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Abstract: This article introduces a new boundary-type meshless method designed for solving axisym-
metric transient groundwater flow problems, specifically for aquifer tests and estimating hydraulic
properties. The method approximates solutions for axisymmetric transient groundwater flow using
basis functions that satisfy the governing equation by solving the inverse boundary value problem in
the spacetime domain. The effectiveness of this method was demonstrated through validation with
the Theis solution, which involves transient flow to a well in an infinite confined aquifer. The study
included numerical examples that predicted drawdown at various radial distances and times near
pumping wells. Additionally, an iterative scheme, namely, the fictitious time integration method,
was employed to iteratively determine the hydraulic properties during the pumping test. The results
indicate that this approach yielded highly accurate solutions without relying on the conventional
time-marching scheme. Due to its temporal and spatial discretization within the spacetime domain,
this method was found to be advantageous for estimating crucial hydraulic properties, such as the
transmissivity and storativity of an aquifer.

Keywords: meshless; spacetime; pumping; hydraulic property; groundwater; aquifer
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1. Introduction

Due to climate change, the occurrence of extreme climate events, such as drought, is
often found around the world such that groundwater usage is increased dramatically [1–3].
Groundwater is typically extracted for human use by withdrawing water from pumping
wells located in drilled boreholes within the aquifer. The groundwater flow to an extraction
well is axisymmetric [4–6], which refers to flow that is symmetric with respect to a central
axis. Axisymmetric conditions are therefore suitable for modeling the aquifer tests because
the impact of stresses on the groundwater system is radially symmetric [7–9]. The Theis
solution has commonly been applied to analyze problems involving transient flow to a
well, which assumes radial flow to a well of constant discharge in an infinite aquifer [10,11].
Axisymmetric flow in a pumping well can be simulated using numerical methods, such
as an axisymmetric finite-difference flow model. This model is specifically designed to
analyze pumping tests in a heterogeneous aquifer [12–14]. Although mesh-generation
techniques can be employed to solve axisymmetric flow problems, they necessitate the
use of extremely dense meshes to achieve satisfactory accuracy [15,16]. Meshfree methods
were found to be highly promising as competitive alternatives due to their simplicity in
characterization and flexibility in solving inverse problems through boundary collocation
points, resulting in reduced computational complexity [17–19].

Meshfree methods offer significant benefits for problems involving complex and
irregular geometry, as they do not rely on mesh construction. The Trefftz method, the
method of fundamental solutions, and the radial basis function collocation method have
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gained widespread popularity and are commonly employed [12–14]. Meshfree methods
can be classified into boundary-type and domain-type meshless methods. This classifica-
tion is based on whether the basis functions satisfy the governing equation or not. The
boundary-type meshless method is particularly advantageous for solving axisymmetric
flow problems because it solely relies on boundary and source collocation points, eliminat-
ing the need for an extensive mesh [20–23]. Meanwhile, meshless approaches using the
Minkowski spacetime were recently proposed. The Minkowski spacetime domain combines
an n-dimensional Euclidean space with a one-dimensional time dimension, creating an
n + 1-dimensional manifold specifically for solving transient flow problems [24]. Within
this spacetime domain, spacetime basis functions are essential for discretizing both spatial
and temporal aspects of the governing equation. Additionally, this domain facilitates the
transformation of boundary and initial data into spacetime data. This allows for the direct
application of initial and boundary data on spacetime boundary collocation points. The
original axisymmetric flow problems, which are initially or finally defined in n dimensions,
can be reformulated as inverse boundary value problems in n + 1 dimensions [24]. The
use of the time-marching technique is therefore unnecessary in this spacetime approach.
Recently, these spacetime meshless methods have found extensive use in the field of hy-
drogeology, encompassing applications such as modeling saturated and unsaturated flow
problems, addressing interactions with surface water, and tackling shallow water wave
problems [25–28].

This article introduces a novel spacetime boundary-type meshless method designed
for the resolution of axisymmetric transient groundwater flow problems. The fundamental
features of this method are rooted in the spacetime domain, facilitating the direct applica-
tion of initial and boundary data onto spacetime boundary collocation points. The core of
this approach involves approximating solutions for axisymmetric transient groundwater
flow through the utilization of basis functions that satisfy the governing equation. This is
achieved by addressing the inverse boundary value problem within the spacetime domain.
The robustness and reliability of the proposed method were validated through a series of
comprehensive assessments. These included comparisons with established solutions, such
as the Theis solution and exact solutions. Furthermore, a set of numerical examples was
meticulously examined. These examples encompassed a range of scenarios, including the
prediction of drawdown near pumping wells. These scenarios involved instances such as
pumping in an infinite confined aquifer, addressing axisymmetric transient groundwater
flow problems, and simulating radial flow toward multiple wells within a confined aquifer
system. The organizational structure of this research article is as follows: In Section 2, the
mathematical foundations of the proposed spacetime boundary-type meshless method
are delineated, providing a clear framework for understanding the approach’s formula-
tion. Section 3 provides numerical examples that predict drawdown at different radial
distances and times in the vicinity of pumping wells. In Section 4, we present several ap-
plications demonstrating the estimation of aquifer hydraulic properties through pumping
tests. Finally, Section 5 offers a summary of the study’s main findings and conclusions.

