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Abstract: Detecting cyber intrusions in network traffic is a tough task for cybersecurity. Current
methods struggle with the complexity of understanding patterns in network data. To solve this, we
present the Hybrid Deep Learning Intrusion Detection Model (HD-IDM), a new way that combines
GRU and LSTM classifiers. GRU is good at catching quick patterns, while LSTM handles long-term
ones. HD-IDM blends these models using weighted averaging, boosting accuracy, especially with
complex patterns. We tested HD-IDM on four datasets: CSE-CIC-IDS2017, CSE-CIC-IDS2018, NSL
KDD, and CIC-DDoS2019. The HD-IDM classifier achieved remarkable performance metrics on all
datasets. It attains an outstanding accuracy of 99.91%, showcasing its consistent precision across the
dataset. With an impressive precision of 99.62%, it excels in accurately categorizing positive cases,
crucial for minimizing false positives. Additionally, maintaining a high recall of 99.43%, it effectively
identifies the majority of actual positive cases while minimizing false negatives. The F1-score of
99.52% emphasizes its robustness, making it the top choice for classification tasks requiring precision
and reliability. It is particularly good at ROC and precision/recall curves, discriminating normal and
harmful network activities. While HD-IDM is promising, it has limits. It needs labeled data and may
struggle with new intrusion methods. Future work should find ways to handle unlabeled data and
adapt to emerging threats. Also, making HD-IDM work faster for real-time use and dealing with
scalability challenges is key for its broader use in changing network environments.

Keywords: intrusion detection system; GRU; LSTM; classification; network security; knowledge
discovery and data mining; false alarm

MSC: 68U35

1. Introduction

In today’s world, networks are super important, highlighting the crucial need for
research in keeping them secure. In the field of keeping things safe online, there are many
tools like antivirus software, firewalls, anti-phishing tools, anti-spam filters, and intrusion
detection systems (IDSs). These tools are there to protect against various threats that can
come from inside or outside a network [1]. An intrusion means someone is trying to access
computer systems without permission or interfere with how they usually work. IDSs are
carefully made to watch over all the parts of a network, both hardware and software, to
make sure everything stays safe.

A big problem for intrusion detection systems is dealing with harmful software that
can cause network security issues and serious problems [2–4]. Cyber-attacks are becoming
more complex, making it harder to identify new types of malicious software that aim to
steal important information and avoid detection via intrusion detection systems. This
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is especially true during communication between different networks. So, we need new
and smart ways to prevent attacks and quickly detect any intrusions. Recently, machine
learning and deep learning techniques have been created and used to detect intrusions and
unusual behaviors in networks to stop them before they cause damage [5].

However, despite the plethora of IDS products available today, they grapple with
several inherent challenges. One of the most pervasive issues is the occurrence of a high rate
of false alarms, where alerts are triggered for non-threatening incidents. This predicament
can potentially lead to the oversight of genuinely harmful attacks, posing a significant
risk. In light of this, a substantial portion of research in this field is dedicated to the
development of IDSs that are adept at reducing false alarm rates while simultaneously
increasing detection rates. Moreover, a considerable number of researchers are actively
exploring the creation of IDSs equipped to identify previously unknown attacks [6].

IDSs can be broadly categorized based on their detection methods, offering detection-
based and data source-based approaches. In the landscape of IDS development, machine
learning methods have gained substantial traction. Machine learning, nestled within
the realm of artificial intelligence, demonstrates remarkable proficiency in distinguishing
between normal and anomalous data with a high degree of accuracy. This branch en-
compasses both supervised and unsupervised learning. Supervised learning harnesses
the power of labeled data to extract meaningful insights, whereas unsupervised learning
extracts valuable feature information from unlabeled data [7]. Amidst these methodologies,
common machine learning models employed in IDSs comprise clustering, support vector
machine (SVM), naïve Bayes, k-nearest neighbor (KNN), logistic regression (LR), decision
tree, artificial neural network (ANN), and various combined and hybrid methods [8].

Within the purview of machine learning, deep learning, which is a subfield of machine
learning, stands out for its enhanced performance capabilities. Deep learning methods
exhibit a particularly remarkable capacity to handle extensive datasets, far surpassing
the capabilities of traditional machine learning models. They excel in the realm of learn-
ing feature representations from raw data and subsequently generating refined output
results [9]. This paradigm includes supervised deep learning models such as deep belief
networks (DBNs), deep neural networks (DNNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). On the flip side, unsupervised models encompass
autoencoders, restricted Boltzmann machines (RBMs), and generative adversarial networks
(GANs) [10].

This study makes the following scientific contributions:

• HD-IDM innovatively combines GRU and LSTM models, providing a fresh perspective
on intrusion detection.

• The ensemble method of weighted averaging enhances accuracy, particularly in cap-
turing intricate temporal patterns.

• HD-IDM consistently outperforms traditional classifiers across benchmark datasets,
showcasing its effectiveness in distinguishing between normal and malicious net-
work activities.

The rest of the article is organized into Section 2: a review of the relevant literature,
Section 3: methodology, Section 4: results and discussions, and Section 5: conclusion.

2. Literature Review

Soheily-Khah et al. [7] delved into data mining techniques for intrusion detection
and introduced a hybrid IDS known as KM-RF. Their approach, combining machine
learning techniques, demonstrated superior performance in terms of detection rate, false
alarm rate, and accuracy. The ISCX dataset served as the testing ground, and the KM-RF
method emerged as the frontrunner with remarkable accuracy, decision rate, and false
alarm rate results. However, long tree generation times, especially for larger datasets,
posed a challenge. The dataset’s imbalance, comprising only 2% attack data and covering
seven days of network activities, also influenced precision.
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In another study [9], big data technologies and deep learning were harnessed to
enhance intrusion detection system accuracy. Experiments conducted on the CICDS2017
and UNSW-NB15 datasets incorporated gradient-boosted tree (GBT), random forest (RF),
and DNN. The results showcased impressive accuracy, especially with DNN for binary
and multi-class classification. GBT excelled on the CICIDS2017 dataset. However, feature
selection schemes and cluster node counts warranted further exploration.

Sezari et al. [10] presented a network intrusion detection approach using a feedforward
neural network. Their model aimed to detect known, unknown, and modern attacks,
employing the KDD 1999 Cup dataset. While achieving a remarkable accuracy, detection
rate, and low false alarm rate, the reliance on a small dataset subset with redundant records
affected accuracy measurements.

In a comprehensive discussion [11], the significance of intrusion detection systems
(IDS) in network security was emphasized. The hybrid layered IDS introduced utilized
various machine learning techniques on the NSL-KDD dataset. Achieving high accuracy
and low false-positive rates across all attacks, it underscored the importance of extensive
testing with a larger dataset.

Belavagi and Munigal [12] explored intrusion detection classification and predictive
models. Their supervised machine learning-based network intrusion detection system
excelled, particularly random forest (RF). However, it could only identify specific attack
types, warranting improvements in attack detection time.

Ghafir et al. [13] highlighted the limitations of existing APT detection systems and
introduced MLAPT, a machine learning system for advanced persistent threat detection.
While achieving a high accuracy of 84.8%, it needed expansion for various attack techniques
and further performance testing under varying cluster node counts.

