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Abstract: In this work, we investigate a minimization problem with a convex objective function
on a domain, which is the solution set of a common fixed point problem with a finite family of
nonexpansive mappings. Our algorithm is a combination of a projected subgradient algorithm
and string-averaging projection method with variable strings and variable weights. This algorithm
generates a sequence of iterates which are approximate solutions of the corresponding fixed point
problem. Additionally, either this sequence also has a minimizing subsequence for our optimization
problem or the sequence is strictly Fejer monotone regarding the approximate solution set of the
common fixed point problem.
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1. Introduction

The starting point of the fixed point theory of nonlinear operators is Banach’s famous
work [1], where the existence of a unique fixed point of a strict contraction was established.
Since that, many important results were established in this area [2-24], which include the
investigation of the asymptotic behavior of iterates of a nonlinear mappings. They also
include the studies of feasibility, common fixed points, iterative methods, and variational
inequalities and their applications in engineering, medical, and natural sciences [2,23-38].

Assume that (X, p) is a metric space. For every point # € X and every nonempty set
C C X, define

p(n,C) :=inf{p(y,&) : & € C}.
For every point 7 € X and every number A > 0, define

B(n, &) = {§ € X: pln,&) < A}.

For every operator A : X — X, set A’(v) = vforallv € X, Al = Aand Al = Ao Al
for every nonnegative integer i.
A mapping T : X — X is called a strict contraction if there exists A € (0,1), such that

(T (u), T(0)) < Ap(u,v)

for each u,v € X.
According to the Banach’s celebrated theorem [1], a strict contraction T has a fixed
point xt € X for which
T(xr) = xr

and which attracts every sequence of iterates of T. Moreover, it is known that this conver-
gence of iterates of T is uniform on all bounded subsets of X.
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In [18], A. M. Ostrowski investigated the influence of computational errors on the
behavior of iterates of the strict contraction T. He proved that every sequence {u;}?°, C X
for which

gp(”m, T(u;)) < o0

converges, and its limit is the fixed point of T.
A different approach was applied in [5] in order to generalize the result of [18] for a
map T : X — X, which is merely nonexpansive. We assumed that

o(T(0), T(w)) < p(v,u)

for all pairs of points v,u € X, and showed that if all sequences of exact iterates of T
converge, then all sequences of its inexact iterates with summable errors converge too.
This result has many applications and is an essential ingredient in superiorization and
perturbation resilience of algorithms [25-28]. The superiorization technique was applied
in [31,37], where an optimization problem with a convex objective function and with a
feasible region was investigated, which is the intersection of a finite family of closed convex
constraint sets. In this work, we investigate a minimization problem with a convex objective
function on a domain, which is the solution set of a common fixed point problem with a
finite family of nonexpansive mappings. Our algorithm is a combination of a projected
subgradient algorithm and string-averaging projection method, with variable strings and
variable weights. This algorithm generates a sequence of iterates which are approximate
solutions of the corresponding fixed point problem. Additionally, either this sequence also
has a minimizing subsequence for our optimization problem, or the sequence is strictly
Fejer monotone regarding the approximate solution set of the common fixed point problem.

2. Common Fixed Point Problems in a Metric Space

Recall that (X, p) is a metric space. We prove the following result.

Theorem 1. Assume that A is a nonempty set, for each a € A, a map Ty : X — X satisfies

p(Ta(x), Ta(y)) < p(x,y) (1)
foreach x,y € X and that for each integer i > 1, amap S; : X — X satisfies
p(Si(x),Si(y)) < p(x,y) (2)

foreach x,y € X.
In addition, assume that for each integer k > 1, each « € A, and each x € X,

k+n k+n
P(Hksj(x)rTa(Hk Si(x))) = 0asn — o, (3)
J= j=
{Ai}32, € (0, 00) satisfies )
ZAZ' < 0, (4)
i=0

{xi}32y C X, and that for each integer i > 0,

p(xiv1, Siv1(xi)) < A (5)

Then for each « € A,
lim p(x;, Ta(x;)) = 0.

