2 can be used to obtain u ∈ Ξ such that u ∈ [Tu]α£ = {zu}, which implies
that u = zu.

Corollary 5. The main result of Shagari in [37] can be expressed as a consequence of our main
result by taking £ = [0, 1] in Theorem 2.

5. Application in Graphic Contraction

In this section, the main focus centers on the application of the £-FFP result in a graphic
contraction. The exploration is supplemented with examples that feature intriguing 2D and
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3D graphs and captivating computer simulations. We begin by recalling some definitions
from graph theory.

5.1. Exploring the Basics from Graph Theory

Jachymski, in [34], generalizes the BCP by proposing the conception of contraction
mapping and FPs for an MS equipped with a directed graph. In this subsection, we consider
an extended [-MS which is equipped with a graph and derive an FP result. In the light
of [34], let (Ξ, δe) be an extended [-MS and the diagonal of the Cartesian product Ξ× Ξ is
represented by D. LetG = (V(G),E(G)) be a directed graph with no parallel edges, where
V(G) represents the set of vertices, while E(G) manifests the set of edges in G. Then, Ξ is
said to be equipped with G if V(G) = Ξ and E(G) involves all loops {(u, u) : u ∈ Ξ}, that
is,D ⊆ E(G). Additionally, the graphG is considered to be a weighted graph by allotting to
every edge the distance between its vertices. In a graph G, a walk comprises a sequence of
edges and is a way of getting from one vertex to another of the form σ0σ1, σ1σ2, · · · , σm−1σm,
in which any two edges are adjacent. A sequence of vertices σ0, σ1, . . . , σm can be determined
by this type of walk. A walk in which no vertex appears more than once is called a path.
Formally, for σ, ν ∈ V(G), a path from σ to ν of length l (the number of edges in a walk
is called its length) is a sequence {σn}l

n=0 of l + 1 vertices such that σ0 = σ, σl = ν and
(σn−1, σn) ∈ E(G) for n = 1, 2, . . . , l. Furthermore, a graph is defined as connected if,
whenever its set of vertices is divided into two non-empty sets Ξ and ∇, there exists an
edge that connects a vertex from Ξ to a vertex from∇, that is, for each pair of vertices there
always exists a path between them.

Example 11. LetG = (V(G),E(G)) be a directed graph withV(G) = {υ1, υ2, υ3, υ4, υ5, υ6, υ7}
as a set of vertices and E(G) = {υ1υ1, υ1υ2, υ1υ3, υ2υ2, υ2υ3, υ2υ4, υ2υ5, υ3υ3, υ3υ4, υ3υ6, υ4υ4,
υ4υ5, υ4υ6, υ5υ5, υ5υ7, υ6υ6, υ6υ5, υ6υ7, υ7υ7} as a set of edges. It can be observed that D ⊆ E(G),
and the graph G does not have any parallel edge. Additionally, each edge of G is assigned a
numerical value, known as its edge-weight. Hence, G can be classified as a weighted graph. The
visual representation of G is depicted by Figure 4.

υ1

υ2

υ3

υ4

υ5

υ6

υ7

15

21

25

5

33

7

9

11

28

45

10

30

Figure 4. Visual representation of weighted graph G.

5.2. £-Fuzzy Fixed Points in Graphical Extended b-MSs

Keeping in mind Jachymski’s definition ofG-continuity for a single-valued map in [34],
we define it for a £-FS-valued map.

Definition 25. Let (Ξ, δe,G) be an extended [-MS equipped with a graph G. A £-FS-valued map
T : Ξ −→ F£(Ξ) is known as G-continuous at a point u ∈ Ξ, if the following condition holds:
for any sequence {σn}n∈N in Ξ with δe(σn, u) −→ 0 as n −→ ∞ and (σn, σn+1) ∈ E(G) for
all n ∈ N, we have H([Tσn]α£ , [Tu]α£) −→ 0 as n −→ ∞. To be classified as G-continuous,
a function T must show continuity at every point in the set Ξ.
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Some other concepts needed for our result are also established.