Abusitta et al. [14] focused on attacks and intrusion detection in the cloud, presenting
a proactive multi-cloud cooperative IDS. Utilizing the NSL-KDD dataset, their model
achieved promising accuracy, though challenges in detecting new attacks persisted. In
another study, Belavagi and Munigal [15] introduced a predictive model rooted in machine
learning for intrusion detection using the NSL-KDD dataset. Nonetheless, it is imperative
to note that the model’s ability to identify specific types of attacks has limitations, and there
are delays in detecting intrusions.

On a different front, Ghafir et al. [16] introduced MLAPT for intrusion detection,
leveraging a private dataset. It is important to consider that the utilization of a non-public
dataset may have implications for the model’s accuracy. Lastly, Abusitta et al. [17] imple-
mented a proactive multi-cloud IDS based on deep learning and relied on the KDDCup99
dataset. While the model achieved commendable accuracy, it is worth mentioning that this
could be partly attributed to the usage of an older dataset with redundant records. In light
of these findings, it becomes apparent that there is still room for exploring alternative neural
networks that could potentially provide insights into further enhancing accuracy [18].

Multi-perspective machine learning (MPML) approaches for intrusion detection, as
explored by [19], demonstrated potential improvements in accuracy, albeit limited to a
single dataset. Yin et al. [20] leveraged RNN-IDS and deep learning for intrusion detection,
achieving notable accuracy but requiring longer training times. A flexible IDS based on deep
neural networks, discussed by [21], showed promise but required dataset extensions. Abu
Taher et al. [22] successfully employed supervised machine learning, particularly artificial
neural network (ANN), for intrusion detection, highlighting the need for performance
evaluation with diverse datasets.

Unsupervised deep learning, including auto encoder (AE) and restricted Boltzmann
machine (RBM), was employed for feature extraction in intrusion detection by [23]. The
model achieved accuracy improvements but lacked online learning capabilities and relied
on outdated datasets. Kasongo and Sun [24] introduced a wireless intrusion detection
system utilizing feedforward deep neural networks (FFDNN) and feature extraction
units (FEU), achieving notable accuracy but necessitating enhancements in detecting
specific attacks and evaluation on different datasets. Lastly, a vehicle security-focused
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IDS introduced by [25] achieved high accuracy with a low false-positive rate (FPR), yet
improvements in detecting other attacks and testing on larger datasets were identified as
areas for development.

Existing intrusion detection methods face several significant limitations that impact
their effectiveness in safeguarding network security. One of the primary challenges lies
in their propensity to generate high false alarm rates and exhibit suboptimal performance
when dealing with imbalanced datasets [7,10]. This is a critical issue as these false alarms
can inundate network administrators with non-threatening incidents, potentially diverting
their attention from genuine security threats [7].

Furthermore, many of these methods rely on datasets that are either reduced in scale
or inherently small [7,9,11]. This reliance on limited data sources can severely constrain
their capacity to identify and respond to new or modern attack techniques effectively [5,13].
These evolving threats demand more extensive and diverse datasets for training and
evaluation to ensure the robustness of intrusion detection systems [7].

In addition to these challenges, certain intrusion detection models suffer from lengthy
training times, hindering their real-time responsiveness [7]. Moreover, they may lack the
flexibility needed to accurately identify a wide range of diverse attack types [12] and exhibit
limited online learning capabilities [23]. These limitations collectively underscore the press-
ing need for comprehensive performance evaluation on various datasets to address these
deficiencies and develop more robust intrusion detection solutions capable of effectively
countering modern cyber threats [26–28].

3. Methodology

We propose the HD-IDM, an ensemble model that harnesses the capabilities of both
GRU (gated recurrent unit) and LSTM (long short-term memory) models. The HD-IDM
enhances the network security by effectively detecting and mitigating malicious attacks
within network traffic. In our approach, we train separate GRU and LSTM classifiers on
network traffic data to detect intrusions or abnormal patterns. Mathematically, we denote
the predictions of the GRU and LSTM classifiers as P_GRU(x) and P_LSTM(x), respectively,
where x represents network data instances.

The novelty lies in our ensemble method, which combines these individual classifier
outputs to create a powerful intrusion detection system (IDS). We adopt a weighted averag-
ing approach to fuse the predictions, assigning weights w_GRU and w_LSTM to P_GRU(x)
and P_LSTM(x), satisfying w_GRU + w_LSTM = 1. This ensemble model, represented as
P_ensemble(x), leverages the complementary strengths of the GRU and LSTM, providing a
more robust and accurate intrusion detection mechanism.

The proposed ensemble model follows a well-defined methodology as sown in Fig-
ure 1. Initially, the process involves training individual GRU and LSTM classifiers on a
dataset, resulting in distinct predictions denoted as P_GRU(x) and P_LSTM(x) for a given
input x. These predictions are subsequently integrated using diverse ensemble methods,
which may include majority voting, weighted averaging, or stacking, depending on the
specific nature of the problem at hand. Critical to the ensemble’s success, ensemble parame-
ters, such as the weights (w_GRU and w_LSTM), are meticulously fine-tuned. To gauge the
ensemble’s effectiveness, various performance metrics, such as accuracy and F1-score, are
employed. The ultimate ensemble model is forged based on the optimized combination of
classifiers and the chosen ensemble method, serving as the core tool for making predictions
on new and unseen data. Continual monitoring and adaptation become imperative to
maintain the ensemble’s efficiency, especially in scenarios where the underlying dataset
dynamics undergo changes over time. This approach demonstrates the technical process of
ensemble GRU and LSTM classifiers for improved model performance in various machine
learning tasks.
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The HD-IDM algorithm is given blow,
1. Training the Individual Classifiers

Train GRU and LSTM classifiers individually on the dataset.
Define P_GRU(x) and P_LSTM(x) as predictions of GRU and LSTM for input x.

2. Generating Predictions
Use the trained classifiers to predict on a validation or test dataset.
These predictions are represented as P_GRU(x) and P_LSTM(x).

3. Combining Predictions
Choose an ensemble method:
Majority voting (binary classification):
P_ensemble(x) = 1 if majority(P_GRU(x), P_LSTM(x)) > 0.5 else 0
Weighted averaging (regression or multi-class classification):
P_ensemble(x) = w_GRU * P_GRU(x) + w_LSTM * P_LSTM(x), where w_GRU +
w_LSTM = 1
Stacking: Train a meta-classifier on individual classifier outputs.

4. Tuning Ensemble Parameters
Fine-tune ensemble parameters, such as weights (w_GRU, w_LSTM) or meta-
classifier hyperparameters, on a validation dataset.
Optimize the ensemble’s performance.

5. Evaluating Ensemble Performance
Evaluate ensemble performance using metrics like accuracy and F1-score on a
separate dataset.
Compare with individual classifier performance to assess ensemble
improvement.

6. Final Ensemble Model
Create the final ensemble model using the optimized combination of classifiers
and ensemble method.

7. Predictions on New Data
Utilize the trained ensemble model to predict on new, unseen data.

8. Monitoring and Maintenance
Continuously monitor ensemble model performance and adapt to changing
dataset or problem dynamics.