2. Methodology
2.1. Governing Equation for Radial Flow

In a confined aquifer, the piezometric surface refers to the groundwater surface el-
evation observed in a well that is drilled into and screened within the confined aquifer,
where the groundwater level exceeds the upper confining layer (refer to Figure 1). The flow
toward a pumping well in a confined aquifer is described using the following equation:

∂2h
∂r2 +

1
r

∂h
∂r

=
S
T

∂h
∂t

, (1)

where h is the total head, r is the radial distance measured from the centerline of the well, S
is the storativity, T denotes the transmissivity, and t denotes the time. Equation (1) repre-
sents the mass conservation of the groundwater flow in the radial direction, considering
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variations in storage volume due to the expansion or contraction of confined water caused
by pressure changes. For the pumping rate, denoted as Q, in the boundary condition
equation below, a negative sign is applied, resulting in a negative direction in the radial
coordinate (r) while pumping. The initial condition, external boundary condition, and
internal boundary condition are respectively described as

h(r, t = 0) = 0, (2)

h(r = ∞, t) = 0, (3)

lim
r=rw

(2πrT
∂h
∂r

) = −Q. (4)
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This well facilitates a constant flow rate initiated at t = 0. The solution for the associated
simplified partial differential equation, as represented by Equation (1), was established by
Theis in 1935 [29]. The resulting solution, known as the Theis solution, is described as

h = h0(x, y)− Q
4πT

W(u), (5)

where h0(x, y) denotes the solution of the steady-state flow general solution, Q denotes
the discharge of the pumping well, W(u) denotes the well function, and u denotes a
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dimensionless parameter defined as u = r2S/4T(t− t0). The well function is approximated
using a truncated series expansion as follows:

W(u) = E1(u) = −γ− ln u + u− u2

2(2!)
+

u3

3(3!)
− u4

4(4!)
+ . . . , (6)

where E1(u) denotes the exponential integral and γ denotes Euler’s constant, which is
defined as 0.5772157 [11,29]. The equation of the Theis solution relates the drawdown to the
hydraulic conductivity of the aquifer, transmissivity, pumping rate, radial distance from the
well, and time since the pumping started, as defined in Equation (5). The Theis solution is
based on the assumption of radial flow toward a well with constant discharge in an infinite
aquifer. It was developed by Charles Theis in 1935 and is widely used in hydrogeology for
analyzing well tests and estimating aquifer properties [29,30]. The Theis solution is based
on the assumptions of radial symmetry, homogeneity, and infinite extent of the aquifer.
It provides a mathematical expression for the drawdown, which is the decrease in the
groundwater level caused by pumping at a given distance from the well.

2.2. Basis Function for the Axisymmetric Transient Groundwater Flow Problems

To derive time-dependent solutions for the axisymmetric diffusion equation, we utilize
a technique known as the method of variable separation [24]. An initial assumption is
made for the solution, which is as follows:

h(r, t) = R(r)T(t). (7)

To simplify matters, we examine the following equation:

R′ =
dR(r)

dr
, R′′ =

d2R(r)
dr2 , and T′ =

dT(t)
dt

. (8)

By incorporating the equations mentioned above into Equation (1), we can derive

α2(R′′ T +
1
r

R′T +
1
r2 RT) = RT′, (9)

where α2 denotes T/S. When we divide both sides of the equation above by R(r)T(t), we
can express Equation (9) as the following set of equations:

R′′

R
+

1
r

R′

R
− 1

α2
T′

T
= 0, (10)

1
α2

T′

T
= λ, (11)

where λ denotes a constant. To ascertain the eigenvalue of the aforementioned equations,
we introduce a constant parameter to ensure that the resulting value is either negative or
positive. Detailed formulations are outlined below.

(1) The first case: λ = 0
Considering the first case, λ = 0, the governing equation becomes

R′′ +
1
r

R′ = 0. (12)

The following solutions are obtained as

R = C1 ln r + C2
T = C3

, (13)
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where C1, C2, and C3 represent constants. Inserting Equation (13) into Equation (1), we may
obtain

h(r, t) = C1 ln r + C2, (14)

where C1 and C2 are constant.
(2) The second case: λ = k2

Considering the second case, λ = k2, the governing equation becomes

r2R′′ + rR′ − r2k2R = 0, (15)

We derive the solutions as follows:

R = C4 I0(kr) + C5K0(kr)
T = C6eα2k2t , (16)

where I0 denotes the modified Bessel function of the first kind; K0 denotes the modified
Bessel function of the second kind; and C4, C5, and C6 are constants. Substituting Equation
(16) into Equation (1), we have

h(r, t) = C3eα2k2t I0(kr) + C4eα2k2tK0(kr), (17)

where C3 and C4 are constants.
(3) The third case: λ = −k2

Considering the third case, λ = −k2, the governing equation becomes

r2R′′ + rR′ + r2k2R = 0. (18)

We obtain the solutions as follows:

R = C7 J0(kr) + C8Y0(kr)
T = C9e−α2k2t , (19)

where C7, C8, and C9 are constants, and J0 and Y0 denote the Bessel functions of the first
and second kind, respectively. By substituting Equation (19) into Equation (1), we arrive at
the following expression:

h(r, t) = C5e−α2k2t J0(kr) + C6e−α2k2tY0(kr), (20)

where C5 and C6 are constants.
Combining all the solutions derived from the previously mentioned formulations, we

can express the linearly independent solutions of the axisymmetric diffusion equation, as
given by Equation (1), as follows:

h(r, t) ≈ C1 ln r + C2 +
w

∑
k=1

[C3eα2k2t I0(kr) + C4eα2k2tK0(kr) + C5e−α2k2t J0(kr) + C6e−α2k2tY0(kr)], (21)

where w represents the order of the basis functions used for approximating the solution.
In the case of an infinite domain, consideration is limited to negative basis functions.
Consequently, the simplification of the above equation can be expressed as follows:

h(r, t) ≈ C1 ln r +
w

∑
k=1

akeα2k2t I0(kr). (22)