Definition 26. Let (Ξ,G) be a non-empty set. A £-FS-valued map T : Ξ −→ F£(Ξ) is
edge-preserving if for all σ, ν ∈ Ξ, (σ, ν) ∈ E(G), there exists an α£ ∈ £ \ {0£} such that
([Tσ]α£ , [Tν]α£) ⊆ E(G).

Definition 27. Let (Ξ, δe,G) be an extended [-MS equipped with a graph G. A subset Γ of Ξ is
termed as prox if for every point σ ∈ Ξ, there exists an element k ∈ Γ with an edge (σ, k) ∈ E(G)
such that δe(σ, Γ) = δe(σ, k).

Theorem 4. Let (Ξ, δe,G) be a complete extended [-MS with a graph G and T : Ξ −→ F£S(Ξ)
be a £-FS-valued map. Suppose there exists β : Ξ× Ξ −→ R+, ρ ∈ Z and ϑ ∈ Ωe[ such that
it satisfies:

ρ(β(σ, ν)H([Tσ]α£ , [Tν]α£), ϑ(Mr
T(σ, ν))) ≥ 0, (23)

for all σ, ν ∈ Ξ. Additionally, suppose the following:

(i) (σ, ν) ∈ E(G) implies ([Tσ]α£ , [Tν]α£) ⊆ E(G) for all σ, ν ∈ Ξ;
(ii) There exists σ0 ∈ Ξ and σ1 ∈ [Tσ0]α£ with (σ0, σ1) ∈ E(G), where α£ ∈ £ \ {0£};
(iii) For each σ ∈ Ξ and ν ∈ [Tσ]α£ with ([Tσ]α£ , [Tν]α£) ⊆ E(G), we have ([Tν]α£ , [Tω]α£) ⊆

E(G) for all ω ∈ [Tν]α£ ;
(iv) T is G-continuous;
(v) [Tσ]α£ is prox for every element σ in Ξ.

Then, T has at least a £-FFP in Ξ.

Proof. Define β : Ξ× Ξ −→ R+ by

β(σ, ν) =

{
1, if (σ, ν) ∈ E(G),
0, otherwise.

(24)

To show that T is β-admissible, we consider σ ∈ Ξ and ν ∈ [Tσ]α£ with β(σ, ν) ≥ 1. Then,
from (24), we have (σ, ν) ∈ E(G) that, by condition (i), implies that ([Tσ]α£ , [Tν]α£) ⊆ E(G).
Therefore, by (iii), we obtain ([Tν]α£ , [Tω]α£) ⊆ E(G) for all ω ∈ [Tν]α£ , which further
implies (ν, ω) ∈ E(G). So, β(ν, ω) ≥ 1. We see that condition (i) of Theorem 2 is satisfied.
Furthermore, it is clear that the axioms (ii), (iv), and (v) stated in Theorem 4 imply, respectively,
the assertions (ii), (iii), and (iv) of Theorem 2. As a result, all the claims of Theorem 2 are
satisfied. Hence, T has a £-FFP in Ξ.

Example 12. Let Ξ = [0, ∞) and define δe:Ξ × Ξ −→ R+ by δe(σ, ν) = (σ − ν)2 with
e:Ξ × Ξ −→ [1, ∞) by e(σ, ν) = σ + ν + 2 for every σ, ν ∈ Ξ. Let G = (V(G),E(G))
be a directed graph where V(G) = Ξ and E(G) = {(σ, σ):σ ∈ Ξ} ∪ {(σ, ν):σ ≥ ν for all
σ, ν ∈ [0, 1]} ∪ {(σ, ν):σ ≤ ν for all σ, ν ∈ [1, ∞)}. Then, (Ξ, δe,G) is a complete extended [-MS
equipped with a graph G. Let £ = {ξ, v, π, γ} with ξ �£ v �£ γ and ξ �£ π �£ γ, where v, π
are not comparable. Then, (£,�£) is a CDL. For each σ ∈ Ξ, consider a £-FS, Tσ:Ξ −→ £, which
is defined as:

(Tσ)(a) =


ξ, if 0 ≤ a < σ2;
γ, if a = σ2;
π, if σ2 < a < ∞.

