
Citation: Schlarb, M.; Hüper, K.;

Markina, I.; Silva Leite, F. Rolling

Stiefel Manifolds Equipped with

α-Metrics. Mathematics 2023, 11, 4540.

https://doi.org/10.3390/

math11214540

Academic Editor: Jan L. Cieśliński
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Abstract: We discuss the rolling, without slipping and without twisting, of Stiefel manifolds equipped
with α-metrics, from an intrinsic and an extrinsic point of view. We, however, start with a more
general perspective, namely, by investigating the intrinsic rolling of normal naturally reductive
homogeneous spaces. This gives evidence as to why a seemingly straightforward generalization of
the intrinsic rolling of symmetric spaces to normal naturally reductive homogeneous spaces is not
possible, in general. For a given control curve, we derive a system of explicit time-variant ODEs
whose solutions describe the desired rolling. These findings are applied to obtain the intrinsic rolling
of Stiefel manifolds, which is then extended to an extrinsic one. Moreover, explicit solutions of the
kinematic equations are obtained, provided that the development curve is the projection of a not
necessarily horizontal one-parameter subgroup. In addition, our results are put into perspective with
examples of the rolling Stiefel manifolds known from the literature.

Keywords: intrinsic rolling; extrinsic rolling; Stiefel manifolds; normal naturally reductive homogeneous
spaces; covariant derivatives; parallel vector fields; kinematic equations

MSC: 53B21; 53C30; 53C25; 37J60; 58D19

1. Introduction

In recent years, there has been increasing interest in the so-called rolling maps of
differentiable manifolds. Researchers have taken different points of view to study the
differential geometry behind these constructions. From our point of view, it seems to be
natural to distinguish between two approaches, the intrinsic one and the extrinsic one.
The first viewpoint does not require any embedding space to study rolling maps, whereas
the second needs one. At first glance, the intrinsic approach seems to be of a more pure
mathematical flavor, simply because intrinsic properties stay in the foreground and any
influence of an embedding space, which might a priori not be known or even considered
to be artificial, will be ignored. In some sense, in that framework, choosing coordinates is
a no-go. On the other hand, however, the extrinsic approach might be considered to be
of more applied character, mainly because some of the related applications actually stem
from rolling rigid or convex bodies in the geometric mechanic sense and/or from closely
related questions of geometric control. Although there is an overlap of both approaches,
i.e., interpretations of the mathematical results of rolling without slipping or twisting
have partially been discussed from both sides, the definitions usually differ, including
assumptions and consequences. We want to emphasize that by extrinsic, we do not mean
working with coordinates in the sense of charts. The access to an embedding vector space
often nevertheless opens the path to a coordinate-free approach, similar to treating the
standard sphere Sn embedded into Rn+1.
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The purpose of this paper is at least threefold. Firstly, we put both approaches, intrinsic
and extrinsic, into perspective, clarifying the sometimes subtle differences and discussing
their consequences. In particular, we claim that the role of the no-twist conditions become
more clarified. Secondly, we study a sufficiently rich class of manifolds, namely, the rolling
of normal natural reductive homogeneous spaces. An essentially constructive procedure to
generalize the rolling of symmetric spaces is presented here for the first time. Thirdly, the
rolling Stiefel manifold serves as our role model, as it is well known that although spheres
and orthogonal groups within the set of real Stiefel manifolds are symmetric spaces, all the
others are not. We also put all our results into perspective by comparing them to the partial
results scattered in the literature.

Central to our treatise is the derivation of the so-called kinematic equations, i.e., a set of
ODEs to be considered under certain nonholonomic constraints. Certainly, the rich theory
behind differential geometric distributions, fiber bundle constructions, and differential
systems can be applied here. For many examples, however, this theory often does not
support explicit solutions for the nonholonomic problem of rolling with no slipping and no
twisting. Here, we present explicit solutions for rolling Stiefel manifolds, even for a huge
class of a one-parameter family of pseudo-Riemannian metrics for Stiefel manifolds. This
class includes many of the known examples scattered through the literature.

We strongly believe that our work will influence future research, in particular, when
rolling motions are driven by engineering applications. To be more specific, having so-
lutions of the kinematic equations of rolling at hand is helpful in deriving explicit or
closed formulas for differential geometric concepts, such as parallel transport and covariant
derivatives, or even to tackle control theoretic questions. These in turn will facilitate finding
solutions for interpolation, optimization, and path planning or other related engineering-
type problems.

This paper is structured as follows. After introducing the necessary notations, we
recall some facts on homogeneous spaces, with emphasis on normal naturally reductive
homogeneous spaces. The Levi-Civita connection on a normal naturally reductive homoge-
neous space G/H is expressed in terms of vector fields on the Lie group G, which have been
horizontally lifted from G/H in Section 3.1. This leads, in Section 3.2, to a characterization
of parallel vector fields along curves, which is important for our further investigation
of rolling.

We then come to Section 4, where three different notions of rolling a pseudo-Riemann-
ian manifold over another one of equal dimension are introduced. Starting with one
definition of intrinsic rolling, we continue with two different definitions of extrinsic rolling,
the latter being closely related.

Although these definitions apply to general pseudo-Riemannian manifolds, we turn
our attention to normal naturally reductive homogeneous spaces in Section 5. The rather
simple form of rolling intrinsically pseudo-Riemannian symmetric spaces from [1] moti-
vates an Ansatz, which is an obvious generalization of this rolling. Unfortunately, this does
not yield the desired result, in general. This discussion is summarized in Lemma 5. In
addition, it is illustrated by the example of Stiefel manifolds equipped with α-metrics in
Section 5.2.

Afterward, we derive the so-called kinematic equations for rolling intrinsically normal
naturally reductive homogeneous spaces. Their solutions describe the desired rolling
explicitly if a control curve was given a priori.