Using the final time and boundary conditions, we can discretize Equation (22) at
various boundary collocation points along the spacetime boundary. This process leads to
the formation of a system of linear equations, as shown in the following equation:

AC = B, (23)



Mathematics 2023, 11, 4497 6 of 23

where A =


1 eα2t1 I0(r1) e−α2t1 J0(r1) · · · e−α2w2t1 J0(r1)

1 eα2t2 I0(r2) e−α2t2 J0(r2) · · · e−α2w2t2 J0(r2)
...

...
...

...
...

1 eα2tp I0(rp) e−α2tp J0(rp) · · · e−α2w2tp J0(rp)

, B =
⌊
bb1 bb2 bb3 · · · bbp

⌋T,

and C =
[
a0 ak · · · bw

]T. A is a matrix with dimensions p× q, representing the basis
functions. C is a vector with dimensions q× 1, containing the unknown coefficients to be
determined. B is a vector with dimensions p× 1, representing the given boundary data at
boundary collocation points. Here, p represents the number of boundary collocation points
and q represents the number of terms associated with the order of the basis function, as de-
scribed in Equation (23). These terms can be defined as follows: r1, r2, · · · , rp represent the
radii, a0, ak, · · · , bw are the unknown coefficients to be evaluated, and bb1, bb2, bb3, · · · , bbp
represent the boundary data.

To solve Equation (23) and effectively determine the flow distribution within the
spacetime domain, we must find the unknown coefficients that correspond to this three-
dimensional spacetime domain. To achieve this, we introduce inner collocation points
within the spacetime domain. By employing Equation (23), we can calculate the distribution
at these inner collocation points within the spacetime domain.

2.3. Estimating Hydraulic Properties from Pumping Test

The pumping tests usually involve pumping from a single well and the ground-
water heads are measured at the pumping well and observation wells over time. The
curve-matching analysis, such as the log–log curve matching method, is usually adopted
for estimating hydraulic properties [6,7,9]. However, the curve-matching procedure re-
quires matching two graphical plots by hand or using commercially available computer
programs [10,11].

Predicting the drawdown at a radial distance and time when the transmissivity,
storativity, and pumping rate are known is called the forward problem. On the other hand,
estimating hydraulic properties from the pumping test is categorized as an inverse problem
in which the hydraulic properties are unknown. In this study, we revealed the estimation of
hydraulic properties from a pumping test without using the conventional curve-matching
method.

During a pumping test, the pumping rate is a known parameter. The well’s geometry
and the configuration of its boundaries are meticulously planned. However, certain hy-
draulic properties of an aquifer, such as transmissivity and storativity, remain unknown
and need to be determined. Additionally, we collect measurements of groundwater levels
at the observation well over various time intervals. These measured groundwater levels are
also referred to as Dirichlet boundary data. Considering potential variations in instrument
precision, a certain level of noise may exist. In this study, we accommodated this noise in
the boundary data using the following equation:

B̃D = BD ×
[

1 +
δ

100
× (2× rand− 1)

]
, (24)

where δ denotes the level of noise data, BD denotes the actual Dirichlet boundary data, B̃D
denotes the Dirichlet boundary data with noise, and rand represents a random number
generated using the rand command in MATLAB.

Since hydraulic properties are not given a priori, we adopted the iterative scheme
named the fictitious time integration method (FTIM) to iteratively find the hydraulic prop-
erties. The solution procedure first involves a guess regarding the hydraulic properties,
such as transmissivity and storativity. Because the hydraulic properties are not true val-
ues, the computed heads at the observation well are not consistence with the measured
groundwater heads. The root-mean-square error (RMSE) of heads at the observation well
is recorded. The advantage of utilizing RMSE in accuracy assessment lies in its ability
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to provide a quantitative, easily understood, and highly responsive measure of accuracy,
which greatly simplifies the process of comparing models. These attributes have established
RMSE as a widely used instrument for evaluating the precision of predictive models and
measurements. The RMSE for the correction of the hydraulic properties using the FTIM is
as follows:

T = T − δtνt(
1 + τT

k
)m

√
∑|hC − hO|2

n
, τT

k = kδt, (25)

S = S− δsνs(
1 + τS

k
)m

√
∑|hC − hO|2

n
, τS

k = kδs, (26)

where n is the number of data; δt and δs represent the time step sizes; vt and vs represent
the non–zero coefficients; m represents a value in the range of zero to one; k represents
the discrete time; and hC and hO represent the computed and observed heads, respectively.
The iterative procedure of the FTIM ends when one of the following convergence criteria
is achieved: √

∑|hC − hO|2

n
≤ ε, (27)

itn ≥ εn, (28)

where itn denotes the number of iterations, ε denotes convergence criteria, and εn denotes
the maximum number of iterations. In this study, we considered ε = 10−4 and εn = 200.

Figure 2 depicts the flowchart detailing the process for estimating hydraulic properties
through pumping test analysis in this study. The flowchart outlines the step-by-step process
for estimating the aquifer hydraulic properties from pumping test data.

