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Abstract: In this paper, the Kadometsev–Petviashvili equation and the Bargmann system are obtained
from a second-order operator spectral problem Lϕ = (∂2 − v∂− λu)ϕ = λϕx. By means of the Euler–
Lagrange equations, a suitable Jacobi–Ostrogradsky coordinate system is established. Using Cao’s
method and the associated Bargmann constraint, the Lax pairs of the differential equations are
nonlinearized. Then, a new kind of finite-dimensional Hamilton system is generated. Moreover,
involutive representations of the solutions of the Kadometsev–Petviashvili equation are derived.
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1. Introduction

Many nonlinear phenomena that occur in nature can be described by nonlinear integrable
models. This is particularly important to solve nonlinear partial differential equations and
study the properties of their solutions. However, solving nonlinear equations is much more
complicated than solving linear equations. Up to now, there is no unified method to solve
them. Thus, many scholars have been attracted to study methods to solve nonlinear partial
differential equations. At the same time, many methods have emerged, such as the inverse
scattering method [1,2], the Darboux transformation [3,4], the Hirota bilinear method [5], the
Riemann–Hilbert approach [6,7], the algebro-geometric method [8–10], etc. By the Darboux
transformation between Lax pairs, the exact solutions for a five-component generalized mKdV
equation are obtained [11]. Using the Dbar dressing method, the N-soliton solutions of
the derivative NLS equation are discussed [12]. The characteristic polynomial of the Lax
matrix is used to construct the trigonal curve, which plays an important role in obtaining the
quasi-periodic solutions of nonlinear equations [13].

As is well known, the nonlinearization of Lax pairs [14] plays an important role in
solving nonlinear evolution equations. The key is establishing the connection between infinite
dimensional nonlinear evolution equations and finite dimensional integrable systems. By the
Bargmann or Neumann constraint of the potentials and eigenfunctions, we can obtain the
involutive representations of the solutions to nonlinear evolution equations [15–17].

In our research, we found that the second-order spectral problem

ϕxx − vϕx − λuϕ = λϕx, (1)

is associated with the well-known Kadometsev–Petviashvili (KP) equation

wt =
1
4
(wxx + 6w2)x +

3
4

∂−1wyy, (2)
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which was first proposed by Kadomtsev and Petviashvili in 1970 [18]. The outline of this
paper is as follows. In the next section, we introduce a second-order spectral problem with
two potentials and derive a hierarchy of nonlinear equations based on Lenard recursion
sequences. In Section 3, resorting to the viewpoint of Hamiltonian mechanics [19], the
Jacobi–Ostrogradsky coordinates are presented. Then, the Bargmann system for (1) is
written as a Hamilton canonical system. In Section 4, the spectral problem is nonlinearized
and a new kind of finite-dimensional Hamilton system is constructed by using Cao’s
method. The Liouville integrability of the resulting Hamilton systems is generated. Section
5 is devoted to deriving the (2+1)-dimensional KP equation and constructing its involutive
solution. The conclusions are presented in the last section.

2. Nonlinear Evolution Equations

Throughout this paper, we suppose that Ω = (−∞,+∞) is the basic interval of (1).
The functions {u, v} and their derivatives on x decay at infinity. Suppose that the linear
space is equipped with L2 scalar product (·, ·)L2(Ω):

( f , g)L2(Ω) =
∫

Ω
f g∗dx < ∞,

where the symbol ∗ is used to denote the complex conjugate.
Now, we consider the spectral problem

Lϕ = (∂2 − v∂− λu)ϕ = λϕx, (3)

where ∂ = ∂
∂x , u = u(x, t) and v = v(x, t) are the potential functions, and the parameter λ

is an eigenvalue of the spectral problem (3).
Let L̄ represent the adjoint operator of L, so

L̄ = ∂2 + ∂v− λ∗u. (4)

Suppose ϕ, ψ ∈ L2(Ω), and they satisfy{
Lϕ = λϕx,
L̄ψ = −λ∗ψx,

(5)

then, we can easily obtain the following results.
(i) The eigenvalue λ is real, i.e., λ = λ∗ ∈ R.
(ii) The functional gradient is as follows:

gradλ =

(
δλ
δu
δλ
δv

)
=

(∫
Ω
(uϕψ + ϕxψ)dx

)−1(
λϕψ
ϕxψ

)
. (6)

We consider the stationary zero curvature equation

λWx + [W, L] = λWx + WL− LW = 0, (7)

where

W =
∞

∑
j=0

(bj−1∂− λaj−1)λ
−j. (8)