In Section 6, our findings from Section 5.3 are applied to Stiefel manifolds. First,
we recall some facts on Stiefel manifolds endowed with α-metrics from the literature.
Afterward, the intrinsic rolling of Stiefel manifolds equipped with α-metrics is discussed by
applying results from Section 5.3. For a specific choice of the parameter α, the α-metric on
the Stiefel manifold Stn,k coincides with the metric induced by the Euclidean metric on the
embedding space Rn×k. Using this fact, the extrinsic rolling of Stiefel manifolds is treated
in Section 6.3 by extending the intrinsic rolling from Section 6.2.
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In Section 6.4, the kinematic equations describing the rolling of Stiefel manifolds are
solved explicitly where an additional assumption is imposed on the development curve.
More precisely, an explicit formula for the extrinsic rolling of a tangent space of Stn,k over
Stn,k is obtained, provided that the development curve is the projection of a one-parameter
subgroup in O(n)×O(k), which is not necessarily horizontal.

Finally, in Section 6.5, we relate our results about the extrinsic rolling of Stiefel mani-
folds to those derived in [2].

2. Notations and Terminology

These are some of the notations used throughout the paper:

M, N smooth manifolds
Tp M tangent space at p ∈ M
dp f : Tp M→ Tf (p)N tangent map of f : M→ N at p ∈ M
Np M normal space at p ∈ M
NM normal bundle of M
Γ∞(TM) smooth vector fields on M
G Lie group
H closed subgroup of G
g Lie algebra of G
π : G → G/H canonical projection
H horizontal bundle of π : G → G/H
V vertical bundle, i.e., V = ker(dπ)
g = h⊕ p reductive decomposition
prp : g→ p projection onto p along h

X
∣∣
p

X
∣∣
p
= prp(X) for X ∈ g

X, Y smooth vector fields
∇XY covariant derivative of Y in direction X
∇α̇(t)Y covariant derivative of Y along curve α

V finite-dimensional (pseudo-Euclidean) Vector space
End(V) algebra of R-linear endomorphism of V
GL(V) general linear group of V
O(V) pseudo-orthogonal group of V
so(V) Lie algebra of O(V)
SO(n) special orthogonal group,

SO(n) = {R ∈ Rn×n | R>R = In, det(R) = 1}
so(n) Lie algebra of SO(n), so(n) = {Ω ∈ Rn×n | Ω> = −Ω}
⊗ Kronecker product

vec : Rn×k → Rnk
vec operator, vec(A) =

[ A1
...

Ak

]
for A = (A1, . . . , Ak) ∈ Rn×k

⊕⊥
direct sum of vector spaces orthogonal with respect to
scalar product

n semi-direct product of groups

3. Normal Naturally Reductive Homogeneous Spaces

Lowercase Latin letters for the elements in a Lie group and uppercase Latin letters for
the elements in the corresponding Lie algebra are used. For curves in the Lie algebra, it
will be more convenient to use lowercase Latin letters as well.

Assume that a Lie group G acts transitively from the left on a smooth manifold M,
with action

τ : G×M→ M, (g, p) 7→ τ(g, p) = g.p.

Then, τg : M→ M, defined by

τg(p) = τ(g, p), p ∈ M,
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is a diffeomorphism for any g ∈ G.
Let Stab(o) ⊂ G be the isotropy subgroup of a point o ∈ M, that is, Stab(o) = {g ∈ G :

g.o = τ(g, o) = τg(o) = o}. The isotropy subgroup of a point in M is a closed subgroup of
G and any two isotropy subgroups are conjugate. To simplify notations, we may denote
Stab(o) simply by H. The coset manifold G/H is diffeomorphic to M via g.H 7→ g.o, where
g.H ∈ G/H denotes the coset defined by g ∈ G, and we can write M = G/H. The manifold
M = G/H is called a homogeneous manifold. We denote the corresponding Lie algebras of G
and H by g and h, respectively.

The coset manifold is said to be reductive, see, e.g., [3] (Chap. 11, Def. 21) or [4]
(Def. 23.8), if there exists a subspace p ⊂ g, such that g = p⊕ h and Adh(X) for all X ∈ p

and h ∈ H. This AdH-invariance of p implies [p, h] ⊂ p.
Let π denote the projection of G on the coset manifold, i.e.,

π : G → G/H, g 7→ π(g) = g.H.

If e is the identity element in G, then the map π and its differential

deπ : TeG = g→ To M (1)

have the following properties.

Proposition 1.

1. π is a submersion;
2. deπ(h) = {0} ⊂ To M;
3. deπ

∣∣
p

: p→ To M is an isomorphism.

Consider now M endowed with a pseudo-Riemannian metric 〈〈·, ·〉〉. We write 〈〈·, ·〉〉p
if we want to emphasize the value of the metric at the point p ∈ M. A metric tensor 〈〈·, ·〉〉
on M is said to be G-invariant if〈〈

X, Y
〉〉

p =
〈〈

dpτg(X), dpτg(Y)
〉〉

τg(p),

for all X, Y ∈ Tp M. In other words, the diffeomorphism τg : M→ M is an isometry.
Next, we recall the definition of a pseudo-Riemannian submersion from [3] (Chap. 7,

Def. 44).

Definition 1. Let
(

M, 〈〈·, ·〉〉M
)

and
(

N, 〈〈·, ·〉〉N
)

be two pseudo-Riemannian manifolds and
π : N → M be a submersion. Denote by Vn = ker(dnπ) the vertical space at n ∈ N. Then, π is
called a pseudo-Riemannian submersion if the fibers π−1(p) are pseudo-Riemannian submanifolds
of N for all p ∈ M and the maps dnπ

∣∣
Hn

: Hn → Tπ(n)M are isometries for all n ∈ N, where
Hn = V⊥n .