2.4. Spacetime Collocation Scheme

The spacetime boundary-type meshless method is founded on the framework of the
Minkowski spacetime domain. This domain is a fusion of a two-dimensional Euclidean
space (Figure 3a) with a one-dimensional time dimension, resulting in a three-dimensional
manifold (Figure 3b). As shown in Figure 3a, two types of collocation points containing
the boundary collocation points and the source are placed in the two-dimensional space
domain. Figure 3b shows the illustration of the three-dimensional spacetime domain. To
efficiently utilize the collocation scheme within this Minkowski spacetime domain, the
strategic placement of source points is of utmost importance. In the spacetime collocation
scheme, these source points are located outside the boundaries of the spacetime domain, as
shown in Figure 3.

Utilizing the proposed method, two sets of points are required: the boundary points
and the source points. Boundary points are positioned along the well boundary, as indicated
by yellow circular symbols, as well as in the infinite domain outside the well boundary,
as represented by yellow triangular symbols. These boundary points serve the purpose
of defining both the boundary conditions and initial conditions. Meanwhile, the source
points, as denoted by small blue circular symbols, are positioned within the well boundary.

Within the spacetime collocation approach, we convert both the boundary and ini-
tial data into spacetime representations. This conversion allows for the original two-
dimensional transient problem, which is initially formulated as an initial value problem, to
be reformulated as a three-dimensional inverse boundary value problem. As a result, our
method does not require the use of time-marching techniques.
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3. Validation Example
3.1. Modeling Radial Flow toward a Well in an Infinite Confined Aquifer

In the first validation example, we investigated a two-dimensional problem involving
a transient flow problem to a well. This problem addressed by the Theis solution arises
when a well is pumping water from an infinite confined aquifer. The objective was to
determine how the pumping influences the groundwater levels and the rate at which water
is drawn from the surrounding aquifer.

In the context of radial flow toward a well, Equation (1) represents the governing
equation. The well’s position was specified as (10, 5), with a well radius of 0.5 ft. A well
located within a confined aquifer was scheduled to be pumped at a rate of 1500 ft3/day for
10 days. The boundary configuration, as illustrated in Figure 3, was defined as follows:

∂Ω = {(x, y, t)|x = r(θ) cos θ, y = r(θ) sin θ, 5 ≤ t ≤ 15},
r(θ) = 0.25 sin(8 θ), 0 ≤ θ ≤ 2π,

, (29)

where ∂Ω represents the boundary shape. The boundary data were established utilizing
Equation (5), which corresponds to the Theis solution. The Theis solution assumes radial
symmetry and homogeneous conditions, meaning that the aquifer properties are consistent
throughout and the flow occurs in all directions away from the well equally. The Theis
solution assumes the aquifer is infinite in extent, neglecting the influence of boundaries or
obstacles. Using the Theis solution, one can estimate the drawdown at a given distance
from the pumping well and assess the rate of groundwater extraction from the aquifer. In
the pumping tests, Q = 1500 ft3/day, S = 3.5 × 10−4, T = 525 ft2/day, and w = 6.

Figure 3a presents the spatial arrangement of boundary and source points designed for
simulating radial flow toward a well within a confined aquifer system. This setup includes a
total of 255 source points and 1297 boundary points. The source points were situated within
the pumping well. The boundary points were precisely aligned with the well boundaries
and in the infinite domain (outside the well boundary), as shown in Figure 3b. Additionally,
1230 validation points were placed outside the well boundaries to assess the accuracy of the
computed results. In the proposed spacetime collocation scheme, the boundary and initial
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data were transformed into spacetime data representations. This transformation enabled
the reformulation of the original two-dimensional transient problem, which was initially
formulated as an initial value problem. It was reformulated here as a three-dimensional
inverse boundary value problem. Consequently, the proposed method does not rely on
time-marching techniques, eliminating the need for iterative time-stepping calculations.

Figure 4 presents a comparison between the Theis solution and the computed draw-
down at various times. The numerical solutions obtained through our proposed method
align closely with the Theis solution. Additionally, comparisons of the results at specific
time instances, namely, t = 5 days, t = 10 days, and t = 15 days, were evaluated.
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To assess the accuracy of the proposed method, the maximum absolute error was
compared with the Theis solution. The obtained results reveal that the maximum absolute
error fell within the order of 10−6, signifying a high level of precision in the computed
drawdown values.

3.2. Modeling Radial Flow toward Two Wells in an Infinite Confined Aquifer

In the second validation example, we explored a two-dimensional transient flow
problem involving the influence of two wells. This scenario, addressed using the Theis
solution, simulated a situation where two pumping wells were extracting water from an
infinite confined aquifer. The primary objective was to assess how these pumping activities
impact groundwater levels and the rate of water withdrawal from the surrounding aquifer.
Focusing on the radial flow toward each well, we considered Equation (1) as the governing
equation. The two pumping wells, denoted as well 1 and well 2, were positioned at
coordinates (10, 5) and (15, 5), respectively. Each pumping well had a radius of 0.5 ft. Two
wells located within a confined aquifer were scheduled to be pumped at a rate of 1500
ft3/day and 500 ft3/day for 10 days. Boundary conditions for this scenario were defined
using the Theis solution, as represented by Equation (5), where S = 3.5 × 10−4, T = 525
ft2/day, and w = 6.