Then, for α£ = v, we can obtain

[Tσ]α£ = {σ2}. (25)
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We can easily see that T(σ) ∈ F£S(Ξ) for each σ ∈ Ξ. Now, defining β:Ξ× Ξ −→ R+ by

β(σ, ν) =


4, if σ = ν = 1;
1
7 , if σ, ν ∈ {2, 3} and σ 6= ν;
0, elsewhere.

and ϑ : R+ −→ R+ by ϑ(t) = t
2 , for all t > 0. Let ρ(τ, κ) = 2

3 κ − τ for all τ, κ ∈ R+. Then,
ρ ∈ Z and ϑ ∈ Ωe[. Following the pattern discussed in Example 9, we can also verify (23) under the
above-mentioned cases. Also, it is not difficult to show that T is edge-preserving and G-continuous,
and the subset [Tσ]α£ of Ξ is prox for each σ ∈ Ξ, and the conditions (ii) and (iii) of Theorem 4
are also met. Because all the hypotheses of Theorem 4 are fulfilled, it can be concluded that T has
£-FFPs in Ξ.

Figure 5 illustrates the weighted graph forW(G) = { 1
6 , 5

9 , 2
3 , 1, 11, 27, 40, 58} ⊆ V(G) where

the weight of edge (σ, ν) is given by δe(σ, ν), Figure 6 displays the FPs of [Tσ]α£ , and Figure 7
justifies the inequality (23) under various cases of [A(σ, ν)]

1
r and function β (a detailed explanation

can be found in the Appendix A at the end of this paper).

27
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1

1/6
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Figure 5. Weighted graph forW(G) ⊆ V(G) having edge-weight δe(σ, ν) for each edge (σ, ν).

−2 −1 1 2

−2

−1

1

2

[T0]α£

[T1]α£

[Tσ]α£ = {σ2}

y = σ

σ

y

Figure 6. Graph indicating that σ = 0, 1 are the fixed points of mapping defined in (25).
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(a) For [A(σ, ν)]
1
r = δe(σ, ν), β(σ, ν) > 0

−4 −2 0 2 4 −5

0

5
0

50

100

x
y

z

(b) For [A(σ, ν)]
1
r = δe(σ, ν), β(σ, ν) = 0
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(c) For [A(σ, ν)]
1
r = δe(σ, [Tσ]α£ ), β(σ, ν) = 0
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(d) For [A(σ, ν)]
1
r = δe(ν, [Tν]α£ ), β(σ, ν) = 0
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(e) For [A(σ, ν)]
1
r =

δe(ν,[Tν]α£ )(1+δe(σ,[Tσ]α£ ))

1+δe(σ,ν) , β(σ, ν) = 0

Figure 7. Validation of inequality (23) under different cases of [A(σ, ν)]
1
r and β.

6. Conclusions

In this paper, a number of existing FP results in the literature have been fused and
rectified by proposing the term modified admissible hybrid £-fuzzy Z-contraction in the
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framework of extended [-MSs. The concepts of β-admissible mappings, SFs, and hybrid
contractions have been implemented to consolidate several published results. Consequently,
the above-mentioned results are accurate in the setup of complete [-MSs by considering
e(σ, ν) = [, for some [ ≥ 1, and also in the bodywork of complete MSs by letting [ = 1. In
addition, the proved Theorems are also valid for FSs by taking £ = [0, 1]. It is essential to
note that by using various forms of SFs, one can obtain a number of new implications of
the existing findings.
Open Problems:

1. While this article extensively addresses the existence criteria for fixed points, what
criteria can be formulated to determine the uniqueness of fixed points within the
context of the discussed problems?

2. Is it possible to extend the results obtained for L-fuzzy mappings to the domain of L-q-
rung orthopair fuzzy mappings? What are the specific challenges and considerations
that need to be addressed in order to achieve this extension?
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Appendix A. Explanation of Figure 7

The modified admissible hybrid £-fuzzy Z-contraction:

ρ(β(σ, ν)H([Tσ]α£ , [Tν]α£), ϑ(Mr
T(σ, ν))) ≥ 0,

using [Tσ]α£ = {σ2}, ϑ(t) = t
2 , ρ(τ, κ) = 2

3 κ − τ from Example 12 in the above inequality,
we obtain

ρ(β(σ, ν)H
(
{σ2}, {ν2}

)
,

1
2
(Mr

T(σ, ν))) ≥ 0,

ρ(β(σ, ν)δe(σ
2, ν2),

1
2
([A(σ, ν)]