Then, we introduce the Lenard recursive relation

Jgj = Kgj−1, gj = (bj, aj)
T , j ≥ 0, (9)

with the initial values
a−1 = 0, b−1 = 1, (10)
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where the bi-Hamilton operators are defined as

J =
(

0 −∂
−∂ 2∂

)
, K =

(
u∂ + ∂u −∂2 + v∂
∂2 + ∂v 0

)
. (11)

Thus, we have the following result:

Kgradλ = λJgradλ. (12)

Let ϕ satisfy spectral problem (3) and the auxiliary problem

ϕtm = Wm ϕ, (13)

with

Wm =
m

∑
j=0

(bj−1∂− λaj−1)λ
m−j.

Then, the compatible condition of (3) and (13) yields the equation Ltm = λWmx +
[Wm, L], which is equivalent to a hierarchy of nonlinear equations

(utm , vtm)
T = Kgm = Jgm+1, m ≥ 0. (14)

After a direct calculation, the first two nontrivial members in (14) are{
ut1 = uxx − 2uxv− 2uvx − 6uux,

vt1 = −vxx − 2uxx − 2uxv− 2uvx − 2vvx,
(15)

and 
ut2 = uxxx − 3uxx(2u + v) + ux(30u2 + 3v2 + 24uv− 3vx − 6ux)

+ 12u2vx + 6uvvx,
vt2 = vxxx + 3vxx(2u + v) + vx(12ux + 3vx + 12uv + 3v2 + 6u2)

+ 6uxxv + 12u2
x + 12uuxx + 6uxv2 + 12uuxv.

(16)

3. The Hamilton Canonical Form

Suppose λ1 < λ2 < . . . < λN are N distinct eigenvalues of the spectral problems (5)
and ϕj, ψj are the eigenfunctions for λj(j = 1, 2, . . . , N). Let

Λ = diag(λ1, λ2, . . . , λN), Φ = (ϕ1, ϕ2, . . . , ϕN)
T , Ψ = (ψ1, ψ2, . . . , ψN)

T . (17)

Take into consideration the following Bargmann constraint:{
u = −〈Φx, Ψ〉,
v = 2〈Φx, Ψ〉 − 〈ΛΦ, Ψ〉, (18)

where the symbol 〈·, ·〉 stands for the scalar product. Under the Bargmann constraint (18),
we obtain that the Bargmann system of the eigenvalue problems (5) is equivalent to the
following systems:{

Φxx + 〈ΛΦ, Ψ〉Φx − 2〈Φx, Ψ〉Φx −ΛΦx + 〈Φx, Ψ〉ΛΦ = 0,
Ψxx + ((2〈Φx, Ψ〉 − 〈ΛΦ, Ψ〉)Ψ)x + ΛΦx + 〈Φx, Ψ〉ΛΨ = 0.

(19)

To derive the Hamilton canonical forms which correspond to the Bargmann sys-
tem (19), we take the Lagrange function Î as follows:

Î =
∫

Ω
Idx, (20)
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where
I = 〈ΛΦ, Ψ〉〈Φx, Ψ〉 − 〈Φx, Ψ〉2 − 〈ΛΦx, Ψ〉 − 〈Φx, Ψx〉.

From (20), we obtain

δ Î
δΨ

=
∂I
∂Ψ
− (

∂I
∂Ψx

)x

= 〈ΛΦ, Ψ〉Φx + 〈Φx, Ψ〉ΛΨ− 2〈Φx, Ψ〉Φx −ΛΦx −Φxx

= 0.

Similarly, δ Î
δΦ = 0, so we have the following results.

Proposition 1. The Bargmann system (19) of the eigenvalue problems (5) is equivalent to the
Euler–Lagrange equations: 

δ Î
δΦ

= 0,

δ Î
δΨ

= 0.

(21)

Now, the Poisson bracket of the real-valued functions F and H in the symplectic space(
ω =

2
∑

j=1
dqj ∧ dpj, R4N

)
is defined as follows:

{F, H} =
2

∑
j=1

N

∑
k=1

(
∂F

∂pjk

∂H
∂qjk
− ∂F

∂qjk

∂H
∂pjk

)
=

2

∑
j=1

(〈Fpj , Hqj〉 − 〈Fqj , Hpj〉). (22)

Using the Euler–Lagrange equation (21), we will derive the Jacobi–Ostrogradsky
coordinates to obtain the Hamilton canonical equations of the Bargmann system (19). Let

u1 = Φ, u2 = Ψ, g =
2

∑
j=1
〈ujx, vj〉 − I.