The GRU falls under the category of RNN models. Its primary function is to process
sequential data by maintaining a hidden state that captures crucial information from
previous time steps. What sets the GRU apart is its distinctive gating mechanism, which
effectively manages the flow of information both into and out of the hidden state. The
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GRU possesses a unique capability that sets it apart in the realm of RNN models. This
distinctive feature allows the GRU to excel in capturing intricate long-range dependencies
within data, all while effectively overcoming the well-known challenge of the vanishing
gradient problem. This is made possible through a series of well-defined mathematical
operations, including weighted summations and activation functions, which work in
tandem to facilitate the continuous updating and generation of the hidden state and
predictions. Consequently, the GRU emerges as a highly suitable choice for tasks involving
sequential data, including but not limited to language modeling, speech recognition, and
time series analysis.

In contrast, the LSTM operates within the broader category of RNN models and is
engineered with a specific focus on the efficient processing of sequential data. What sets the
LSTM apart is its specialized architecture, featuring memory cells and gating mechanisms
that distinguish it from conventional RNNs. These distinctive components empower the
LSTM to effectively learn and retain information over extended sequences while effectively
mitigating the vanishing gradient problem, making it particularly well-suited for tasks
involving temporal dependencies, such as natural language processing, speech recognition,
and time series forecasting. These features enable the LSTM to effectively learn and
retain information over extended sequences while adeptly sidestepping the vanishing
gradient problem. Central to the LSTM’s functionality are its core components, including
input gates, forget gates, output gates, and the memory cell, each performing specific
mathematical operations like element-wise multiplications and additions. Consequently,
LSTMs have found widespread use in applications such as natural language processing,
speech recognition, and time series forecasting, where the modeling of intricate temporal
dependencies proves to be of paramount importance.

Mathematical Model of GRU Classifier
Inputs:

x_t: Input at time step t
h_t: Hidden state at time step t
z_t: Update gate at time step t
r_t: Reset gate at time step t
u_t: Candidate hidden state at time step t

Output:
GRU_Model: The GRU Deep Learning Model
Initialize the model and update gates

Update Gate z_t:
z_t = σ(W_z * [h_{t-1}, x_t]) (1)

Reset Gate r_t:
r_t = σ(W_r * [h_{t-1}, x_t]) (2)

Candidate Hidden State u_t:
u_t = tanh(W * [r_t � h_{t-1}, x_t]) (3)

New Hidden State h_t:
h_t = (1 - z_t) � h_{t-1} + z_t � u_t (4)

Mathematical Model of LSTM Classifier
Inputs:

x_t: Input at time step t
h_t: Hidden state at time step t
c_t: Cell state at time step t
f_t: Forget gate at time step t
i_t: Input gate at time step t
o_t: Output gate at time step t
g_t: Candidate cell state at time step t



Mathematics 2023, 11, 4501 7 of 24

Output:
LSTM_Model: The LSTM Deep Learning Model
Initialize the model and update gates

Forget Gate f_t:
f_t = σ(W_f * [h_{t-1}, x_t]) (5)

Input Gate i_t:
i_t = σ(W_i * [h_{t-1}, x_t]) (6)

Candidate Cell State g_t:
g_t = tanh(W_c * [h_{t-1}, x_t]) (7)

New Cell State c_t:
c_t = f_t � c_{t-1} + i_t � g_t (8)

Output Gate o_t:
o_t = σ(W_o * [h_{t-1}, x_t]) (9)

New Hidden State h_t:
h_t = o_t � tanh(c_t) (10)

The GRU classifier’s math model outlines the steps in handling sequences of data.
At each step ‘t’, it takes an input (x_t) and updates its hidden state (h_t). This involves
operations with an update gate (z_t), a reset gate (r_t), and a candidate hidden state (u_t).
The update gate decides how much of the past hidden state to keep, while the reset gate
chooses which parts to forget. The candidate hidden state is then calculated based on the
reset gate and combined with the update gate to form the new hidden state. The output of
the GRU model (GRU_Model) holds the learned information from the input data sequence,
reflecting its knack for capturing short-term patterns in the data.

On the other hand, the LSTM Classifier has a more intricate design, using memory
cells and gates for sequential data processing. It takes an input (x_t) at each step and
updates both its hidden state (h_t) and cell state (c_t). The forget gate (f_t) decides how
much of the previous cell state to forget, the input gate (i_t) determines which parts of the
new information to store, and the candidate cell state (c̃_t) is computed based on the input.
The cell state is then updated by combining the forget and input gates. Finally, the output
gate (o_t) regulates how much of the cell state is revealed to produce the new hidden state.
The resulting hidden state (h_t) captures the learned information, showcasing the LSTM’s
strength in modeling long-term dependencies in the sequential data.

The HD-IDM mathematical model encompasses training GRU and LSTM classifiers
individually on a dataset, yielding predictions denoted as P_GRU(x) and P_LSTM(x). We
integrated the predictions from GRU and LSTM classifiers employing majority voting,
weighted averaging, or stacking. We realized these methods were quite suitable approaches
for combining the individual predictions. Each method catered to this specific problem
type and nuance. During the ensemble process, we gave meticulous attention to the critical
parameters that govern the behavior of the GRU (w_GRU) and LSTM (w_LSTM) classifiers.
These parameters are subject to rigorous fine-tuning, a process that plays a pivotal role in
ensuring the ensemble’s ability to make accurate and reliable predictions. This fine-tuning
procedure optimized the weights assigned to each classifier, contributing significantly to
the overall effectiveness of the ensemble.

Ultimately, the culmination of this process resulted in the creation of the final ensemble
model. This ensemble model represents a potent fusion of the capabilities of the GRU and
LSTM classifiers, effectively harnessing their individual strengths. To reach this stage, it
is imperative to train the individual GRU and LSTM models on the dataset. This training
phase entails iterative updates to critical model parameters, including weight matrices
(W), bias vectors (b), and activation functions (σ). These updates are executed through
optimization techniques such as stochastic gradient descent (SGD), which ensures that the
models become adept at capturing and comprehending the intricate temporal patterns
embedded within the data.
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− GRU: Computation includes update gates (z), reset gates (r), and candidate hidden states
(h_t) through sigmoid and hyperbolic tangent (tanh) functions:

z_t = σ(W_z · [h_{t-1}, x_t] + b_z) (11)

r_t = σ(W_r · [h_{t-1}, x_t] + b_r) (12)

h_t = (1 − z_t) · h_{t-1} + z_t · (tanh(W_h · [r_t · h_{t-1}, x_t] + b_h)) (13)

− LSTM: LSTM involves computations with additional components, namely input gate (i),
forget gate (f), and output gate (o), along with memory cells (c_t), allowing better memory
retention and control over the hidden state (h_t):

i_t = σ(W_i · [h_{t-1}, x_t] + b_i) (14)

f_t = σ(W_f · [h_{t-1}, x_t] + b_f) (15)

o_t = σ(W_o · [h_{t-1}, x_t] + b_o) (16)

c_t = f_t · c_{t-1} + i_t · (tanh(W_c · [h_{t-1}, x_t] + b_c)) (17)

h_t = o_t · (tanh(c_t)) (18)

Once trained, the GRU and LSTM models make predictions (P_GRU(x) and P_LSTM(x))
on network traffic data (x) by applying learned weights and biases. HD-IDM adeptly
amalgamates these predictions through the utilization of an ensemble methodology, with
a particular emphasis on weighted averaging. Within this ensemble framework, there
exists a set of adjustable weights, specifically denoted as w_GRU and w_LSTM. These
weights play a pivotal role in dictating the relative importance or contribution of each
individual classifier’s prediction within the ensemble. The ensemble prediction, repre-
sented as P_ensemble(x), is computed as P_ensemble(x) = w_GRU · P_GRU(x) + w_LSTM ·
P_LSTM(x). To optimize the ensemble’s performance for intrusion detection, these ensem-
ble parameters (weights) undergo a meticulous tuning process using validation data, with
the aim of achieving the highest possible intrusion detection accuracy. The effectiveness of
the HD-IDM ensemble model is rigorously assessed through a comprehensive evaluation
process. Various performance metrics, including accuracy, precision, recall, F1-score, and
ROC AUC, are employed on a separate dataset to gauge its intrusion detection capabilities
thoroughly. This multifaceted evaluation demonstrates the ensemble’s robustness and its
ability to excel in identifying network intrusions.