1—00
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Proof. Lete € (0,1). In view of (4), there exists a natural number k such that

Z Ai < e/4. (6)
i=k
Set
Yk = Xk (7)
and for each integer i > k set
Yit1 = Siv1(yi)- (8)
By our assumptions and (3), (7) and (8), for each « € A,
lim o (y;, Ta(yi)) = 0. 9)
1—00

We show that for each integer p > k + 1,

p—1
o(xp,yp) < Y A (10)
i=k
It follows from (5) and (8) that

0 (g1, Ykt1) = (k15 Sk1 (Wk)) = (k1. Skp1 (xk)) < A

and (10) holds for p = k + 1.
Assume that p > k + 1 is an integer and (10) holds. By (2), (5), (8) and (10),

P(xp+1/yp+l) = p(xp+1/5p+1 (yp))

< o(xp41,Spr1(xp)) +0(Sp1(xp), Spr1(yp))

p—1 p
i=k i=k

Thus, we showed by induction that (10) holds for each integer p > k + 1.
Leta € A. In view of (3), (7) and (8), there exists an integer k1 > k such that

o(Ta(yi),yi) < €/4 for each integer i > k;.
By (1), (6), (10) and the relation above, for each integer i > kq,

o(Tu(x;), %) < p(Tu(x;), Tu(yi)) + 0(Ta(yi), yi) + 0 (yi, xi)

< 20(yi, xi) + p(Ta(i) yi) <2)_Aj+e/4 < 3e/4
j=k

This completes the proof of Theorem 1. [J

Theorem 1 is an extension of the result of [5], which was obtained for orbits of a
nonexpansive mapping.

3. The Dynamic String-Averaging Projection Method

Let (X, | - ||) be a normed space and p(x,y) = ||[x —y||, x,y € X.
Suppose that m is a natural number, P; : X — X, j=1,...,m, forevery j € {1,...,m},

1Pj(u) = Pi(0)|| < |lu—ol|, u,ve X (11)
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and
Fix(P)) = {¢ € X: P(¢) = &} # ©.
Set

F = N Fix(P)).

For every € > O and every i € {1,...,m}, put
Fe(Py) = {x € X: [[x = Ri(x)[| < e},
Fe(P) ={y € X: p(y, Fe(P)) < €},

Suppose that
F#Q.

Let us now describe our dynamic string-averaging algorithm.

In the sequel, a vector t = (ty,...,t,) such thatt; € {1,...,m} foralli =1,..

called an index vector.
For every index vector t = (ty,..., tq), define

p(t) =gq, P[t] = P, -~ Py,.
Clearly, for every index vector ¢,
P[t](x) =x, x € F,

IP[H](x) = PIEHW)I < [lx =y

for every pair x,y € X.
Let M be the set of all (), w), where Q) is a finite set of index vectors and

w : Q) — (0,00) be such that ) w(t) =1.
teQ

Let (QQ, w) € M. Define

Pow(x) = Y w(t)P[t](x), x € X.
te)

It is not difficult to see that

Poy(x) =xforallx € F,

1P (x) = Paw W) < llx =yl

forallx,y € X.
We use the following algorithm.
Initialization: select an arbitrary xp € X.
Iterative step: given x; € X choose

(g1, wiy1) € M
and calculate

X1 = Py, (Xk)-

Fix a number
A€ (O,mfl}

and an integer
g=>m

.,pis

(14)
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Let M., be the collection of all (Q), w) € M such that
p(t) < g forallt € Q,

w(t) > Aforallt € Q.

Fix a natural number N.
In order to find a point x € F we apply an algorithm generated by

{(Q, wi)}i2y € M.
such that for each natural number j,

i+N—1
{1,...,7’”} C U?zj (UtGQ,'{tl/"'ltp(t)})'

This algorithm generates, for any starting point xop € X, a sequence {x;};>, C X,
where

Xk+1 = Poy w4 (xx), k=0,1,....

We assume that the following assumption holds.
(A1) For each M > 0 and each v > 0, there exists 6 > 0 such that for each i €
{1,...,m}, each
z € B(0, M) NFix(P;)

,and each x € B(0, M) satisfying ||x — P;(x)|| > v,
2= P(x)] < 12— x]| — .

It should be mentioned that many mappings possess this property. For details
see [22,23]. In particular, (Al) holds when our mappings are projection operators on
closed convex sets in Hilbert spaces. In some classes of mappings most operators (in the
sense of Baire category) have this property.

The following result was obtained in Chapter 4 of [23].

Theorem 2. Let M > 0 satisfy
B(OOM)NF # @

and let € € (0,1). Then, there exists a constant Q > 0 such that for each
{(Qy,wi)}i2y € M.
which satisfies for each natural number j,
{1,...,m} < U U {1, b)),
each xo € B(0, M) and each sequences {x;}?°, C X satisfying for each integer i > 0,

Xiy1 = Poy g ;4 (i)

the inequality
Card({i€ {0,1,...}: x; 2 F}) <Q
holds.