Our goal is to find the coordinates {v1, v2} and g that satisfy the following Hamilton
canonical equations: 

ujx = {uj, g} = ∂g
∂vj

,

vjx = {vj, g} = − ∂g
∂uj

,
j = 1, 2.

In fact, by using the expression g =
2
∑

j=1
〈ujx, vj〉 − I, one obtains

dg =
2

∑
j=1

(
〈vj, dujx〉+ 〈ujx, dvj〉

)
− dI.

Moreover, since g = g(uj, vj|j = 1, 2), we obtain

dg =
2

∑
j=1

(〈 ∂h
∂uj

, duj
〉
+
〈 ∂h

∂vj
, dvj

〉)
=

2

∑
j=1

(−〈vjx, duj〉+ 〈ujx, dvj〉),
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and

dI = 〈v1, du1x〉+ 〈v2, du2x〉+ 〈v1x, du1〉+ 〈v2x, du2〉
= 〈v1, dΦx〉+ 〈v2, dΨx〉+ 〈v1x, dΦ〉+ 〈v2x, dΨ〉.

By directly computing this, we obtain

v1 = −Ψx − (Λ + 2〈Φx, Ψ〉 − 〈ΛΦ, Ψ〉)Ψ, v2 = −Φx.

Given the above preparations, we take the Jacobi–Ostrogradsky coordinates as follows:
p1 = Φ,

p2 = Φx,

q1 = −Ψx − (Λ + 2〈Φx, Ψ〉 − 〈ΛΦ, Ψ〉)Ψ,

q2 = Ψ,

(23)

and the following result holds.

Theorem 1. The Bargmann system (19) for the eigenvalue problems (5) is equivalent to the
Hamilton canonical system 

pjx =
∂H
∂qj

,

qjx = − ∂H
∂pj

,
j = 1, 2, (24)

where
H = 〈p2, q1〉+ 〈Λp2, q2〉 − 〈p2, q2〉〈Λp1, q2〉+ 〈p2, q2〉2. (25)

4. The Classical Liouville Completely Integrable Systems

Based on the Jacobi–Ostrogradsky coordinates (23), the nonlinearized Lax pairs are
written as a Hamilton equation system. Then, completely integrable systems in the Liouville
sense are obtained.

From the Jacobi–Ostrogradsky coordinates (23) and Theorem 1, the eigenvalue prob-
lem (19) can be rewritten as follows:(

p1
p2

)
x
= M

(
p1
p2

)
,
(

q1
q2

)
x
= −MT

(
q1
q2

)
. (26)

M =

(
0 E

Λu Λ + vE

)
, E = EN×N = diag(1, 1, . . . , 1).

Proposition 2. The Lax pairs (3) and (13) for the evolution Equation (14) are equivalent to the
following systems:

(
p1
p2

)
x
= M

(
p1
p2

)
,

(
q1
q2

)
x
= −MT

(
q1
q2

)
,

(
p1
p2

)
tm

=

(
Am Bm

Cm Dm

)(
p1
p2

)
,
(

q1
q2

)
tm

= −
(

Am Bm

Cm Dm

)T(
q1
q2

)
, m ≥ 0,

(27)
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where

Am = −
m

∑
j=0

aj−1Λm−j+1,

Bm =
m

∑
j=0

bj−1Λm−j,

Cm =
m

∑
j=0

(
−aj−1,x + ubj−1

)
Λm−j+1,

Dm =
m

∑
j=0

(
bj−1,x + vbj−1 −Λaj−1 + Λbj−1

)
Λm−j.

(28)

By (18) and (23), we have the Bargmann constraint{
u = −〈p2, q2〉,
v = 2〈p2, q2〉 − 〈Λp1, q2〉.

(29)

Furthermore, using (9) and (12), a straightforward calculation shows that{
aj = 〈Λj p2, q2〉,
bj = 〈Λj+1 p1, q2〉, j = 0, 1, 2, . . . .