The locations of these two pumping wells, each with its radius, were meticulously
defined, as shown in Figure 5a. We utilized a spacetime collocation scheme that transformed
the boundary and initial data into spacetime representations, as shown in Figure 5b. A total
of 510 source points and 2471 boundary points were set. Figure 6 presents a comparison
between the Theis solution and the computed drawdown at the final time. The numerical
results obtained from our proposed method closely matched the Theis solution. The
analysis of this case indicated that pumping well 1 had a higher pumping rate (1500
ft3/day) compared with pumping well 2, which had a lower pumping rate (500 ft3/day).
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As a result, Figure 6 illustrates that the drawdown for pumping well 1 was larger, with a
drawdown value of approximately −5.9 ft, while the drawdown for pumping well 2 was
smaller, with a drawdown value of approximately −4.8 ft. Additionally, the drawdown
near both pumping well 1 and pumping well 2 was influenced by the pumping rates of
these wells, impacting their drawdown values. To evaluate the accuracy of the proposed
method, we compared the maximum absolute error with the Theis solution. The results
demonstrate that the maximum absolute error was within the range of 10−6, demonstrating
a remarkable level of precision in the computed drawdown values.
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3.3. Modeling Radial Flow toward Multiple Wells in an Infinite Confined Aquifer

In the third validation example, we explored a two-dimensional transient flow problem
that examined the impact of four wells. Equation (1) is the governing equation. Two
scenarios involving different placements of the four wells were considered, as depicted in
Figure 7. Boundary conditions for this scenario were defined using the Theis solution, as
represented by Equation (5), where S = 3.5 × 10−4, T = 525 ft2/day, and w = 6. The primary
goal was to evaluate the effects of these pumping activities on groundwater levels and the
rate of water extraction from the surrounding aquifer.
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(1) Case 1
In case 1, the four pumping wells, denoted as well 1, well 2, well 3, and well 4, were

positioned at the coordinates (0, 10), (10, 10), (0, 0), and (10, 0), respectively. Each pumping
well had a radius of 0.5 ft. Four wells situated within a confined aquifer were scheduled, as
shown in Figure 7a, to be pumped at the same rate of 1500 ft3/day for 10 days.

(2) Case 2
In case 2, the four pumping wells, designated as well 5, well 6, well 7, and well 8, were

situated at coordinates (0, 5), (5, 5), (10, 5), and (15, 5), respectively, each having a radius of
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0.5 ft. These wells were located within a confined aquifer, as shown in Figure 7b, and were
scheduled to undergo pumping at rates of 50, 1000, 1500, and 500 ft3/day, each for 10 days.

A total of 1020 source points and 4942 boundary points were set. The source points
were situated within the pumping wells, while the boundary points aligned with the well
boundaries. Moreover, to evaluate the precision of our computed results, we introduced
1230 validation points thoughtfully placed outside the well boundaries.

Figure 8a shows a comparison between the drawdown results computed using our
method and the Theis solution across varying distances from the four pumping wells
in case 1. These results underscore the alignment between our approach and the Theis
solution. The maximum absolute error was on the order of 10−6, indicating a high level of
precision in the computed drawdown values.
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Figure 8b presents a comparison of the drawdown results between our method and the
Theis solution at different distances from the four pumping wells in case 2. These results
highlight the consistency between our approach and the Theis solution. The maximum
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absolute error was in the order of 10−6, signifying a remarkably high level of precision in
the computed drawdown values.

4. Application
4.1. Estimating Aquifer Hydraulic Properties from a Pumping Test with One Well

As shown in the following analysis, three scenarios of estimating aquifer hydraulic
properties through pumping tests were carried out. The first scenario involved a known
storativity, requiring the estimation of the transmissivity. The second scenario involved a
known transmissivity, requiring the estimation of the storativity. The third scenario entailed
both the storativity and transmissivity being unknown, requiring the estimation of both
parameters, i.e., storativity and transmissivity.

(1) The First Scenario: Estimation of Transmissivity

The first scenario under investigation involved estimating the transmissivity of an
aquifer through pumping tests. The pumping rate Q and storativity S were 1500 ft3/day
and 3 × 10−4, respectively. The target value of the transmissivity T was 525 ft2/day. The
identification process started with an initial assumption for the unknown transmissivity
T since the number of unknown parameters was one. It concluded once the specified
stopping criteria, as shown in Equations (27) and (28), were met. The initial assumption of
the transmissivity T was 1700 ft2/day.

The boundary configuration is illustrated in Figure 3. The boundary data were es-
tablished utilizing Equation (5). A set of data points, consisting of 255 source points and
1297 boundary points, was positioned. The source points were specifically located within
the confines of the pumping well, while the boundary points were aligned with the precise
boundaries of the well. Furthermore, to evaluate the precision of our computed results,
we assigned an additional 1230 validation points strategically positioned outside the well
boundaries. The numerical parameters w = 6, δt = 1, vt = 1, and m = 0.01 were considered
in this numerical implementation. The aquifer parameters could be estimated by minimiz-
ing the sum of the squared errors between the observed and predicted drawdowns. This
optimization process was achieved using Equation (25).