In the sequel, we use the following lemma.

Lemma 1. Lete > 0andi € {1,...,m}. Then

ﬁe(Pi) - FSe(Pi)'



Mathematics 2023, 11, 4536 6 of 12

Proof. Let
X € ﬁe(Pi)

and 0 > 0. Clearly, there exists
z € B(x,0+¢€)

such that
|z = Pi(z)| <e.

By the relation above and (9),
lx = Pl < [lx = 2[| + [|z = Pi(2) | + [ P:(2) = Fi(x)]]
<2z = x|+ llz = Pi(2)|| <2(e +9) +e.
Since ¢ is any positive number, we conclude that
x € F3e(P;).
Lemma 1 is proved. [J

Corollary 1. Foreache > 0,
Fe C P3€.

Theorem 2 and Lemma 1 imply the following result.

Theorem 3. Let M > 0 satisfy
B(OOM)NF # @

and let € € (0,1). Then, there exists a constant Q > 0 such that for each
{(Qiwi) )2y © M
which satisfies for each natural number j,
{1,...,m} U Ureq,{t, -ty }),
each xo € B(0, M) and each sequences {x;}$°, C X, satisfying for each integer i > 0,
Xiv1 = Poy, w0, (%)

the inequality
Card({i € {0,1,...}: x; ¢ Fe}) < Q

holds.

Theorems 1 and 3 imply the following result which is an extension of Theorem 2 for
the case of inexact iterates with summable computational errors.

Theorem 4. Let
{(Q,wi) 2 € M.

satisfy for each natural number j,
+N-1
{1,...,m} C UL]' (Urea {t1, -ty 1),

{2}, C (0,00) satisfy

()
ZAi < 00
i=0
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and {x;}°, C X satisfy for each integer i > 0,
[xi41 = Pay, . (%) || < Ai
Then, for each € > O there exists an integer Q > 1 such that
x; € Fe
for each integer i > Q.

Example 1. The results of this section can be applied to the following common fixed point problem.
Assume that C;, i = 1,...,m are nonempty, convex, closed sets in X,

C=n"C #2
and that for eachi € {1,...,m}, Pc, : X — C; is a projection operator on C;: for each x € X,
1Pc; (x) — x| < [ly = x||, v € Ci.
Assume that for eachi € {1,...,m}, A; € (0,1] and
Pi(x) = AiPc(x) + (1 —Aj)x, x € X.

It is not difficult to see that all the assumptions made in the section hold and our results hold
too. Note that if \; = 1,i = 1,...,m we have a feasibility problem. But, in the general case, we
have a common fixed point problem with the solution set C.

4. Superiorization

Assume that (X, (-, -)) is a Hilbert space equipped with an inner product that induces
anorm
x| = (x,x)1/2, x € X.

We continue to use all the notation, definitions, and assumptions introduced in
Section 3. In particular, we assume that assumption (A1) holds.
Assume that M > 0 and that there exists sy € {1,...,m} such that

P, (X) C B(0, M). (18)

By (18),
F c B(0,M). (19)

Denote by M;, the set of all (0, w) € M, such that for each t = (t,...,t,)) € Q
there exists j € {1,..., p(t)} such that

Py (X) C B(0, M). (20)
Assume that L > 1 and that f : X — R! is a real-valued convex function such that
|f(u) — f(v)] < L||u—ol| forallu,v € B(0,3M +1). (21)
Foreachu € X,
of(uy={neX: (ny,o—u) < f(v) — f(u) forallv € X} (22)
is the subdifferential of the function f at the point 1. We consider the minimization problem