1
r )) ≥ 0
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for r > 0, and the contraction condition is reduced to

1
3
[A(σ, ν)]

1
r − β(σ, ν)(σ2 − ν2)2 ≥ 0. (A1)

Here, we observe six different cases which are given below:

Case 1. If [A(σ, ν)]
1
r = δe(σ, ν), then (A1) reduces to 1

3 (σ− ν)2 − β(σ, ν)(σ2 − ν2)2 ≥ 0.

Case 2. If [A(σ, ν)]
1
r = δe(σ, [Tσ]α£), then (A1) becomes 1

3 (σ− σ2)2− β(σ, ν)(σ2− ν2)2 ≥ 0.

Case 3. If [A(σ, ν)]
1
r = δe(ν, [Tν]α£), then (A1) becomes 1

3 (ν− ν2)2 − β(σ, ν)(σ2 − ν2)2 ≥ 0.

Case 4. If [A(σ, ν)]
1
r =

δe(ν,[Tν]α£ )(1+δe(σ,[Tσ]α£ ))

1+δe(σ,ν) , then (A1) becomes (ν−ν2)2(1+(σ−σ2)2)
3(1+(σ−ν2))

−
β(σ, ν)(σ2 − ν2)2 ≥ 0.

Case 5. If [A(σ, ν)]
1
r =

δe(ν,[Tσ]α£ )(1+δe(σ,[Tν]α£ ))

1+δe(σ,ν) , then (A1) becomes (ν−σ2)2(1+(σ−ν2)2)
3(1+(σ−ν2))

−
β(σ, ν)(σ2 − ν2)2 ≥ 0.

Case 6. If [A(σ, ν)]
1
r =

δe(ν,[Tσ]α£ )δe(σ,[Tν]α£ )

1+δe(σ,ν) , then (A1) becomes (ν−σ2)2(σ−ν2)2

3(1+(σ−ν2))
− β(σ, ν)(σ2−

ν2)2 ≥ 0.

It is worth mentioning here that each of the above-mentioned cases further divides
into three subcases, each corresponding to different values of the β function already defined
in Example 12. Thus, considering all the cases and their subcases under the contraction
condition, we have a total of 18 inequalities, all of which are verified through computer
simulations in Figure 7. For clarity, we included in this paper only those 3D graphs that
exhibit distinct shapes, as some of them have similar representations.

References
1. Van An, T.; Van Dung, N.; Kadelburg, Z.; Radenovic, S. Various generalizations of metric spaces and fixed point Theorems. Rev.

R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2015, 109, 175–198.
2. Ciric, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [CrossRef]
3. Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136,

1861–1869. [CrossRef]
4. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
5. Bakhtin, I. The contraction mapping principle in quasimetric spaces. J. Funct. Anal. 1989, 30, 26–37.
6. Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point Theorem.

Nonlinear Anal. Model. 2017, 22, 17–30. [CrossRef]
7. Berinde, V. Sequences of operators and fixed points in quasimetric spaces. Stud. Univ. Babes-Bolyai Math. 1996, 16, 23–27.
8. Hussain, A.; Kanwal, T.; Al-Rawashdeh, A. Global best approximate solutions for set valued contraction in b-metric spaces with

applications. Commun. Math. Sci. 2018, 9, 293.
9. Shatanawi, W.; Pitea, A.; Lazovic, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory

Appl. 2014, 2014, 135.
10. Fagin, R.; Stockmeyer, L. Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 1998, 30, 219–231. [CrossRef]
11. Kamran, T.; Samreen, M.; UL Ain, Q. A generalization of b-metric space and some fixed point Theorems. Mathematics 2017, 5, 19.

[CrossRef]
12. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
13. Li, H.; Yen, V.C. Fuzzy Sets and Fuzzy Decision-Making; CRC Press: Boca Raton, FL, USA, 1995.
14. Zhan, J.; Alcantud, J.C.R. A novel type of soft rough covering and its application to multicriteria group decision making. Artif.