(30)

Substituting (29)–(30) into (27), we obtain(
p1
p2

)
x
= M̄

(
p1
p2

)
,
(

q1
q2

)
x
= −M̄T

(
q1
q2

)
, (31)

(
p1
p2

)
tm

= W̄
(

p1
p2

)
,

(
q1
q2

)
tm

= −W̄T
(

q1
q2

)
, m = 0, 1, 2, . . . , (32)

where

M̄ =

(
0 E

−〈p2, q2〉Λ ∆

)
, W̄ =

(
Ām B̄m
C̄m D̄m

)
,

∆ = Λ + (2〈p2, q2〉 − 〈Λp1, zq〉)E,

Ām = −
m

∑
j=0
〈Λj p2, q2〉Λm−j + 〈Λm p2, q2〉E,

B̄m =
m

∑
j=0
〈Λj p1, q2〉Λm−j + Λm − 〈p1, q2〉Λm,

C̄m =
m

∑
j=0
〈Λj p2, q1〉Λm−j − 〈p2, q2〉Λm+1 − 〈Λm p2, q1〉E,

D̄m = −
m

∑
j=0
〈Λj p1, q1〉Λm−j + 〈Λm p2, q2〉E + 〈p2, q2〉Λm + 〈p1, q1〉Λm

+ Λm+1 − 〈Λm+1 p1, q2〉E.

Denote

P = (p1, p2, q1, q2)
T , I =

(
0 E2N
−E2N 0

)
,

then we have the following results.
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Theorem 2. Using the Bargmann constraint (29), the nonlinearized Lax pairs (31) and (32) for
evolution Equation (14) can be written as follows:

Px =

(
∂H
∂q1

,
∂H
∂q2

,− ∂H
∂p1

,− ∂H
∂p2

)T
= I∇H, (33)

Ptm =

(
∂Hm

∂q1
,

∂Hm

∂q2
,−∂Hm

∂p1
,−∂Hm

∂p2

)T
= I∇Hm, m = 0, 1, 2, . . . , (34)

where H is defined by (25), and

Hm = 〈Λm p2, q1〉 − 〈Λm p2, q1〉〈p1, q2〉+ 〈Λm+1 p2, q2〉 − 〈Λm+1 p1, q2〉〈p2, q2〉

+ 〈Λm p2, q2〉(〈p2, q2〉+ 〈p1, q1〉)−
m
∑

j=0

∣∣∣∣∣ 〈Λ
j p1, q1〉 〈Λm−j p1, q2〉

〈Λj p2, q1〉 〈Λm−j p2, q2〉

∣∣∣∣∣. (35)

In what follows, we shall discuss the completely integrability of the Bargmann systems
(33) and (34). We introduce the generators as follows:

E(1)
k = 1

λk
p2kq1k +

1
λk

p2kq2k〈p2, q2〉+ 1
λk

p2kq2k〈p1, q2〉 − 1
λk

p2kq1k〈p1, q2〉

+ p2kq2k − p1kq2k〈p2, q2〉 − Γ(1,2)
k ,

E(2)
k = Γk,

(36)

where

Γ(1,2)
k =

N
∑

l=1,l 6=k

1
λk − λl

∣∣∣∣ p1k p1l
p2k p2l

∣∣∣∣∣∣∣∣ q1k q1l
q2k q2l

∣∣∣∣,
Γk =

N
∑

l=1,l 6=k

1
λk − λl

(p1lq1l + p2lq2l)(p1kq1k + p2kq2k).

By directly computing from the definition of the Poisson bracket (22), we obtain the
following results:

(i) {E(i)
j , i = 1, 2; j = 1, 2, . . . , N} are involution systems, i.e.,

{E(i)
j , E(l)

k } = 0, ∀ i, l = 1, 2; j, k = 1, 2, . . . , N. (37)

(ii) {dE(i)
j , j = 1, 2, . . . , N; i = 1, 2} are linearly independent.

Based on the above preparations, we can obtain the following theorem.

Theorem 3. The Bargmann systems (33) and (34) are completely integrable systems in the Liouville
sense, i.e.,

{H, E(i)
j } = 0, i = 1, 2; j = 1, 2, . . . , N. (38)

{Hm, E(i)
j } = 0, i = 1, 2; j = 1, 2, . . . , N. (39)

{Hm, Hn} = 0, m, n = 0, 1, 2, . . . . (40)

{H, Hm} = 0, m = 0, 1, 2, . . . . (41)

Proof. A direct calculation shows that

Hm−1 =
N

∑
j=1

λm
j E(1)

j , m = 1, 2, . . . . (42)
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Combining (36), (37) and (42), we have

{Hm, Hn} = 0, m, n = 0, 1, 2, . . . .

On the other hand, we notice that H = H0, so

{H, E(i)
j } = 0, i = 1, 2; j = 1, 2, . . . , N.

{H, Hm} = 0, m = 0, 1, 2, . . . .