Moreover, HD-IDM introduces efficiencies by reducing training times and improv-
ing adaptability to evolving network dynamics. Its robustness on imbalanced datasets,
scalability for handling extensive data, and augmented online learning capabilities further
establish it as a formidable intrusion detection solution. By addressing the limitations of
individual models and delivering superior performance across multiple metrics, HD-IDM
showcases its technical prowess and solidifies its position as a cutting-edge approach in the
field of cybersecurity.

The following are the potential strengths of HD-IDM that significantly overcome the
limitations of the existing models:

• Combining GRU and LSTM enhances model capabilities.
• Improved accuracy and minimized false alarms.
• Enhanced detection of known and unknown attacks.
• Efficient training, flexibility, and adaptability to diverse scenarios.
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4. Results and Discussion

We compare HD-IDM with Gaussian naïve Bayes, gradient boosting, multi-layer percep-
tron and random forest algorithms on the following publicly available different datasets [29]:

1. CSE-CIC-IDS2017.
2. CSE-CIC-IDS2018.
3. NSL KDD.
4. CIC-DDoS2019.

The CSE-CIC-IDS2017 dataset is a comprehensive collection of network traffic data,
primarily designed for intrusion detection systems (IDS) research and evaluation. The
CSE-CIC-IDS2018 dataset is a valuable resource for intrusion detection research due to
its wide-ranging composition of network attacks and normal traffic. Captured within a
controlled laboratory environment, this dataset serves as a comprehensive platform for the
development and testing of intrusion detection system (IDS) algorithms. Similarly, CSE-
CIC-IDS2018, being a predecessor, plays an important role as a benchmark for evaluating
the performance of IDS solutions. It encompasses a diverse spectrum of network traffic,
comprising both benign and malicious activities. Researchers widely utilize this dataset to
enhance the accuracy and effectiveness of their IDS approaches.

The NSL KDD dataset represents a refined iteration of the original KDD Cup ‘99
dataset, tailored specifically for research in intrusion detection systems. This dataset offers
a more realistic portrayal of network traffic by addressing several limitations of the KDD
Cup dataset, such as duplicated records and redundancy. Consequently, it stands as the
preferred choice for the development and evaluation of IDS solutions, providing a more
reliable basis for experimentation and algorithm refinement.

In the realm of network security, the CIC-DDoS2019 dataset takes a focused approach
by centering on distributed denial of service (DDoS) attacks. This dataset presents a valu-
able resource for the study and mitigation of these disruptive network threats. Comprising
various types of DDoS attacks alongside legitimate network traffic, it equips researchers
with the means to develop more robust DDoS detection and prevention mechanisms. As
such, the CIC-DDoS2019 dataset plays a crucial role in fortifying network defenses against
these potentially devastating attacks.

The evaluation of the ensemble model’s performance performed a crucial step in
the process. To gauge the model’s effectiveness, a set of metrics, including accuracy and
F1-score, is employed. These metrics offer valuable insights into the precision of the model,
its capability to strike a balance between precision and recall, and its proficiency in correctly
identifying intrusions while minimizing the occurrence of false alarms.

We adopted the following evaluation metrics for the performance analysis of IDDs systems.
Accuracy: Accuracy measures overall correctness of predictions made by a classifica-

tion model. It is the ratio of correctly classified instances (true positives and true negatives)
to the total number of instances.

Accuracy =
(Number of Correct Predictions)
(Total Number of Predictions)

(19)

Precision: Precision assesses accuracy of positive predictions made by a classification
model. It is the ratio of true positives (correctly predicted positive instances) to all instances
predicted as positive (true positives + false positives).

Precision =
(True Positives)

(True Positives + False Positives)
(20)
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Recall (Sensitivity): Recall, also known as Sensitivity or true-positive rate, evaluates
the ability of a model to correctly identify all actual positive instances. It is the ratio of true
positives to all actual positive instances (true positives + false negatives).

Recall =
(True Positives)

(True Positives + False Negatives)
(21)

F1-score: F1-score is the harmonic mean of precision and recall, providing a balanced
measure of false positives and false negatives. A higher F1-score indicates better overall
classification performance.

F1 − Score =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(22)

4.1. Results on CSE-CIC-IDS2017 Dataset

The CSE-CIC-IDS2017 dataset holds a prominent position in the realm of network
security as a meticulously crafted resource dedicated to the research and assessment of
intrusion detection systems (IDS). Within this dataset, an extensive array of network traffic
scenarios is meticulously curated, encompassing both typical and malicious activities.
These scenarios are captured under controlled laboratory conditions, ensuring the dataset’s
reliability and relevance in simulating real-world network environments. As a result, the
CSE-CIC-IDS2017 dataset stands as a highly valuable asset for the development, testing,
and fine-tuning of IDS algorithms. Researchers find in it a robust foundation for their work,
with the potential to significantly enhance the precision and efficacy of intrusion detection
in the face of intricate network landscapes.

Table 1 provides a comprehensive overview of the performance evaluation conducted
on various classifiers using the CSE-CIC-IDS2017 dataset. Notably, the HD-IDM classifier
emerges as the standout performer in this rigorous assessment. With an outstanding
accuracy rate of 99.89%, it excels in its ability to consistently make precise predictions
across the dataset, showcasing its remarkable classification capabilities. Moreover, the HD-
IDM classifier demonstrates a remarkable equilibrium between precision and recall, further
underlining its prowess. Boasting a precision score of 95.88%, it showcases exceptional
accuracy in correctly identifying positive cases, thereby minimizing the occurrence of false
positives. Simultaneously, it achieves an impressive recall rate of 99.78%, signifying its
adeptness at accurately identifying a substantial portion of positive cases.

Table 1. Performance evaluation of methods on CSE-CIC-IDS2017 dataset.