A scalar product 〈·, ·〉 on p is said to be AdH-invariant if〈
Adh(X), Adh(Y)

〉
= 〈X, Y〉, for all h ∈ H and for all X, Y ∈ p.

Next, we recall [3] (Chap. 11, Prop. 22).

Proposition 2. By declaring the map deπ an isometry, there is one-to-one correspondence between
the AdH-invariant scalar products on p and the G-invariant metrics on G/H.

Definition 2. A coset manifold M = G/H is called a naturally reductive space if the following:

1. M = G/H is reductive;
2. M carries a G-invariant metric;
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3. If 〈·, ·〉 denotes the AdH-invariant scalar product on p corresponding to the G-invariant
metric (described in Proposition 2), then it has to satisfy〈

[X, Y]
∣∣
p

, Z
〉
=
〈

X, [Y, Z]
∣∣
p

〉
, for all X, Y, Z ∈ p.

Naturally reductive homogeneous spaces are complete, see [3] (Chap. 11, p. 313).
Next, we introduce the notion of (pseudo-Riemannian) normal naturally reductive homo-
geneous space. This definition is a slight generalization of the homogeneous spaces that
are considered in [4] (Prop. 23.29).

Definition 3. (Normal Naturally Reductive Spaces.) Let G be a Lie group equipped with a
bi-invariant metric and denote by 〈·, ·〉 the corresponding AdG-invariant scalar product on its Lie
algebra g. Moreover, let H ⊂ G be a closed subgroup and denote its Lie algebra by h ⊂ g. If the
orthogonal complement p = h⊥ with respect to 〈·, ·〉 is non-degenerated, we call G/H equipped
with the G-invariant metric that turns π : G → G/H into a pseudo-Riemannian submersion a
(pseudo-Riemannian) normal naturally reductive homogeneous space with reductive decomposition
g = h⊕ p.

By a trivial adaptation of the proof of [4] (Prop. 23.29), we show that normal naturally
reductive spaces are naturally reductive.

Lemma 1. Let G/H be normal naturally reductive. Then, G/H is naturally reductive.

Proof. Let X ∈ p = h⊥. Then, 〈Y, X〉 = 0 for all Y ∈ h. The AdG invariance of 〈·, ·〉 implies
that 〈

Adh(X), Adh(Y)
〉
= 0, h ∈ H. (2)

Since Adh : h→ h is an isomorphism, this implies 〈Adh(X), Ŷ〉 = 0 for h ∈ H and all Ŷ ∈ h,
proving Adh(X) ∈ p for h ∈ H, i.e., Adh(p) ⊂ p for h ∈ H. In addition, g = h⊕ h⊥ = h⊕ p

is fulfilled because h⊥ is assumed to be non-degenerated. Thus, G/H is a reductive
homogeneous space.

In order to show that G/H is naturally reductive, we compute for X, Y, Z ∈ p

0 = d
d t 〈X, Z〉

∣∣
t=0

= d
d t
〈
Adexp(tY)(X), Adexp(tY)(Z)

〉∣∣
t=0

=
〈
[Y, X], Z

〉
+
〈

X, [Y, Z]
〉

= −
〈
[X, Y], Z

〉
+
〈

X, [Y, Z]
〉
,

(3)

where we have used the AdG-invariance of 〈·, ·〉. Finally, because p = h⊥, the last identity im-
plies that 〈

[X, Y]
∣∣
p

, Z
〉
=
〈

X, [Y, Z]
∣∣
p

〉
, X, Y, Z ∈ p, (4)

i.e., G/H is a naturally reductive homogeneous space.

Let G/H be a normal naturally reductive space. Then, by definition, the map π : G →
G/H is a pseudo-Riemannian submersion. Obviously, the vertical bundle and horizontal
bundle are given by

Vg = ker(dgπ) =
(
deLg

)
h and Hg = V⊥g =

(
deLg

)
p,

for g ∈ G, respectively. From an algebraic point of view, the reductive decomposition has
the following properties:

g = p⊕⊥ h, [h, h] ⊂ h, [p, h] ⊂ p.
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We end this preliminary section by commenting on the regularity of curves. Through-
out this text, for simplicity, if not indicated otherwise, a curve c : I → M on a manifold M
is assumed to be smooth. However, we point out that many results can be generalized by
requiring less regularity.

3.1. Levi-Civita Connection and Covariant Derivative

We first set some notations. The Levi-Civita connections on M = G/H and on G will
be denoted by ∇M and ∇G, respectively. In cases when it is clear from the context, we may
use simply ∇ for both. If Y is a vector field on M = G/H, we denote by Ỹ ∈ Γ∞(TG) its
horizontal lift to G. Correspondingly, if α : I → M is a curve in M and r : I → G is a lift of α

to G, we write∇α̇(t)Y ∈ Tα(t)M for the covariant derivative of Y along α and ∇̃α̇(t)Y
∣∣
r(t) for

the horizontal lift of ∇α̇(t)Y toHr(t) ⊂ Tr(t)G.
In the sequel, the lift of α to G will be denoted by q instead of r if it is considered to

be horizontal. For g ∈ G, denote by prHg
: TgG → Hg the projection onto the horizontal

bundle, explicitly given by

prHg
=
(
deLg

)
◦ prp ◦

(
deLg

)−1. (5)

Lemma 2. Let G/H be a normal naturally reductive homogeneous space and let X, Y be vector
fields on G/H. Denote by X̃ and Ỹ the horizontal lifts of X and Y, respectively. Moreover, let
{A1, . . . , Ak | i = 1, . . . , k} be a basis of p and denote by A1, . . . , Ak the corresponding left-
invariant vector fields defined by Ai(g) = deLg Ai for g ∈ G. Expanding X̃ = ∑k

i=1 xi Ai and
Ỹ = ∑k

j=1 yj Aj with smooth functions xi, yj : G → R, we obtain for the Levi-Civita covariant
derivative on G/H, for g ∈ G,