f(x) - min, x € F
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and set
inf(f,F) =inf}f(z) : z € F}. (23)
Let us now describe our algorithm.
Suppose that
{(Q, wj)}i2, C My,
a; € (0,1] for all nonnegative integers j,
ZIZ]' < o
j=0
and that for each natural number j,
+N-1
{L...m} CUZT (Ueo {t, -ty 1)
let xg € X and let for each natural number j,
li1 € 9f (x-1) (24)
and
xj = Poyu;(xj-1 — aj-1lj-1). (25)
In this paper, we prove the following result.
Theorem 5. For each integer g € {1,...,m},
lim |13 — Py(x;)| = 0
1—00
and at least one of the following cases holds:
(a) liminf; ., f(x;) < inf(f,F);
(b) there exist a natural number ko and 5o > 0 for each x € F, satisfying
f(x) <inf(f,F) + o
and each integer k > ko,
lve — 21 < [lxe-1 — x> — Goa1.
5. An Auxiliary Result
Lemma 2. Let
ze€F,ae(0,1],d>0, x € B(0,3M), (26)
satisfy
f(x) = f(z) +4, (27)
uedf(x), (Qw)e M, (28)
and let
y = Pou(x —au). (29)
Then
ly —z||*> < ||x — z||* + a®L? — 2ad.
Proof. In view of (21), (26) and (28),
[l < L. (30)
By (22) and (28),
(2 —x) < f(z) = f(x). (31)
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It follows from (9), (26), (27), and (29)—(31) that
ly —z)1* = [ Pa,(x — au) —z|>
< |lx —au —z||? < ||x — z||? + a?||u||® — 2a(u, x — 2)
< lx —z|* + a*L% + 2a(f(z) — f(x)) < ||x — 2||* + a*L* — 2ad.
Lemma 2 is proved. O
6. Proof of Theorem 5
Fix
z € F. (32)
In view of (25), for each natural number s,
Xs = PQS,wS (xs—l - as—lls—l)- (33)
Let s be a natural number and
t= (tlr-'-/tp(t)) e Q. (34)
By (20) and (34), there exists
je{l,...,p(t)}
such that
Pt],(X) C B(0, M). (35)
In view of (35),
]
HPti(xs,l — 1157115,1) S B(O, M) (36)
i=1
It follows from (19), (32), (35), and (36) that
j
lz =T [P (xs1 — as1ls )|l < 2M. (37)
i=1
Equations (9), (10), (37), and (38) imply that
]
“P[t](xsfl - usfllsfl> - ZH < H Hpti(xsfl - asfllsfl) _ZH <2M.
i=1
Thus
IP[t](xs—1 — as—1ls—1) — z|| <2M for all t € Q). (38)
It follows from (14), (15), (38), and the convexity of the norm that
HPQS,wS (xsfl - asfllsfl) - Z”
< Y ws(t)|| P[] (xs-1 — as—1ls—1) — z|| < 2M. (39)
teQy
In view of (18), (32), (33), and (39),
[[xs]| < 3M (40)
for each integer s > 1. By (21), (24) and (40),
|IIs]] < L for all integers s > 1. (41)
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It follows from (9), (25) and (41) that for each integer k > 2,

|2k — Poyy o, (Xk—1)1l = [Py w, (Xk—1 — k—1lk—1) — Poy, jw, (Xi—1) |
< @[kl < Lagq

and
(o)

Yk = Poy w, (x5—1)]] < 0. (42)
k=0

Theorem 4 and (42) imply that for each g € {1,...,m},
lim || P (x;) — x;|| = 0.
1—00
Assume that the case (a) does not hold. This implies that there exists p > 0 such that
lilgn inf f(x;) > inf(f, F) + 25p. (43)
—00

Since
[ee]
Z a; < oo
i=0

it follows from (43) that there exists a natural number k( such that for all integers k > ko,

A1 < L_zfs() (44)
and
f(xg_1) > inf(f, F) + 2. (45)
Let
zeF (46)
and
f(z) < inf(f, F) + do. (47)

Let k > ko be an integer. By (24), (40), (44)-(47) and Lemma 2 applied with
a=ay_1, d=200, X =1, u=1l_1, y=12x (Qw) = (Q, wy)

we have
lxg — z||* < |lax—y — z]|* + a3_, L* — 245150

<l — zl|* — a_16o-
Theorem 5 is proved.

7. Conclusions

In our work, we analyze a constrained minimization problem with a convex objective
function on a region, which is the solution set of a common fixed point problem with
a finite family of nonexpansive mappings. The goal was to generalize the result of [31]
obtained for a convex minimization problem on the solution set of a convex feasibility
problem. Note that a convex feasibility problem is a particular case of a common fixed
point problem. We use a projected subgradient method combined with a dynamic string-
averaging projection method, with variable strings and variable weights. This algorithm
generates a sequence of iterates which are approximate solutions of the corresponding
fixed point problem. Additionally, also either this sequence has a minimizing subsequence
for our constrained minimization problem or the sequence is strictly Fejer monotone with
respect to the approximate solution set of the common fixed point problem.
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