Figure 9 displays the temporal evolution of the estimated transmissivity. The results
illustrate an initial fluctuation in the first few iterations, which stabilized to a constant value
after 11 iterations. The parameter estimation indicated that the estimated transmissivity
was accurately identified after 11 iterations.
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To evaluate the stability of the proposed method, we considered the input measured
data contaminated by random noise. The levels of noise were selected to be δ = 0 and δ
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= 0.1. Figure 10 illustrates a comparison between the Theis solution and the computed
drawdown for δ = 0 and δ = 0.1 at different time intervals. The maximum absolute errors for
δ = 0 and δ = 0.1 were 10−3 and 10−2, respectively. The analysis revealed a close alignment
between the computed drawdown and the Theis solution. Moreover, the results indicate
that even when considering the potential influence of noise on the boundary conditions,
our method consistently delivered high-precision outcomes, demonstrating its robustness
against noise interference.
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(2) The Second Scenario: Estimation of Storativity

The second scenario involved estimating the storativity of an aquifer using pumping
tests. The pumping rate Q and transmissivity T were 3000 ft3/day and 525 ft2/day, respec-
tively. The target value of the storativity S was 3.5× 10−4. The identification process started
with an initial assumption for the unknown storativity S since the number of unknown
parameters was one. It concluded once the specified stopping criteria were met. The initial
assumption of the storativity S was 5 × 10−4.

The boundary configuration is illustrated in Figure 3. The boundary data were es-
tablished utilizing Equation (5). A set of data points, consisting of 225 source points and
1297 boundary points, was positioned. The source points were specifically located within
the confines of the pumping well, while the boundary points were aligned with the precise
boundaries of the well. Furthermore, to evaluate the precision of our computed results,
we assigned an additional 1215 validation points strategically positioned outside the well
boundaries. The numerical parameters w = 6, δt = 1, vt = 1, and m = 0.01 were considered
in this numerical implementation. The aquifer parameters can be estimated by minimizing
the sum of the squared errors between the observed and predicted drawdowns. This
optimization process was achieved using Equation (26).

Figure 11 displays the temporal evolution of the estimated storativity. The results
illustrate an initial fluctuation in the first few iterations, which stabilized to a constant value
after 17 iterations. The parameter estimation indicates that the estimated storativity was
accurately identified after 17 iterations.
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second scenario).

To evaluate the stability of the proposed method, we considered that the input mea-
sured data were contaminated by random noise. The levels of noise were selected to be
δ = 0 and δ = 0.1. Figure 12 illustrates a comparison between the Theis solution and the
computed drawdown for δ = 0 and δ = 0.1 at different time intervals. The maximum
absolute errors for δ = 0 and δ = 0.1 were 10−3 and 10−2, respectively. It appears that the
computed drawdown closely matched the Theis solution.
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(3) The Third Scenario: Estimation of Transmissivity and Storativity

The third scenario involved estimating the storativity and transmissivity of an aquifer
using pumping tests. We considered both the storativity and transmissivity as being
unknown, requiring the estimation of both parameters, i.e., storativity and transmissivity.

The pumping rate Q was 1500 ft3/day. The target values of the transmissivity T and
storativity S were 525 ft2/day and 3 × 10−4, respectively. The identification process started
with an initial assumption for the unknown transmissivity T and storativity S since the
number of unknown parameters was two. It concluded once the specified stopping criteria
were met. The initial assumption of the transmissivity T and storativity S were 1700 ft2/day
and 5 × 10−4, respectively.

The boundary configuration is illustrated in Figure 3. The boundary data were es-
tablished utilizing Equation (5). A set of data points, consisting of 225 source points and
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1297 boundary points, was positioned. The source points were specifically located within
the confines of the pumping well, while the boundary points were aligned with the precise
boundaries of the well. Furthermore, to evaluate the precision of our computed results, we
assigned an additional 1215 validation points that were strategically positioned outside the
well boundaries. The numerical parameters w = 6, δt = 1, vt = 1, and m = 0.01 were con-
sidered in this numerical implementation. The aquifer parameters could be estimated by
minimizing the sum of the squared errors between the observed and predicted drawdowns.
This optimization process was achieved using Equations (25) and (26).

Figure 13 displays the temporal evolution of the estimated transmissivity and storativ-
ity. The results illustrate an initial fluctuation in the first few iterations, which stabilized to
a constant value after 10 iterations. The parameter estimation indicates that the estimated
transmissivity was accurately identified after 10 iterations.
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To evaluate the stability of the proposed method, we considered that the input mea-
sured data were contaminated by random noise. The levels of noise were selected to be
δ = 0 and δ = 0.01. Figure 14 illustrates a comparison between the Theis solution and the
computed drawdown for δ = 0 and δ = 0.01 at different time intervals. The maximum
absolute errors for δ = 0 and δ = 0.1 were 10−5 and 10−4, respectively. It appears that the
computed drawdown closely matched the Theis solution.

4.2. Estimating Aquifer Hydraulic Properties from a Pumping Test with Two Wells

This example under investigation involved estimating the transmissivity of an aquifer
from a pumping test with two wells. Focusing on the radial flow toward each well, we
considered Equation (1) as the governing equation. The two pumping wells, denoted as
well 1 and well 2, were positioned at coordinates (10, 5) and (15, 5), respectively. Each
pumping well had a radius of 0.5 ft. Two wells located within a confined aquifer were
scheduled to be pumped at a rate of 1500 ft3/day and 500 ft3/day for 10 days. The boundary
configuration is illustrated in Figure 5.

The scenario involved a known storativity, requiring the estimation of transmissivity.
The storativity S was 3× 10−4. The target value of the transmissivity T was 525 ft2/day. The
identification process started with an initial assumption for the unknown transmissivity
T since the number of unknown parameters was one. It concluded once the specified
stopping criteria were met. The initial assumption of the transmissivity T was 90 ft2/day.