(∇M
X Y)(π(g)) = dgπ

( k

∑
j=1

(
X̃(yj)

)
(g)Aj(g)

+ prHg
1
2

k

∑
i,j=1

xi(g)yj(g)
[

Ai, Aj

]
(g)
)

,

(6)

or, equivalently,

∇̃M
X Y
∣∣
g =

k

∑
j=1

(
X̃(yj)

)
(g)Aj(g) + 1

2

k

∑
i,j=1

xi(g)yj(g)[Ai, Aj]
∣∣
p
(g). (7)

Proof. Because the metric is bi-invariant, it follows that for left-invariant vector fields V, W
on G, see [3] (p. 304) ,

∇G
VW = 1

2 [V, W] (8)

holds. Because G/H is a normal naturally reductive space, the map π : G → G/H is a
pseudo-Riemannian submersion. Let X, Y be vector fields on M and X̃, Ỹ their horizontal
lifts to G. We recall that the Levi-Civita connections on M and on G are related by, see [3]
(Lemma 45, Chapter 7),

∇M
X Y = dgπ

(
prHg

∇G
X̃

Ỹ
)

. (9)

Expanding the horizontal lifts X̃ and Ỹ in terms of the left-invariant frame field {A1, . . . , Ak},
i.e.,

X̃ =
k

∑
i=1

xi Ai, Ỹ =
k

∑
j=1

yj Aj, (10)
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we have

∇G
X̃

Ỹ = ∇G
X̃

( k

∑
j=1

yj Aj

)
=

k

∑
j=1

(
X̃(yj)

)
Aj +

1
2

k

∑
i,j=1

xiyj

[
Ai, Aj

]
. (11)

Projecting toHg, and taking into consideration that the first term in the last equality belongs
toHg, we obtain

prHg
∇G

X̃
Ỹ =

k

∑
j=1

(
X̃(yj)

)
Aj + prHg

1
2

k

∑
i,j=1

xiyj

[
Ai, Aj

]
. (12)

Combining this dentity with (9), gives (6). Clearly, by using (5), one has prHg
([Ai, Aj])(g) =

[Ai, Aj]
∣∣
p
(g). Hence, (6) is equivalent to (7), as the vector field from (11) on G is horizontal

and π-related to ∇M
X Y by (6).

Lemma 2 yields an expression for the Levi-Civita covariant derivative on G/H in
terms of horizontally lifted vector fields on G. This expression allows for determining the
covariant derivative of vector fields along a curve in G/H in terms of horizontally lifted
vector fields along a horizontal lift of the curve, as well. As preparation, we comment on
the domain of horizontal lifts.

Remark 1. Let α : I → G/H be a curve on a normal naturally reductive space. The horizontal
lift q : I → G is indeed defined on the same interval as α. This can be shown by exploiting that
H ⊂ TG defines a principal connection that is known to be complete.

Lemma 3. Let M = G/H be a normal naturally reductive homogeneous space, α : I → M a curve,
and Y a vector field along α. Let q : I → G be a horizontal lift of α and Ỹ a horizontal lift of Y along
q. Then,

∇M
α̇(t)Y(t) = dq(t)π

( k

∑
j=1

d yj(t)
d t Aj(t)

)
+ dq(t)π

(
prHq(t)

1
2

k

∑
i,j=1

xi(t)yj(t)
[

Ai(t), Aj(t)
])

, (13)

or, equivalently,

∇̃M
α̇(t)Y

∣∣
q(t) =

k

∑
j=1

d yj(t)
d t Aj(t) + 1

2

k

∑
i,j=1

xi(t)yj(t)[Ai, Aj]
∣∣
p
(t), (14)

where {A1, . . . , Ak} is a basis of p, Ai denotes the left-invariant vector field corresponding to Ai for
i = 1, . . . k, and we write Ai(t) = Ai(q(t)) for short. The functions xi, yj : I → R are defined by
q̇(t) = ∑k

i=1 xi(t)Ai(t) and Ŷ(t) = ∑k
j=1 yj Aj(t).

Proof. Let t ∈ I. We extend the vector fields α̇(t) and Y(t) locally to vector fields X̂ and Ŷ,
respectively, defined on an open neighborhood of α(t) in G/H. The proof of [5] (Thm. 4.24)

shows that such an extension is always possible. Moreover, we denote by ˜̂X and ˜̂Y the

horizontal lifts of X̂ and Ŷ, respectively. These vector fields are expanded as ˜̂X = ∑k
i=1 x̂i Ai

and ˜̂Y = ∑k
j=1 ŷj Aj with uniquely locally defined functions x̂i, ŷj on G. Clearly, these

functions fulfill x̂i
(
q(t)

)
= xi(t) and ŷj(q(t)) = yj(t) whenever both sides are defined. In

addition, ˜̂X(q(t)) = q̇(t) and ˜̂Y(q(t)) = Ỹ(t) hold. By using Lemma 2, we compute
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(∇M
X Y)(π(q(t)) = dq(t)π

( k

∑
j=1

(˜̂X(ŷj)
)(

q(t)
)

Aj
(
q(t)

))
+ dq(t)π

(
prHq(t)

1
2

k

∑
i,j=1

x̂i
(
q(t)

)
ŷj
(
q(t)

)[
Ai, Aj

](
q(t)

))
= dq(t)π

( k

∑
j=1

d yj(t)
d t Aj(t)

)
+ dq(t)π

(
prHq(t)

1
2

k

∑
i,j=1

xi(t)yj(t)
[

Ai, Aj

]
(t)
)

,

which proves (13). Clearly, this is equivalent to (14) by Lemma 2.