Intell. Rev. 2019, 52, 2381–2410.
15. Heilpern, S. Fuzzy mappings and fixed point Theorem. J. Math. Anal. 1981, 83, 566–569. [CrossRef]
16. Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [CrossRef]
17. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3,

133–181. [CrossRef]
18. Al-Mazrooei, A.E.; Ahmad, J. Fixed point Theorems for fuzzy mappings with applications. Intell. Fuzzy Syst. 2019, 36, 3903–3909.

[CrossRef]
19. Shagari, M.S.; Azam, A. Integral type contractions of soft set-valued maps with application to neutral differential equations.

AIMS Math. 2020, 5, 342–358. [CrossRef]
20. Goguen, A. L-fuzzy sets. J. Math. Anal. Appl. 1967, 18, 145–174. [CrossRef]

http://doi.org/10.2307/2040075
http://dx.doi.org/10.1090/S0002-9939-07-09055-7
http://dx.doi.org/10.15388/NA.2017.1.2
http://dx.doi.org/10.1023/A:1008023416823
http://dx.doi.org/10.3390/math5020019
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0022-247X(81)90141-4
http://dx.doi.org/10.2140/pjm.1969.30.475
http://dx.doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.3233/JIFS-181687
http://dx.doi.org/10.3934/math.2020023
http://dx.doi.org/10.1016/0022-247X(67)90189-8


Mathematics 2023, 11, 4489 25 of 25

21. Samet, B.; Vetro, C.; Vetro, P. Fixed point Theorems for α− ψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl.
2012, 75, 2154–2165. [CrossRef]

22. Asl, J.H.; Rezapour, S.; Shahzad, N. On fixed points of α− ψ-contractive multifunctions. Fixed Point Theory Appl. 2012, 2012, 212.
[CrossRef]

23. Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α− ψ-Ciric generalized multifunctions. Fixed Point
Theory Appl. 2013, 2013, 24. [CrossRef]

24. Phiangsungnoen, S.; Sintunavarat, W.; Kumam, P. Fuzzy fixed point Theorems for fuzzy mappings via β-admissible with
applications. J. Uncertain. Anal. Appl. 2014, 2, 20. [CrossRef]

25. Rashid, M.; Azam, A.; Mehmood, N. L-Fuzzy fixed points Theorems for L-fuzzy mappings via βFL -admissible pair. Sci. World J.
2014, 2014, 853032. [CrossRef]

26. Rashid, M.; Kutbi, M.A.; Azam, A. Coincidence Theorems via alpha cuts of L-fuzzy sets with applications. Fixed Point Theory
Appl. 2014, 2014, 212. [CrossRef]

27. Azam, A.; Mehmood, N.; Rashid, M.; Pavlovic, M. L-fuzzy fixed points in cone metric spaces. J. Adv. Math. Stud. 2016, 9, 121–131.
28. Rashid, M.; Shahzad, A.; Azam, A. Fixed point Theorems for L-fuzzy mappings in quasi-pseudo metric spaces. J. Intell. Fuzzy

Syst. 2017, 32, 499–507. [CrossRef]
29. Al Rawashdeh, A.; Mehmood, N.; Rashid, M. Coincidence and common fixed points of integral contractions for L-fuzzy maps

with applications in fuzzy functional inclusions. J. Intell. Fuzzy Syst. 2018, 35, 2173–2187. [CrossRef]
30. Kanwal, S.; Azam, A. Bounded lattice fuzzy coincidence Theorems with applications. J. Intell. Fuzzy Syst. 2019, 36, 1531–1545.

[CrossRef]
31. Kanwal, S.; Hanif, U.; Noorwali, M.E.; Alam, M.A. Existence of αL-fuzzy fixed points of L-fuzzy mappings. Math. Probl. Eng.

2022, 2022, 6878428.
32. Sirajo Abdullahi, M.; Azam, A. L-fuzzy fixed point Theorems for L-fuzzy mappings via βFL -admissible with applications.

J. Uncertain. Anal. Appl. 2017, 5, 2. [CrossRef]
33. Chifu, I.C.; Karapinar, E. Admissible hybrid Z-contractions in b-metric spaces. Axioms 2019, 9, 2. [CrossRef]
34. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373.