We positioned a set of data points, consisting of 510 source points and 2471 boundary
points, with careful attention to their placement accuracy. The source points were specif-
ically located within the confines of the pumping well, while the boundary points were
aligned with the precise boundaries of the well. Furthermore, to evaluate the precision
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of our computed results, we assigned an additional 1215 validation points strategically
positioned outside the well boundaries. The numerical parameters w = 6, δt = 1, vt = 1,
and m = 0.01 were considered in this numerical implementation. The aquifer parameters
could be estimated by minimizing the sum of the squared errors between the observed and
predicted drawdowns. This optimization process was achieved using Equation (25).

Figure 15 displays the temporal evolution of the estimated transmissivity. The results
illustrate an initial fluctuation in the first few iterations, which stabilized to a constant value
after 16 iterations. The parameter estimation indicated that estimated transmissivity was
accurately identified after 16 iterations. Figure 16 presents a comparison between the Theis
solution and the computed drawdown, with a maximum absolute error of 10−6. The results
demonstrate a close alignment between the computed drawdown and the Theis solution.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 14. Comparison of computed drawdown and Theis solution for a pumping test with one 
well (the third scenario). 

4.2. Estimating Aquifer Hydraulic Properties from a Pumping Test with Two Wells 
This example under investigation involved estimating the transmissivity of an aqui-

fer from a pumping test with two wells. Focusing on the radial flow toward each well, we 
considered Equation (1) as the governing equation. The two pumping wells, denoted as 
well 1 and well 2, were positioned at coordinates (10, 5) and (15, 5), respectively. Each 
pumping well had a radius of 0.5 ft. Two wells located within a confined aquifer were 
scheduled to be pumped at a rate of 1500 ft3/day and 500 ft3/day for 10 days. The boundary 
configuration is illustrated in Figure 5. 

The scenario involved a known storativity, requiring the estimation of transmissivity. 
The storativity S was 3 × 10−4. The target value of the transmissivity T was 525 ft2/day. The 
identification process started with an initial assumption for the unknown transmissivity 
T since the number of unknown parameters was one. It concluded once the specified stop-
ping criteria were met. The initial assumption of the transmissivity T was 90 ft2/day. 

We positioned a set of data points, consisting of 510 source points and 2471 boundary 
points, with careful attention to their placement accuracy. The source points were specifi-
cally located within the confines of the pumping well, while the boundary points were 
aligned with the precise boundaries of the well. Furthermore, to evaluate the precision of 
our computed results, we assigned an additional 1215 validation points strategically po-
sitioned outside the well boundaries. The numerical parameters 6=w  , 1=tδ  , 1=tv  , 
and 10.0=m  were considered in this numerical implementation. The aquifer parameters 
could be estimated by minimizing the sum of the squared errors between the observed 
and predicted drawdowns. This optimization process was achieved using Equation (25). 

Figure 15 displays the temporal evolution of the estimated transmissivity. The results 
illustrate an initial fluctuation in the first few iterations, which stabilized to a constant 
value after 16 iterations. The parameter estimation indicated that estimated transmissivity 
was accurately identified after 16 iterations. Figure 16 presents a comparison between the 
Theis solution and the computed drawdown, with a maximum absolute error of 10−6. The 
results demonstrate a close alignment between the computed drawdown and the Theis 
solution. 

Figure 14. Comparison of computed drawdown and Theis solution for a pumping test with one well
(the third scenario).

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 15. Estimated transmissivity versus number of iterations for a pumping test with two wells. 

 
Figure 16. Comparison of computed drawdown and Theis solution for a pumping test with two 
wells. 

4.3. Estimating Aquifer Hydraulic Properties from a Pumping Test with Four Wells 
The final example involved estimating the transmissivity of an aquifer from a pump-

ing test with two wells. Focusing on the radial flow toward each well, we considered Equa-
tion (1) as the governing equation. The four pumping wells, designated as well 5, well 6, 
well 7, and well 8, were situated at coordinates (0, 5), (5, 5), (10, 5), and (15, 5), respectively, 
with each having a radius of 0.5 ft. These wells were located within a confined aquifer, as 
shown in Figure 7b, and were scheduled to undergo pumping at rates of 50, 1000, 1500, 
and 500 ft3/day, each for 10 days. 

The scenario involves known storativity, requiring the estimation of transmissivity. 
The storativity S was 3 × 10−4. The target value of the transmissivity T was 525 ft2/day. The 
identification process started with an initial assumption for the unknown transmissivity 
T since the number of unknown parameters was one. It concluded once the specified stop-
ping criteria were met. The initial assumption of the transmissivity T was 25 ft2/day. 

Figure 15. Estimated transmissivity versus number of iterations for a pumping test with two wells.



Mathematics 2023, 11, 4497 19 of 23

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 15. Estimated transmissivity versus number of iterations for a pumping test with two wells. 

 
Figure 16. Comparison of computed drawdown and Theis solution for a pumping test with two 
wells. 

4.3. Estimating Aquifer Hydraulic Properties from a Pumping Test with Four Wells 
The final example involved estimating the transmissivity of an aquifer from a pump-

ing test with two wells. Focusing on the radial flow toward each well, we considered Equa-
tion (1) as the governing equation. The four pumping wells, designated as well 5, well 6, 
well 7, and well 8, were situated at coordinates (0, 5), (5, 5), (10, 5), and (15, 5), respectively, 
with each having a radius of 0.5 ft. These wells were located within a confined aquifer, as 
shown in Figure 7b, and were scheduled to undergo pumping at rates of 50, 1000, 1500, 
and 500 ft3/day, each for 10 days. 