Remark 2. If M = G/H is a symmetric space, then [p, p] ⊂ h, and consequently the last
summand in formula (13) vanishes. So, taking into consideration that, in this case, ∇G

q̇(t)Ỹ(t) =

∑k
j=1

d yj(t)
d t Aj, the identity (13) reduces to

∇M
α̇(t)Y(t) = dq(t)π

(
∇G

q̇(t)Ỹ(t)
)

,

which shows that, in the case of a symmetric space, if Y is a parallel vector field along α(t) ∈ M, its
horizontal lift Ỹ is actually a parallel vector field along the horizontal lift q(t) ∈ G of α(t).

As we will see below, for nonsymmetric spaces, the presence of the second term
in (13) reveals that the horizontal lift q(t) ∈ G is not a good candidate for the property of
preserving parallel vector fields. In the next section, we modify the “horizontal lift” in
order to overcome this problem.

3.2. Parallel Vector Fields

Lemma 4. Let M = G/H be a normal naturally reductive homogeneous space, α : I → M a curve,
and q : [0, T]→ G a horizontal lift of α. Moreover, let s : I → H and define the curve r : I → G by
r(t) = q(t)s(t). Let Z : I → TM be a vector field along α and denote by Z̃ : I → H its horizontal
lift along r. Then, the horizontal lift of ∇α̇(t)Z : I → TM along r(t) is given by

∇̃α̇(t)Z
∣∣
r(t) =

k

∑
j=1

żj(t)Aj(r(t))

+
k

∑
i,j=1

1
2 xi(t)zj(t)prHr(t)

(
[Ads(t)−1(Ai), Aj]

(
r(t)

))
.

(15)

Here, we expanded x(t) =
(
deLq(t)

)−1q̇(t) = ∑k
i=1 xi(t)Ai ∈ p and z(t) =

(
deLr(t)

)−1Z̃(t) =

∑k
i=1 zi(t)Ai ∈ p.

Proof. Let X, Z ∈ Γ∞(T(G/H)
)

be vector fields with horizontal lifts X̃, Z̃ ∈ Γ∞(TG) and
expand them by a left-invariant frame A1, . . . , Ak of the horizontal bundle of G → G/H,
i.e., X̃ = ∑k

i=1 xi Ai and Z̃ = ∑k
j=1 zj Aj. Then, by Lemma 2, the Levi-Civita connection on

G/H can be expressed in terms of horizontal lifts by

∇̃XZ =
k

∑
j=1

X̃(zj)Aj +
1
2

k

∑
i,j=1

xizj[Ai, Aj]
∣∣
p

. (16)
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Now, consider the curve r(t) = q(t)s(t) being a lift of α(t). A simple computation
shows that (

deLr(t)
)−1ṙ(t) = Ads(t)−1

(
x(t)

)
+ y(t), (17)

where y(t) :=
(
deLs(t)

)−1 ṡ(t) ∈ h. Thus, using (17) and π
(
r(t)

)
= α(t), we have

α̇(t) = dr(t)πṙ(t)

=
(
dr(t)π ◦ deLr(t)

)(
Ads(t)−1

(
x(t)

)
+ y(t)

)
=
(
dr(t)π ◦ deLr(t)

)(
Ads(t)−1

(
x(t)

))
.

(18)

Here, the last equality follows from the definition of the horizontal bundle. By extending
α̇(t) locally to a vector field X on G/H, the horizontal lift X̃ of X satisfies X̃

(
r(t)

)
=

deLr(t)

(
Ads(t)−1

(
x(t)

))
by (18). Moreover, the vector field Z along α can be extended

locally to a vector field Ẑ on G/H, defined on an open neighborhood of α. Denote by ˜̂Z the

horizontal lift of Ẑ. Then, ˜̂Z(r(t)) = Z̃(t) is fulfilled. By [5] (Thm. 4.24), we have

∇̃α̇(t)Z
∣∣
r(t) =

˜
∇X̃

˜̂Z∣∣r(t). (19)

The desired result follows by exploiting (16), similarly to what was performed in the proof
of Lemma 3.

Corollary 1. The vector field Z : I → T(G/H) along α : I → G/H is parallel along α iff its
horizontal lift Z̃ along r(t) = q(t)s(t) ∈ G, defined as in Lemma 4 by z(t) = (deLr(t))

−1Z̃(t) =

∑k
i=1 zi(t)Ai ∈ p, satisfies

ż(t) = − 1
2 prp

([
Ads(t)−1

(
x(t)

)
, z(t)

])
(20)

for all t ∈ I, where x(t) =
(
deLq(t)

)−1q̇(t) = ∑k
i=1 xi(t)Ai ∈ p.

Proof. Lemma 4 already implies the statement by applying the linear isomorphism
(
dr(t)π ◦

deLr(t)
)−1 to both sides of 0 = ∇̃α̇(t)Z

∣∣
r(t).

When s(t) = e, for t ∈ I, Corollary 1 also gives the following characterization of
parallel vector fields.

Corollary 2. The vector field Z : I → T(G/H) along α : I → G/H with a horizontal lift
q : I → G is parallel along α iff its horizontal lift Z̃ along q fulfills the ODE

ż(t) = − 1
2 prp

(
[x(t), z(t)]

)
, (21)

for all t ∈ I, where x(t) =
(
deLq(t)

)−1q̇(t) ∈ p and

z(t) =
(
deLq(t)

)−1 ◦
(
dq(t)π

∣∣
Hq(t)

)−1Z(t) ∈ p. (22)

4. Intrinsic and Extrinsic Formulation of Rolling

The goal of this section is to introduce the notation of rolling a pseudo-Riemannian
manifold over another one.