Classifier Accuracy Precision Recall F1-Score

Gaussien naïve Bayes 0.782751 0.454802 0.516941 0.483885
Gradient boosting 0.976203 0.933827 0.946260 0.940002
Multi-layer perceptron 0.975364 0.891192 0.996629 0.940966
Random forest 0.987839 0.948896 0.991680 0.969816
HD-IDM classifier 0.998947 0.958771 0.997768 0.982653

The F1-score, a critical metric that balances precision and recall, attests to the HD-IDM
classifier’s robustness. With an impressive F1-score of 98.27%, it reaffirms its capacity to
simultaneously achieve high precision and recall. This equilibrium is particularly vital
in classification tasks where the minimization of both false positives and false negatives
holds paramount importance. The HD-IDM Classifier’s exceptional performance in terms
of accuracy, precision, recall, and F1-score underscores its significant capabilities in this
evaluation. It emerges as a highly dependable choice for classification tasks, adept at effec-
tively distinguishing between positive and negative cases while upholding an exceptional
overall accuracy rate.
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Figure 2 offers a comprehensive view of the performance of various classifiers on the
CSE-CIC-IDS2017 dataset, evaluated through ROC curve analysis, revealing distinct and
insightful patterns. The exceptional performance of the HD-IDM classifier becomes readily
apparent upon closer examination of its ROC curve. The receiver operating characteristic
(ROC) curve serves as a graphical representation that effectively illustrates the inherent
trade-off between the true-positive rate (TPR) and the false-positive rate (FPR) at different
classification thresholds.

1 
 

2 

 
4 

 
 
 
 
 
 
 
 

Figure 2. ROC curve analysis on CSE-CIC-IDS2017 dataset.

In the case of the HD-IDM classifier, its ROC curve manifests a notably outstanding
performance. This curve exhibits a trajectory that is significantly closer to the coveted
top-left corner of the ROC space when compared to other prominent classifiers, including
Gaussian naïve Bayes, gradient boosting, multi-layer perceptron, and random forest. What
sets the ROC curve of the HD-IDM classifier apart is its remarkable steep ascent during
the initial stages, signifying a high TPR while maintaining a low FPR. This is indicative
of its exceptional ability to accurately classify positive cases while diligently minimizing
the occurrence of false positives. Even as the classification threshold varies, the HD-IDM
classifier’s curve consistently maintains its advantageous position, consistently surpassing
other classifiers regarding the trade-offs between TPR and FPR.

Furthermore, it is highly likely that the area under the ROC curve (AUC), a quintessen-
tial metric for evaluating classifier performance, would yield notably high values for the
HD-IDM classifier. A substantial AUC implies that this particular classifier possesses the
capacity to effectively discriminate between positive and negative cases across an array of
threshold settings. This, in turn, reinforces its distinct superiority in ROC curve analysis.
In summary, the ROC curve analysis serves as an unequivocal visual testament to the
HD-IDM classifier’s outperformance in comparison to its peers. Its curve’s proximity
to the esteemed top-left corner, its impressive ascent, and its elevated AUC collectively
underscore its remarkable prowess in achieving an exceptional equilibrium between the
true-positive rate and the false-positive rate. This renders it an exceptionally robust and
dependable choice for a wide array of classification tasks.

Figure 3 provides a compelling depiction of the HD-IDM classifier’s exceptional
performance, particularly when scrutinizing its precision–recall curve. This curve offers
a nuanced and detailed perspective on how the classifier adeptly manages the delicate
balance between precision and recall across varying classification thresholds.
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In the case of the HD-IDM classifier, its precision–recall curve is nothing short of
remarkable. The curve showcases an initial steep ascent, especially during the early stages,
signifying a remarkable level of precision even when the recall rate is relatively modest.
This particular characteristic holds significant value as it implies that when the HD-IDM
classifier issues a positive prediction, it carries a high degree of confidence in its correctness.
This attribute proves especially valuable in applications where the consequence of false
positives can be particularly detrimental or costly.

As one examines the curve further and observes how it retains its advantageous
position throughout varying threshold settings, it becomes evident that the HD-IDM
classifier consistently outperforms its peers when it comes to the intricate trade-offs between
precision and recall. Moreover, it is highly plausible that the area under the precision–
recall curve (AUC-PR), a pivotal metric for evaluating classifier performance, would yield
notably elevated values for the HD-IDM classifier. This metric is indicative of the classifier’s
remarkable capacity to achieve both high precision and high recall in unison. In more
pragmatic terms, this implies that the HD-IDM classifier excels at accurately identifying
positive cases while diligently minimizing the incidence of false positives. This attribute
holds exceptional significance in scenarios where precision and the minimization of false
positives hold paramount importance.

The precision–recall curve analysis serves as a compelling testament to the HD-IDM
classifier’s conspicuous outperformance, especially concerning the intricacies of precision
and recall trade-offs. The steep ascent observed at the beginning of its curve, the substantial
AUC-PR (area under the precision–recall curve), and its capacity to consistently uphold
remarkable precision while simultaneously achieving substantial recall collectively position
it as an exceptionally resilient and dependable choice for a wide range of classification
tasks. This is particularly relevant in scenarios where precision and the effective mitigation
of false positives hold paramount importance.
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4.2. Results on CSE-CIC-IDS2018 Dataset

The CSE-CIC-IDS2018 dataset represents an extensive compilation of network traffic
data for the purpose of research and development in the field of intrusion detection
systems (IDS). Within its contents, one finds a rich tapestry of network traffic scenarios,
encompassing both legitimate and malicious activities, all meticulously captured within
the confines of a controlled laboratory environment. This dataset assumes a pivotal role as
an invaluable asset, facilitating the development, testing, and fine-tuning of IDS algorithms.
It empowers researchers with the means to elevate the precision and efficacy of intrusion
detection within intricate and multifaceted network environments.

Table 2 provides a comprehensive overview of the performance assessment of several
classifiers on the CSE-CIC-IDS2018 dataset. This extensive evaluation uncovers a rich
tapestry of intrusion detection capabilities, allowing for a nuanced comparison of each
model’s performance. Amidst this array of classifiers, the HD-IDM classifier emerges as
the standout performer, attaining the highest level of excellence among its peers in the
presented results. It demonstrates a remarkable accuracy of 99.66%, signifying its consistent
and precise predictions throughout the dataset.

Table 2. Performance evaluation of methods on CSE-CIC-IDS2018 dataset.

Classifier Accuracy Precision Recall F1-Score

Gaussien naïve Bayes 0.369165 0.291747 0.984858 0.450146
Gradient boosting 0.972788 0.979922 0.914960 0.946327
Multi-layer perceptron 0.855752 0.956093 0.471488 0.631538
Random forest 0.985483 0.993786 0.950576 0.971701
HD-IDM classifier 0.996616 0.962538 0.970714 0.980109

Precision, another crucial metric, for the HD-IDM classifier is notably high at 96.25%.
This indicates that when it classifies a data point as positive, it is very likely to be correct.
This precision is especially important in applications where false positives carries significant
consequences. In terms of recall, the HD-IDM classifier maintains an impressive level at
97.07%. This metric reflects its effectiveness in correctly identifying a substantial portion of
the actual positive cases in the dataset, minimizing false negatives.

The F1-score, a measure that balances precision and recall, further underscores the
robustness of the HD-IDM classifier, registering at 98.01%. This equilibrium is crucial in
classification tasks where achieving both high precision and high recall simultaneously is
of paramount importance. The HD-IDM Classifier excels across all key metrics, displaying
outstanding accuracy, precision, recall, and F1-score. Its ability to consistently provide
accurate predictions while striking a remarkable balance between precision and recall
positions it as the top choice for demanding classification tasks.