[CrossRef]
35. Karapinar, E.; Agarwal, R.P. Interpolative Rus-Reich-Ciric type contractions via simulation functions. Analele Stiintifice Ale Univ.

Ovidius Constanta Ser. Mat. 2019, 27, 137–152. [CrossRef]
36. Khojasteh, F.; Shukla, S.; Radenovic, S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015,

29, 1189–1194. [CrossRef]
37. Mohammed, S.S.; Fulatan, I.A. Fuzzy fixed point results via simulation functions. Math. Sci. 2022, 16, 137–148. [CrossRef]
38. Rhoades, B. Some Theorems on weakly contractive maps. Nonlinear Anal. Theory Methods Appl. 2001, 47, 2683–2693. [CrossRef]
39. Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point

Theory 2012, 13, 337–346.
40. Bota, M.F.; Chifu, C.; Karapinar, E. Fixed point Theorems for generalized (α− ψ)-Ciric-type contractive multivalued operators in

b-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 1165–1177. [CrossRef]
41. Subashi, L.; Gjini, N. Some results on extended b-metric spaces and Pompeiu-Hausdorff metric. Progress. Res. J. 2017, 12,

2021–2029.
42. Roldán-López-de-Hierro, A.F.; Karapinar, E.; Roldán-López-de-Hierro, C.; Martínez-Moreno, J. Coincidence point Theorems on

metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [CrossRef]
43. Alharbi, A.S.; Alsulami, H.H.; Karapinar, E. On the power of simulation and admissible functions in metric fixed point theory.

J. Funct. Spaces 2017, 2017, 2068163. [CrossRef]
44. Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed point results on δ-symmetric quasi-metric space via simulation function with an

application to Ulam stability. Mathematics 2018, 6, 208. [CrossRef]
45. Aydi, H.; Felhi, A.; Karapinar, E.; Alojail, F.A. Fixed points on quasi-metric spaces via simulation functions and consequences.

J. Math. Anal. Appl. 2018, 9, 10–24.
46. Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001.
47. Berinde, V. Generalized contractions in quasimetric spaces. Semin. Fixed Point Theory 1993, 3, 3–9.
48. Samreen, M.; Kamran, T.; Postolache, M. Extended b-metric space, extended b-comparison function and nonlinear contractions.

UPB Sci. Bull. A Appl. Math. Phys. 2018, 80, 21–28.
49. Subashi, L. Some topological properties of extended b-metric space. In Proceedings of the 5th International Virtual Conference on

Advanced Scientific Results, Belgrade, Serbia, 5–9 June 2017; Volume 5, pp. 164–167.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.na.2011.10.014
http://dx.doi.org/10.1186/1687-1812-2012-212
http://dx.doi.org/10.1186/1687-1812-2013-24
http://dx.doi.org/10.1186/s40467-014-0020-6
http://dx.doi.org/10.1155/2014/853032
http://dx.doi.org/10.1186/1687-1812-2014-212
http://dx.doi.org/10.3233/JIFS-152261
http://dx.doi.org/10.3233/JIFS-172155
http://dx.doi.org/10.3233/JIFS-181754
http://dx.doi.org/10.1186/s40467-017-0056-5
http://dx.doi.org/10.3390/axioms9010002
http://dx.doi.org/10.1090/S0002-9939-07-09110-1
http://dx.doi.org/10.2478/auom-2019-0038
http://dx.doi.org/10.2298/FIL1506189K
http://dx.doi.org/10.1007/s40096-021-00405-5
http://dx.doi.org/10.1016/S0362-546X(01)00388-1
http://dx.doi.org/10.22436/jnsa.009.03.43
http://dx.doi.org/10.1016/j.cam.2014.07.011
http://dx.doi.org/10.1155/2017/2068163
http://dx.doi.org/10.3390/math6100208

	Introduction 
	Preliminaries
	Basic Framework
	Fundamental Concepts from Fuzzy Set Theory

	Main Results
	Consequences
	Application in Graphic Contraction
	Exploring the Basics from Graph Theory
	£-Fuzzy Fixed Points in Graphical Extended b-MSs

	Conclusions
	Appendix A
	References 