In the following definitions, it is assumed that the pseudo-Riemannian manifolds
(M, g) and (M̂, ĝ) are of equal dimension and g and ĝ have the same signature.
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Definition 4. (Intrinsic rolling.) A curve α(t) on M is said to roll on a curve α̂(t) on M̂ intrin-
sically if there exists an isometry A(t) : Tα(t)M→ Tα̂(t)M̂ satisfying the following conditions:

1. No-slip condition: ˙̂α(t) = A(t)α̇(t);
2. No-twist condition: A(t)X(t) is a parallel vector field in M̂ along α̂(t) iff X(t) is a parallel

vector field in M along α(t).

The triple
(
α(t), α̂(t), A(t)

)
is called a rolling (of M over M̂). The curve α is called a rolling

curve, while α̂ is called a development curve.

The next definition of extrinsic rolling is motivated by the description of extrinsic
rolling in terms of bundles, see [6] (Def. 2) and [7] (Def. 3).

Definition 5. (Extrinsic rolling (I).) Let M and M̂ be isometrically embedded into the same
pseudo-Euclidean vector space V. A quadruple

(
α(t), α̂(t), A(t), C(t)

)
is called an extrinsic rolling

(of M over M̂), where α : I → M and α̂ : I → M̂ are curves, and A(t) : Tα(t)M → Tα̂(t)M̂
and C(t) : Nα(t)M → Nα̂(t)M̂ are isometries of the tangent and normal spaces, if the following
conditions hold:

1. No-slip condition: ˙̂α(t) = A(t)α̇(t);
2. No-twist condition (tangential part): A(t)X(t) is a parallel vector field in M̂ along α̂(t) if

and only if X(t) is a parallel vector field in M along α(t);
3. No-twist condition (normal part): C(t)Z(t) is a normal parallel vector field in M̂ along α̂(t)

iff Z(t) is a normal parallel vector field in M along α(t).

As for the intrinsic case, the curve α is called a rolling curve, while α̂ is a called development curve.

Alternatively, we define extrinsic rolling as a reformulation of a slightly generalized
version of [7] (Def. 1).

Definition 6. (Extrinsic rolling (II).) Let M and M̂ be isometrically embedded into the same
pseudo-Euclidean vector space V. A curve (α, E) : I → M× E(V), where E(V) = O(V)n V
denotes the pseudo-Euclidean group of V, is said to be an extrinsic rolling if the following conditions
are satisfied:

1. α̂(t) := E(t)α(t) ∈ M̂;
2. dα(t)E(t)(Tα(t)M) = Tα̂(t)M̂;
3. No-slip condition: ˙̂α(t) = dα(t)E(t)α̇(t);
4. No-twist condition (tangential part): dα(t)E(t)X(t) is parallel along α̂ iff X is parallel along α;
5. No-twist condition (normal part): dα(t)E(t)Z(t) is normal parallel along α̂ iff Z is normal

parallel along α.

The curve α is called a rolling curve and the α̂ is the development curve.

Remark 3. The discussion in [1] (Sec. 3) reveals that a rolling in the sense of Definition 6 is
closely related to the classical definition of rolling in [8] (Ap. B, Def. 1.1) . Indeed, the conditions
Definition 6 and Claims 1–5 are equivalent to the conditions from [8] (Def. 1.1). Thus, the essential
difference between Definition 6 and [8] (Def. 1.1) is that the rolling curve is already part of the
Definition. This is motivated by [6] (Ex. 1).

Motivated by [1] (Prop. 3), we relate the two different notions of extrinsic rolling from
Definitions 5 and 6.



Mathematics 2023, 11, 4540 11 of 36

Proposition 3. Let
(
α(t), α̂(t), A(t), C(t)

)
be an extrinsic rolling in the sense of Definition 5.

Then, the curve g(t) =
(
α(t),

(
R(t), s(t)

))
∈ M× E(V), where

R(t)
∣∣
Tα(t)M = A(t),

R(t)
∣∣

Nα(t)M = C(t),

s(t) = α̂(t)− R(t)α(t),

(23)

is an extrinsic rolling in the sense of Definition 6.
Conversely, given an extrinsic rolling

(
α(t), (R(t), s(t))

)
in the sense of Definition 6,(

α(t), α̂(t), A(t), C(t)
)

defines an extrinsic rolling in the sense of Definition 5, where

A(t) = R(t)
∣∣
Tα(t)M,

C(t) = R(t)
∣∣

Nα(t)M,

α̂(t) = s(t) + R(t)α(t).

(24)

Proof. Because this proposition follows analogously to [1] (Prop. 3), we only sketch the
proof. Let

(
α(t), α̂(t), A(t), C(t)

)
be an extrinsic rolling in the sense of Definition 6 and

define I 3 t 7→
(
α(t), (R(t), s(t))

)
∈ M× E(V) by (23). We obtain

E(t)α(t) = R(t)α(t) + s(t)

= R(t)α(t) +
(
α̂(t)− R(t)α(t)

)
= α̂(t) ∈ M̂,

(25)

which proves Claim 1 of Definition 6. Let γ : (−ε, ε)→ M be a curve with γ(0) = α(t) and
γ̇(0) = Z ∈ V. Then,

dα(t)E(t)Z = d
d τ

(
R(t)γ(τ) + s(t)

)∣∣
τ=0 = R(t)Z (26)

holds. Using (26), it is straightforward to verify that Definition (6) and Claims 2–5 are fulfilled.
Conversely, assume that I 3 t 7→ M× E(V) is a rolling in the sense of Definition 6. We

now show that the quadruple
(
α(t), α̂(t), A(t), C(t)

)
, given by (24), is an extrinsic rolling in

the sense of Definition 5. To this end, we note that α̂(t) = s(t) + R(t)α(t) = E(t)α(t) holds
by Definition 6, Claim 1. Hence, by Definition 6, Claim 2, the map

A(t) = R(t)
∣∣
Tα(t)M =

(
dα(t)E(t)

)∣∣
Tα(t)M : Tα(t)M→ Tα̂(t)M (27)

is indeed a well-defined isometry. Obviously, this implies that C(t) = R(t)
∣∣

Nα(t)M =(
dα(t)E(t)

)∣∣
Nα(t)M : Nα(t)M→ Nα̂(t)M is a well-defined isometry, as well. Using Definition 6,

Claims 3–5, it is straightforward to show that
(
α(t), α̂(t), A(t), C(t)

)
is indeed a rolling in

the sense of Definition 5.