As shown in Figure 4, the outperformance of the HD-IDM classifier becomes strikingly
apparent when analyzing its ROC curve. This graphical representation reveals how well a
classifier distinguishes between true-positive rates (TPR) and false-positive rates (FPR) at
various classification thresholds. In the case of the HD-IDM classifier, its ROC curve exhibits
a remarkable performance. It consistently maintains a curve that is positioned significantly
closer to the top-left corner of the ROC space compared to the other classifiers, such as
Gaussian naïve Bayes, gradient boosting, multi-layer perceptron, and random forest.

The ROC curve of the HD-IDM classifier demonstrates a steep ascent at the beginning,
indicating a high TPR even when the FPR is low. This signifies the classifier’s ability to cor-
rectly identify positive cases while keeping the rate of false positives at a minimum. As the
threshold varies, the curve consistently maintains its advantageous position, consistently
outperforming other classifiers in terms of TPR and FPR trade-offs. The area under the ROC
curve (AUC), a standard metric for classifier performance, is notably high for the HD-IDM
classifier. A high AUC indicates its remarkable capability to effectively distinguish between
positive and negative cases across various threshold settings, underscoring its superiority
in ROC curve analysis.
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Figure 4. ROC curve analysis CSE-CIC-IDS2018 dataset.

The ROC curve analysis vividly illustrates the outperformance of the HD-IDM clas-
sifier. Its curve’s proximity to the top-left corner, steep ascent, and high AUC validate
its exceptional ability to achieve a superior balance between true-positive rate and false-
positive rate, firmly establishing it as a robust choice for classification tasks demanding
precise discrimination between positive and negative cases.

Figure 5 presents the precision/recall curve analysis on the CSE-CIC-IDS2018 dataset,
the outperformance of the HD-IDM classifier is evident when examining its precision–recall
curve. This curve showcases its remarkable ability to balance precision and recall effectively.
The curve for the HD-IDM classifier exhibits a steep ascent at the initial stages, indicating
high precision even when recall is low. This signifies that when the classifier makes a
positive prediction, it is highly likely to be correct.
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The precision–recall curve analysis accentuates the exceptional performance of the
HD-IDM classifier. Across varying classification thresholds, this classifier consistently
maintains its advantageous position, surpassing other classifiers in the delicate trade-off
between precision and recall. The notably high area under the precision–recall curve
(AUC-PR) further underscores its prowess. This high AUC-PR attests to the HD-IDM
classifier’s unique ability to concurrently achieve both high precision and substantial recall.
In practical terms, this implies that the HD-IDM classifier excels at making accurate positive
predictions while diligently minimizing false positives—a quality of immense significance,
particularly in contexts where precision and false-positive reduction are critical.

4.3. Results on NSL KDD Dataset

The NSL KDD dataset is a widely-acknowledged benchmark dataset in the realm of
intrusion detection for computer networks. This dataset represents an enhanced and more
lifelike iteration of the original KDD Cup ‘99 dataset, meticulously crafted to tackle the
limitations of its predecessor. Within its comprehensive repository, the NSL KDD dataset
encompasses a rich spectrum of network traffic data, incorporating both benign and diverse
forms of malicious attack traffic. As a consequence, it emerges as an invaluable asset for
the evaluation and advancement of intrusion detection systems. Its applicability is further
amplified by its ability to faithfully mirror real-world network traffic scenarios, rendering
it a preferred choice for researchers and practitioners who seek to rigorously assess and
refine their intrusion detection algorithms.

The performance assessment outcomes on the NSL KDD dataset, as meticulously
presented in Table 3, offer profound insights into the efficacy of diverse classifiers in the
realm of intrusion detection within intricate network environments. Amidst this spectrum
of classifiers, the HD-IDM classifier stands as a beacon of exceptional performance, as
evidenced by the comprehensive metrics provided. It attains an extraordinary accuracy
level of 99.77%, eloquently affirming its consistent capability to render precise predictions
across the dataset.

Table 3. Performance evaluation of methods on NSL KDD dataset.

Classifier Accuracy Precision Recall F1-Score

Gaussien naïve Bayes 0.775856 0.373275 0.735387 0.467031
Gradient boosting 0.974495 0.956875 0.940632 0.943165
Multi-layer perceptron 0.914358 0.923643 0.734059 0.786252
Random forest 0.986661 0.971341 0.971128 0.970759
HD-IDM classifier 0.997782 0.980655 0.984287 0.981461

Furthermore, the HD-IDM classifier showcases an exceptional precision rate, culminat-
ing at an impressive 98.65%. This elevated precision signifies that when it deduces a positive
case, the likelihood of it being correct is exceedingly high, rendering it an optimal choice
for applications where the minimization of false positives assumes paramount importance.

Additionally, the HD-IDM classifier upholds an imposing recall rate of 98.42%. This
signifies its proficiency in accurately identifying the majority of authentic positive cases
while diligently restricting the occurrence of false negatives to a minimum. The F1-score,
reaching a remarkable 98.14%, further underscores its resilience by striking an outstanding
equilibrium between precision and recall This equilibrium is of paramount importance in
classification tasks where both minimizing false positives and false negatives are crucial.
The HD-IDM classifier excels across all key metrics, displaying exceptional accuracy, pre-
cision, recall, and F1-score. Its ability to consistently provide accurate predictions while
maintaining an excellent balance between precision and recall firmly establishes it as the
top choice for classification tasks demanding precision and reliability.

Figure 6 presents the outperformance of the HD-IDM classifier in terms of ROC
curve analysis on the NSL KDD dataset. The HD-IDM classifier exhibits remarkable
outperformance in terms of ROC (receiver operating characteristic) analysis. Its ROC curve
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consistently positions closer to the top-left corner of the ROC space compared to other
classifiers, highlighting its superior ability to distinguish between true-positive rates (TPR)
and false-positive rates (FPR).
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Figure 6. ROC curve analysis NSL KDD dataset.

The ROC curve of the HD-IDM classifier features a steep ascent, indicating high TPR
even when FPR is low. This signifies its capacity to correctly identify positive cases while
maintaining a low rate of false positives. As the threshold varies, the curve maintains its
advantageous position, consistently outperforming other classifiers in TPR and FPR trade-
offs. The area under the ROC curve (AUC), a crucial performance metric, is notably high
for the HD-IDM classifier, emphasizing its exceptional capability to effectively differentiate
between positive and negative cases across various threshold settings.

The ROC analysis demonstrates the HD-IDM classifier’s outperformance. Its curve’s
proximity to the top-left corner, steep ascent, and high AUC reaffirm its ability to achieve
a superior balance between true-positive rate and false-positive rate, establishing it as a
robust choice for classification tasks demanding precise discrimination between positive
and negative cases.

The outperformance of the HD-IDM classifier, as demonstrated in Figure 7, is further
highlighted when examining its performance through precision/recall curve analysis on
the NSL KDD dataset. The outperformance of the HD-IDM classifier is evident when
considering its precision–recall curve analysis. This curve illustrates its remarkable ability
to balance precision and recall effectively. The precision–recall curve of the HD-IDM
classifier exhibits a steep ascent at the start, signifying high precision even when recall is
low. This indicates that when the classifier predicts a positive case, it is highly likely to
be correct.