The scenario involves known storativity, requiring the estimation of transmissivity. 
The storativity S was 3 × 10−4. The target value of the transmissivity T was 525 ft2/day. The 
identification process started with an initial assumption for the unknown transmissivity 
T since the number of unknown parameters was one. It concluded once the specified stop-
ping criteria were met. The initial assumption of the transmissivity T was 25 ft2/day. 

Figure 16. Comparison of computed drawdown and Theis solution for a pumping test with two wells.

4.3. Estimating Aquifer Hydraulic Properties from a Pumping Test with Four Wells

The final example involved estimating the transmissivity of an aquifer from a pumping
test with two wells. Focusing on the radial flow toward each well, we considered Equation
(1) as the governing equation. The four pumping wells, designated as well 5, well 6, well
7, and well 8, were situated at coordinates (0, 5), (5, 5), (10, 5), and (15, 5), respectively,
with each having a radius of 0.5 ft. These wells were located within a confined aquifer, as
shown in Figure 7b, and were scheduled to undergo pumping at rates of 50, 1000, 1500, and
500 ft3/day, each for 10 days.

The scenario involves known storativity, requiring the estimation of transmissivity.
The storativity S was 3× 10−4. The target value of the transmissivity T was 525 ft2/day. The
identification process started with an initial assumption for the unknown transmissivity
T since the number of unknown parameters was one. It concluded once the specified
stopping criteria were met. The initial assumption of the transmissivity T was 25 ft2/day.

A total of 1020 source points and 4942 boundary points were set. The source points
were situated within the pumping wells, while the boundary points aligned with the well
boundaries. Moreover, to evaluate the precision of our computed results, we introduced
1230 validation points that were thoughtfully placed outside the well boundaries. The
numerical parameters w = 6, δt = 1, vt = 1, and m = 0.01 were considered in this
numerical implementation. The aquifer parameters could be estimated by minimizing
the sum of the squared errors between the observed and predicted drawdowns. This
optimization process was achieved through Equation (25).

Figure 17 displays the temporal evolution of the estimated transmissivity. The results
illustrate an initial fluctuation in the first few iterations, which stabilized to a constant value
after 26 iterations. The parameter estimation indicates that the estimated transmissivity was
accurately identified after 26 iterations. Figure 18 presents a comparison between the Theis
solution and the computed drawdown, with a maximum absolute error of 10−6. The results
demonstrate a close alignment between the computed drawdown and the Theis solution.
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5. Discussion

This study emphasized the importance of adopting a spacetime domain approach,
which allows for the application of initial and boundary data to spacetime boundary
collocation points. We conducted three validations by comparing our results with the Theis
solution, and the outcomes demonstrate a high level of accuracy. Furthermore, we applied
this method to estimate aquifer hydraulic properties using pumping tests, employing an
iterative fictitious time integration method in three different scenarios. The simultaneous
temporal and spatial discretization within the spacetime domain offers distinct advantages
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in determining hydraulic properties, including transmissivity and storativity. Even when
dealing with input data affected by random noise, our method closely aligns with the Theis
solution, showing its effectiveness in identifying transmissivity and storativity, particularly
when it stabilizes.

While conventional finite element or finite difference methods can be used to address
axisymmetric flow problems, they demand the use of highly dense meshes and longer
computational durations to achieve the desired level of accuracy. In contrast, our method
offers significant benefits, as it does not rely on mesh generation. Instead, it emphasizes
boundary discretization, leading to a notable reduction in computational complexity.

Nevertheless, the proposed method may only be limited to assessing axisymmetric
transient groundwater flow problems under the assumptions of homogeneity aquifer. Fur-
ther investigations are recommended to explore the method’s performance when applied
to model groundwater flow in heterogeneous porous media. These investigations would
provide a more comprehensive understanding of the method’s suitability for addressing
real-world groundwater issues.

6. Conclusions

This article presents an innovative spacetime boundary-type meshless method de-
signed to address axisymmetric transient groundwater flow problems. The study highlights
the significance of employing a spacetime domain framework, enabling the application of
initial and boundary data on spacetime boundary collocation points. The key findings and
conclusions are summarized as follows:

(1) The proposed method demonstrated its robustness and accuracy in approximating
solutions using basis functions, addressing inverse boundary value problems. Utiliz-
ing a spacetime collocation scheme, our method emphasizes boundary discretization,
leading to a notable reduction in computational complexity.

(2) Three validations were achieved using comparisons with the Theis solution. Our
findings reveal a maximum absolute error on the order of 10−7, underscoring the
remarkable precision achieved in our computed drawdown values. Our method
particularly excelled in predicting drawdown near pumping wells, consistently deliv-
ering highly accurate results without reliance on conventional time-marching schemes.
It highlights that the proposed method aligns with the characteristics of a boundary
discretization numerical approach and effectively minimizes computational complex-
ity.

(3) Moreover, we further applied the proposed method for estimating aquifer hydraulic
properties using pumping tests, conducting three scenarios with an iterative fictitious
time integration method. The simultaneous temporal and spatial discretization within
the spacetime domain was found to be advantageous for determining hydraulic
properties, including transmissivity and storativity. Even when considering input
data contaminated by random noise, our method closely matched the Theis solution,
showing its capability to identify transmissivity and storativity effectively, particularly
when it stabilized.

(4) However, it is worth noting that the proposed method may have limitations, as
it is currently best suited for evaluating axisymmetric transient groundwater flow
problems under the assumption of a homogeneous aquifer. Further enhancements are
recommended to investigate how the method performs when modeling groundwater
flow in heterogeneous porous media.
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