Below, in Section 6, we use Proposition 3 to relate the rolling of the Stiefel manifolds
constructed in this paper to the rolling maps of the Stiefel manifolds known from the
literature.

5. Rolling Normal Naturally Reductive Homogeneous Spaces Intrinsically

We first formulate an Ansatz for the rolling of normal naturally reductive homoge-
neous spaces, which is a generalization of the rolling of pseudo-Riemannian symmetric
spaces. It turns out, however, that such an assumption does not work in general.
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5.1. No-Go Lemma

Assume that G/H is a pseudo-Riemannian symmetric space. Then, by [1] (Sec. 4.2), a
rolling of p over G/H along a given rolling curve can be viewed as a triple

(
α(t), α̂(t), A(t)

)
,

where

A(t) : Tα(t)p
∼= p→ Tα̂(t)(G/H),

A(t) = dq(t)π ◦ deLq(t),
(28)

and q : I → G is defined by the initial value problem

q̇(t) = deLq(t)α̇(t), q(0) = e, (29)

whose solution is the horizontal lift of the development curve α̂(t) = π(q(t)) through
q(0) = e.

Note that in [1], G/H is always rolled over p, while in our work we consider p rolling
over G/H. This choice is more convenient for us, because there is no need to invert q(t), as
in [1] (Eq. 26).

Motivated by this rather simple form of the intrinsic rolling for symmetric spaces, we
make the following Ansatz for the rolling of p over G/H, where q(t) will be replaced by
another lift of α̂, r(t) := q(t)s(t), s(t) being a correction term, still to be specified, see below.

Ansatz:
Given a rolling curve α : I → p, let u : I 3 t 7→ u(t) = α̇(t) ∈ p, and define the

development curve α̂ : I → G/H by α̂(t) = π
(
q(t)

)
, with q : I → G being the horizontal

curve defined by the initial value problem

q̇(t) = deLq(t)
(
Ads(t)(u(t))

)
, q(0) = e. (30)

Here, s : I → H is a smooth curve that still needs to be specified. The definition of q
in (30) is chosen such that the no-slip condition is satisfied, as will become clear in the
computation (32) below. As a candidate for the isometry A(t) : Tα(t)p

∼= p→ Tα̂(t)(G/H),
we define

A(t)(Z) =
(
dr(t)π ◦ deLr(t)

)
(Z), Z ∈ Tα(t)p

∼= p, (31)

where r : I 3 t 7→ q(t)s(t) ∈ G, for some s : I → H.

Remark 4. If G/H is a symmetric space, this yields a rolling of p over G/H for s(t) = e, see [1].

The more general situation, where G/H is a naturally reductive homogeneous space,
is considered in the following. Our Ansatz satisfies the no-slip condition due to

A(t)α̇(t) = dr(t)π ◦ deLr(t) u(t)

= de(π ◦ Lq(t) ◦ Ls(t)) u(t)

= de(τq(t) ◦ π ◦ Ls(t)) u(t)

= de(τq(t) ◦ τs(t) ◦ π) u(t)

= dπ(q(t))τq(t) ◦ deπ ◦Ads(t) u(t)

= dq(t)π ◦ deLq(t)Ads(t) u(t)

= dq(t)π q̇(t)

= ˙̂α(t),

(32)

where τ : G× G/H 3 (g, g′H) 7→ (gg′)H ∈ G/H denotes the G-action on G/H from the
left, which fulfills τg ◦ π = π ◦ Lg, for g ∈ G. Moreover, we exploited that the isotropy
representation of G/H and the representation Ad: H → GL(p) are equivalent; to be more
precise, dπ(e)τh ◦ deπ = deπ ◦Adh, for h ∈ H, see, e.g., [4] (Sec. 23.4, p. 692).
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Next, we try to specify the curve s : I → H by imposing the no-twist condition. To
this end, let Z : I 3 t 7→

(
α(t), Z2(t)

)
∈ p× p ∼= Tp be a parallel vector field along α. By

identifying Z with its second component Z2, Z can be expressed by Z(t) = z for some z ∈ p.
We need to determine s : I → H such that the vector field t 7→ A(t)Z(t) =

(
dr(t)π ◦ deLr(t)

)
z

along α̂ is parallel. Note that by using (30), the curve x(t) =
(
deLq(t)

)−1q̇(t) from Corollary 1
corresponds to x(t) = Ads(t)(u(t)). Moreover, also due to

(
deLr(t)

)−1 ◦
(
dr(t)π

∣∣
Hr(t)

)−1 A(t)(z) = z = constant, t ∈ I, (33)

the condition A(t)Z(t) being parallel tells us that

0 = − 1
2 prp

([
Ads(t)−1(Ads(t)(u(t)), z

])
= − 1

2 prp
(
[u(t), z]

)
= − 1

2 prp
(
[α̇(t), z]

)
.

(34)

Assuming that for a given 0 6= α̇(t) ∈ p there is a z ∈ p such that 0 6= [α̇(t), z] ∈ p holds,
(34) cannot be satisfied independently of the choice of s : I → H. We summarize the above
discussion in the following lemma.

Lemma 5. (No-Go.) Let α : I → p be a curve so that 0 6= prp
(
[α̇(t), z]

)
holds for some z ∈ p

and some t ∈ I. Then,
(
α(t), α̂(t), A(t)

)
, as defined in the Ansatz at the beginning of this section,

does not define a rolling of p over G/H no matter how s : I → H is chosen. To be more precise, the
no-twist condition will never be fulfilled.