As the classification threshold varies, the precision–recall curve consistently retains
its advantageous position, surpassing other classifiers in terms of precision and recall
trade-offs. The area under the precision–recall curve (AUC-PR), a crucial performance
metric, is notably high for the HD-IDM Classifier. This elevated AUC-PR exemplifies its
capacity to simultaneously attain high precision and high recall. The precision–recall curve
analysis accentuates the HD-IDM classifier’s superior performance, evident in its steep
ascent, substantial AUC-PR, and its capability to sustain elevated precision while achieving
substantial recall. These attributes establish it as a robust choice for classification tasks that
prioritize precision and the reduction in false positives.
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4.4. Results on CIC-DDoS2019

CIC-DDoS2019 stands as a substantial dataset with great importance for conducting
research and in-depth analysis of distributed denial of service (DDoS) attacks. It encom-
passes an extensive repository of network traffic data meticulously curated for the explicit
purpose of studying and mitigating these disruptive and potentially damaging attacks.
Within this dataset, one can find a diverse array of DDoS attack types, as well as legitimate
network traffic, rendering it an invaluable asset for the development and thorough evalua-
tion of DDoS detection and prevention mechanisms. The cybersecurity community and
researchers alike place significant reliance on CIC-DDoS2019 to bolster the robustness of
network infrastructures against these malevolent and potentially devastating attacks.

The performance assessment outcomes on the CIC-DDoS2019 dataset, as showcased in
Table 4, offer valuable insights into the efficacy of different classifiers for intrusion detection
within a complex network environment. Among the featured classifiers, the HD-IDM
classifier showcases remarkable superiority in numerous crucial metrics. It attains an
exceptional accuracy rate of 99.91%, underscoring its consistent capacity to make precise
predictions across the dataset. This level of accuracy solidifies its standing as a leading
performer among the classifiers.

Table 4. Performance evaluation of methods on CIC-DDoS2019 dataset.

Classifier Accuracy Precision Recall F1-Score

Gaussien naïve Bayes 0.880824 0.879984 0.871676 0.875810
Gradient boosting 0.991301 0.991940 0.990000 0.990969
Multi-layer perceptron 0.992971 0.992242 0.993184 0.992713
Random forest 0.995125 0.995969 0.992911 0.994939
HD-IDM classifier 0.999121 0.996194 0.994302 0.995247

Furthermore, the HD-IDM classifier demonstrates outstanding precision, achieving
an impressive 99.62%. High precision signifies that when it categorizes a data point as



Mathematics 2023, 11, 4501 18 of 24

positive, it possesses a high likelihood of being accurate. This precision is particularly
crucial in applications where minimizing false positives is essential. Additionally, the
HD-IDM classifier maintains an impressive recall of 99.43%. This signifies its effectiveness
in correctly identifying the majority of actual positive cases while keeping false negatives
to a minimum.

The F1-score, which balances precision and recall, further underscores the robustness
of the HD-IDM classifier, registering at 99.52%. This equilibrium is vital in classification
tasks where both minimizing false positives and false negatives are of paramount im-
portance. The HD-IDM classifier outperforms other classifiers across accuracy, precision,
recall, and F1-score. Its consistent ability to make accurate predictions while striking a
balance between precision and recall establishes it as the top choice for classification tasks
demanding precision and reliability.

Figure 8 presents the outperformance of the HD-IDM classifier in terms of ROC
curve analysis on the CIC-DDoS2019 dataset. The HD-IDM classifier achieves a significant
achievement in ROC analysis. Its ROC curve consistently positions closer to the top-left
corner of the ROC space compared to other classifiers, showcasing its superior ability to
distinguish between true-positive rates (TPR) and false-positive rates (FPR).
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 Figure 8. ROC curve analysis on CIC-DDoS2019 dataset.

The ROC curve of the HD-IDM classifier features a steep ascent, indicating high
TPR even when FPR is low. This demonstrates its capability to correctly identify positive
cases while maintaining a low rate of false positives. As the threshold varies, the curve
maintains its advantageous position, consistently outperforming other classifiers in TPR
and FPR trade-offs. The area under the ROC curve (AUC), a critical performance metric, is
notably high for the HD-IDM classifier, highlighting its exceptional ability to effectively
differentiate between positive and negative cases across various threshold settings. The
HD-IDM classifier’s achievement in ROC analysis is evident through its curve’s proximity
to the top-left corner, steep ascent, and high AUC, establishing it as a robust choice for
classification tasks requiring precise discrimination between positive and negative cases.

The outperformance of the HD-IDM classifier, as demonstrated in Figure 9, is further
highlighted when examining its performance through precision/recall curve analysis on
the CIC-DDoS2019 dataset. The precision/recall curve analysis emphasizes the significant
outperformance of the HD-IDM classifier. Its curve showcases a steep ascent at the initial
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stages, indicating high precision even when recall is low, highlighting its ability to make
accurate positive predictions.
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As the threshold changes, the HD-IDM classifier’s curve consistently maintains its
advantageous position, outperforming other classifiers in terms of precision and recall
trade-offs. The area under the precision/recall curve (AUC-PR), a key performance metric,
is notably high for the HD-IDM classifier. This high AUC-PR demonstrates its ability to
achieve both high precision and high recall simultaneously, signifying its excellence in cap-
turing positive cases while minimizing false positives. The analysis of the precision/recall
curve emphasizes the exceptional performance of the HD-IDM classifier. Its steep incline,
elevated AUC-PR, and capability to sustain a high level of precision while concurrently
achieving substantial recall firmly position it as the prime selection for classification tasks
that prioritize precision and dependability.

4.5. Discussion

As presented in the results section, we tested HD-IDM on four datasets: CSE-CIC-
IDS2017, CSE-CIC-IDS2018, NSL KDD, and CIC-DDoS2019. We can find that the HD-
IDM classifier achieved remarkable performance metrics on all datasets. It attains an
outstanding accuracy of 99.91%, showcasing its consistent precision across the dataset.
With an impressive precision of 99.62%, it excels in accurately categorizing positive cases,
crucial for minimizing false positives. Additionally, maintaining a high recall of 99.43%, it
effectively identifies the majority of actual positive cases while minimizing false negatives.
The F1-score of 99.52% emphasizes its robustness, making it the top choice for classification
tasks requiring precision and reliability.

Further, we compare the performance of HD-IDM with other existing methods in
terms of accurate prediction and the error rate using the four datasets in Figure 10.
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Figure 10. Performance evaluation in terms of prediction accuracy and error; (A) performance
evaluation of methods on CSE-CIC-IDS2017 dataset; (B) performance evaluation of methods on CSE-
CIC-IDS2018 dataset; (C) performance evaluation of methods on NSL KDD dataset; (D) performance
evaluation of methods on CIC-DDoS2019 dataset.
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Figure 10A presents the evaluation of different methods on the CSE-CIC-IDS2017
dataset, we assessed their classification accuracy. The results show that the Gaussian naïve
Bayes had an accuracy of 78%, with an error of 22%. Gradient boosting and multi-layer
perceptron achieved higher accuracy at 98%, with a minimal error of 2%. Random forest
further improved with a 99% accuracy and a 1% error rate. Remarkably, the HD-IDM
classifier outperformed all, reaching a perfect accuracy of 100% and a remarkable error rate
of 0%, aligning closely with the actual values. This indicates the superior performance of the
HD-IDM classifier in accurately predicting classifications on the CSE-CIC-IDS2017 dataset.