Using the Arnold theorem [19], the Bargmann systems (33) and (34) are completely
integrable systems in the Liouville sense.

We consider the canonical equation of the Hm flow (34) and the solution of the initial
value problem:

P(tm) =


p1(tm)
p2(tm)
q1(tm)
q2(tm)

 = htm
m


p1(0)
p2(0)
q1(0)
q2(0)

 = htm
m P(0). (43)

Specifically, t0 = x. According to Theorem 3, htk
k and h

tj
j are commutable.

Remark 1. (1) When m = 1, we denote t1 = y. Let (p1(x, y), p2(x, y), q1(x, y), q2(x, y)) be a
compatible solution of

Px = I∇H,
Py = I∇H1,

(44)

then u(x, y) = −〈p2, q2〉, v(x, y) = 2〈p2, q2〉 − 〈Λp1, q2〉 satisfies the coupled Equation (15).
(2) When m = 2, we denote t2 = t. Let (p1(x, t), p2(x, t), q1(x, t), q2(x, t)) be a compatible

solution of
Px = I∇H,
Pt = I∇H2,

(45)

then u(x, t) = −〈p2, q2〉, v(x, t) = 2〈p2, q2〉 − 〈Λp1, q2〉 satisfies the coupled Equation (16).

That is to say, the Lax pairs of the coupled Equation (15) are nonlinearized into the
confocal flows H and H1, while the Lax pairs of the coupled Equation (16) are nonlinearized
into the confocal flows H and H2.

5. Involutive Solutions of the KP Equation

In this section, the special solution of the KP equation is separated into three confocal
flows: H, H1 and H2. The involutive solution to the KP equation is generated.

Proposition 3. Let u(x, y, t), v(x, y, t) be a compatible solution of the coupled Equations (15)
and (16), then

w(x, y, t) = u2(x, y, t) + u(x, y, t)v(x, y, t), (46)

solves the KP equation:

wt =
1
4
(wxx + 6w2)x +

3
4

∂−1wyy. (47)

Proof. By a complex calculation, one obtains:
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wxt = wxxxx + 15(w2)xx − uxxx(3v2 + 6uv + 6ux + 3vx) + vxxx(6u2 + 3uv + 3ux)
+ uxx(3v2 + 6uv2 − 18uxv− 9vvx) + vxx(6u2v + 9uv2 + 18uux + 9uvx)
+ uxvx(24uv + 18v2) + v2

x(6u2 + 18uv) + 6u2
xv2.

3
4 wyy = 3

4 wxxxx +
27
2 (w2)xx − uxxx(3v2 + 6uv + 6ux + 3vx) + vxxx(6u2 + 3uv + 3ux)

+ uxx(3v2 + 6uv2 − 18uxv− 9vvx) + vxx(6u2v + 9uv2 + 18uux + 9uvx)
+ uxvx(24uv + 18v2) + v2

x(6u2 + 18uv) + 6u2
xv2.

(48)

Thus, Equation (47) holds.

Theorem 4. Let (p(x, y, t), q(x, y, t)) be a compatible solution of the following equations

Px = I∇H, Py = I∇H1, Pt = I∇H2, (49)

then
w(x, y, t) =< p2, q2 > (< Λp1, q2 > − < p2, q2 >)

=< p2, q1 > + < Λp2, q2 > −H,
(50)

solves the KP Equation (47).

Proof. Since the flow operators hx
0 , hy

1, ht
2 are commutable, the compatible solution can be

written in two ways:

P(x, y, t) = hx
0hy

1{h
t
2P(0, 0, 0)} = hx

0ht
2{h

y
1P(0, 0, 0)}, (51)

where the element of brace {·} can be regarded as an initial value. According to the
Bargmann constraint (29) and Proposition 3, we infer that

w = u2 + uv =< p2, q2 > (< Λp1, q2 > − < p2, q2 >),

is a involutive solution of the KP Equation (47).

6. Conclusions

Starting from a second-order operator spectral problem, we obtain a new hierarchy
for a nonlinear evolution equation (14). Moreover, the (2+1)-dimensional KP equation (47)
is decomposed into the first two (1+1)-dimensional nontrivial equations (15) and (16). By
constructing the Bargmann constraint of the potential functions and eigenfunctions, and
based on the nonlinearization of Lax pairs, we establish the relations between the infinite-
dimensional nonlinear equations of soliton systems and finite-dimensional integrable
systems. Furthermore, we obtain the involutive solution of the KP equation.
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