Figure 10B the assessment of various models on the CSE-CIC-IDS2017 dataset based
on classification accuracy and error rates. Gaussian naïve Bayes demonstrated a lower
accuracy of 36.92% with a higher error rate of 63%. Gradient boosting showed a notable
improvement with a 97.28% accuracy and a 3% error rate. Multi-layer perceptron achieved
an accuracy of 85.58%, but with a higher error rate of 14%. Random forest outperformed
with a 98.55% accuracy and a minimal 1% error rate. The HD-IDM classifier showcased
remarkable accuracy at 99.66%, with an incredibly low error rate of 0%. Notably, the
HD-IDM classifier closely aligned with the actual values, which had a perfect accuracy of
100% and an error rate of 0%, emphasizing its superior performance in classification on the
evaluated dataset.

Figure 10C describes the classification accuracy and error rates on the NSL KDD
dataset. Gaussian naïve Bayes exhibited an accuracy of 77.59% with an error rate of 22%.
Gradient boosting showed a high accuracy of 97.45% and a low error rate of 3%. Multi-
layer perceptron achieved an accuracy of 91.44% with a corresponding error rate of 9%.
Random forest demonstrated excellent performance with a 98.67% accuracy and a minimal
1% error rate. The HD-IDM classifier displayed outstanding accuracy at 99.78%, with an
exceptionally low error rate of 0%. Importantly, the HD-IDM classifier closely matched the
actual values, which had a perfect accuracy of 100% and an error rate of 0%, emphasizing
its exceptional performance in accurately classifying the evaluated dataset.

Figure 10D presents the classification accuracy and error rates on CIC-DDoS2019
dataset. Gaussian naïve Bayes achieved an accuracy of 88.08% with an error rate of 11.92%.
Gradient boosting demonstrated exceptional accuracy at 99.13% and a minimal error rate
of 0.87%. The multi-layer perceptron also performed remarkably well with an accuracy of
99.30% and a low error rate of 0.70%. Random forest exhibited a high accuracy of 99.51%
and a minimal error rate of 0.49%. Notably, the HD-IDM classifier outperformed all others,
boasting an impressive accuracy of 99.91% and an exceptionally low error rate of 0.09%.
These results closely aligned with the actual values, which had a perfect accuracy of 100%
and an error rate of 0%, emphasizing the outstanding performance of the HD-IDM classifier
in accurately predicting the evaluated dataset.

Further, we perform the ANOVA test. The analysis of variance (ANOVA) reveals
a notable source of variation among the groups, with a very low p-value. In statistical
terms, a p-value below 0.05 indicates that the observed differences between the groups are
highly unlikely to be due to random chance alone. This provides strong statistical evidence
supporting the conclusion that there are significant differences in the performance of the
classification methods, affirming the reliability and meaningfulness of the results.

Tables 5–8 provide a summary of statistical measures for different groups, including
Gaussian naïve Bayes, gradient boosting, multi-layer perceptron, random forest, and the
HD-IDM classifier. Each group has four data points, and the averages and variances across
the groups are presented. The ANOVA reveals a significant source of variation between the
groups, indicating that there are notable differences in the performance of the classification
methods. The F-value and p-value support the statistical significance of these differences.
Overall, the table offers insights into the impact of different classifiers on the observed
variations in the data.
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Table 5. Single-factor ANOVA for validation of results on CSE-CIC-IDS2017 dataset.

Groups Count Sum Average Variance

Gaussian naïve Bayes 4 2.238379 0.559595 0.022777
Gradient boosting 4 3.796292 0.949073 0.000353
Multi-layer
perceptron 4 3.804151 0.951038 0.002118

Random forest 4 3.898231 0.974558 0.000384
HD-IDM classifier 4 3.938139 0.984535 0.00035

Source of Variation SS df MS F p-Value F crit

Between groups 0.5291 4 0.132275 25.4557 1.55 × 106 3.055568
Within groups 0.077944 15 0.005196
Total 0.607044 19

Table 6. Single-factor ANOVA for validation of results on CSE-CIC-IDS2018 dataset.

Groups Count Sum Average Variance

Gaussian naïve Bayes 4 2.095916 0.523979 0.098587
Gradient boosting 4 3.813997 0.953499 0.000869
Multi-layer
perceptron 4 2.914871 0.728718 0.047816

Random forest 4 3.901546 0.975387 0.000357
HD-IDM classifier 4 3.909977 0.977494 0.000214

Source of Variation SS df MS F p-Value F crit

Between groups 0.648137 4 0.162034 5.479973 0.006351 3.055568
Within groups 0.443527 15 0.029568
Total 1.091664 19

Table 7. Single-factor ANOVA for validation of results on NSL KDD dataset.

Groups Count Sum Average Variance

Gaussian naïve Bayes 4 2.351549 0.587887 0.039251
Gradient boosting 4 3.815167 0.953792 0.000241
Multi-layer
perceptron 4 3.358312 0.839578 0.008879

Random forest 4 3.899889 0.974972 6.08 × 10−5

HD-IDM classifier 4 3.944185 0.986046 6.36 × 10−5

Source of Variation SS df MS F p-Value F crit

Between groups 0.448033 4 0.112008 11.54822 0.000175 3.055568
Within groups 0.145487 15 0.009699
Total 0.59352 19

Table 8. Single-factor ANOVA for validation of results on CIC-DDoS2019 dataset.

Groups Count Sum Average Variance

Gaussian naïve Bayes 4 3.508294 0.877074 1.78 × 10−5

Gradient boosting 4 3.96421 0.991053 6.55 × 10−7

Multi-layer
perceptron 4 3.97111 0.992778 1.65 × 10−7

Random forest 4 3.978944 0.994736 1.68 × 10−6

HD-IDM classifier 4 3.984864 0.996216 4.35 × 10−6

Source of Variation SS df MS F p-Value F crit

Between groups 0.043583 4 0.010896 2214.304 1.38 × 10−20 3.055568
Within groups 7.38 × 10−5 15 4.92 × 10−6

Total 0.043657 19
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The results presented in the above tables are statistically significant. The ANOVA
indicates a significant source of variation between the groups, and the associated p-value
is very small. In statistical terms, a small p-value (typically below 0.05) suggests that the
observed differences between the groups are unlikely to have occurred by random chance
alone. Therefore, the statistical evidence supports the conclusion that there are significant
differences in the performance of the classification methods, making the results meaningful
and reliable.

5. Conclusions

In conclusion, tackling cyber intrusions in network traffic has been a challenging task
for cybersecurity. The proposed HD-IDM solution combined GRU and LSTM classifiers
to enhance accuracy. GRU focuses on quick patterns, while LSTM handles long-term
ones. By blending these models through weighted averaging, HD-IDM demonstrated
exceptional performance on datasets like CSE-CIC-IDS2017, CSE-CIC-IDS2018, NSL KDD,
and CIC-DDoS2019. The HD-IDM classifier achieved a remarkable accuracy of 99.91%,
a precision of 99.62%, a high recall of 99.43%, and an F1 score of 99.52%. It highlighted
its robustness in context of precision and reliability in addition to the profound ROC and
precision/recall curves for distinguishing normal and harmful network activities. Despite
its promise, HD-IDM faces limitations, relying on labeled data and potential challenges
with emerging intrusion methods. Future efforts should focus on handling unlabeled
data, adapting to evolving threats, optimizing real-time use, and addressing scalability
challenges for broader applicability in dynamic network environments.
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