5.2. Example: Stiefel Manifolds

We now specialize the above discussion to the Stiefel manifold Stn,k (for the definition
and more details, see Section 6.1), equipped with the α-metrics introduced in [9]. These
metrics will be recalled in Section 6.1, below. However, we think that it is convenient to
apply Lemma 5 to a non-trivial example here. According to [9] (Eq. (37)) , for E =

[
Ik
0

]
and

α 6= −1, the projection prp : so(n)× so(k)→ p is given by

prp
([

A −B>
B C

]
, Ψ
)
=
([ A−Ψ

α+1 −B>

B 0

]
, α(Ψ−A)

α+1

)
. (35)

We first assume that 1 ≤ k ≤ n− 1. Setting Ψ = A, we obtain elements of the form([
0 −B>
B 0

]
, 0
)
∈ p, where B ∈ R(n−k)×k. Using (35), we can write

prp
[([

0 −B>1
B1 0

]
, 0
])

,
([

0 −B>2
B2 0

]
, 0
)]

= prp
([ −B>1 B2+B>2 B1 0

0 −B1B>2 +B2B>1

]
, 0
)

=
([ −B>1 B2+B>2 B1

α+1 0
0 0

]
, α

α+1 (B>1 B2 − B>2 B1)
)

.

(36)

Obviously, for k = 1, i.e., B1, B2 ∈ R(n−1)×1, one has B>2 B1 = B>1 B2 implying that (36)
is vanishing for k = 1. Thus, for Stn,1

∼= Sn−1, the Ansatz actually yields a rolling.
Next, assume k > 1. Then, there are B1, B2 ∈ R(n−k)×k such that B>2 B1 − B>1 B2 6= 0

holds. Indeed, choosing B2 = E12 given by (E12)ij = δ1iδ2j, where δ1i and δ2j are Kronecker
deltas, and B1 ∈ R(n−k)×k with (B1)12 6= 0, we obtain
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(
B>2 B1 − B>1 B2

)
22 =

n−k

∑
`=1

(
(E12)k2(B1)k2 − (B1)k2(E12)k2

)
=

n−k

∑
`=1

(
δ1kδ22(B1)k2 − (B1)k2δ2kδ12

)
= (B1)12 6= 0.

(37)

Consequently, the projection in (36) does not vanish identically for 1 < k < n. It remains
to consider the case k = n. This yields Stn,n ∼= (O(n) ×O(n))/O(n), and for (A, Ψ) ∈
so(n)× so(n) the projection (35) reduces to

prp
(

A, Ψ
)
=
(

A−Ψ
α+1 , α(Ψ−A)

α+1

)
. (38)

Parameterizing p by

p =
{
( A

α+1 ,− αA
α+1 ) | A ∈ so(n)

}
, (39)

we obtain, for A1, A2 ∈ so(k),

prp
[
( A1

α+1 ,− αA1
α+1 ), (

A2
α+1 ,− αA2

α+1 )
]
= prp

(
[A1,A2]
(α+1)2 , α2[A1,A2]

(α+1)2

)
=
(
[A1,A2]−α2[A1,A2]

(α+1)3 , α(α2[A1,A2]−[A1,A2]
(α+1)3

)
.

(40)

Clearly, the last equation vanishes for k = n = 1 and all α ∈ R \ {−1}. Moreover, it vanishes
for k = n > 1 and all A1, A2 ∈ so(n) iff α = 1 holds. (Note that α = −1 is excluded by
the definition of the α-metrics in [9] (Def. 3.1).) We summarize these computations in the
next corollary.

Corollary 3. Let 1 < k < n and let α ∈ R \ {−1, 0}. Then, the Ansatz from Section 5.1 does not
yield an intrinsic rolling, with respect to any α-metric, of a tangent space of the Stiefel manifold
over the Stiefel manifold Stn,k. However, for the case k = n > 1, the Ansatz yields only a rolling for
α = 1.

5.3. Kinematic Equations for Intrinsic Rolling

Our aim is to find the triple
(
α(t), α̂(t), A(t)

)
satisfying Definition 4 for a rolling of p

over the normal naturally reductive homogeneous space G/H.
More precisely, our goal is to find a system of ODEs, the so-called kinematic equations,

which, for a prescribed rolling curve α : I → p, determines the development curve α̂ : I →
G/H as well as the curve of isometries A(t) : Tα(t)p

∼= p→ Tα̂(t)(G/H).
The new terminology in the next definition is motivated by the theory of control,

because the kinematic equations can be written as a control system whose control function
is precisely α̇(t).

Definition 7. Given a rolling curve α : I → p, we call the curve u : I → p, defined by u(t) = α̇(t),
the associated control curve.

Note that a prescribed control curve u : I → p determines uniquely the rolling curve
α : I → p up to the initial condition α(0) = α0 ∈ p.

In order to derive the kinematic equations, we start with the following remark.

Remark 5. Let V and W be finite-dimensional pseudo-Euclidean vector spaces whose scalar
products have the same signature and let φ : V → W be an isometry. Then, the set of isometries
between V and W is given by {φ ◦ S : V → W | S ∈ O(V)}. Indeed, for S ∈ O(V), φ ◦ S is a
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composition of isometries, so it is an isometry, as well. Conversely, given an isometry ψ : V → W,
define the isometry S = φ−1 ◦ ψ : V → V, which is an element of O(V), and clearly ψ = φ ◦ S.

In view of Remark 5, a possible candidate for the curve of isometries A(t) : Tα(t)p
∼=

p→ Tα̂(t)(G/H) that is required for an intrinsic rolling is of the form

A(t) =
(
dq(t)π

)
◦
(
deLq(t)

)
◦ S(t), (41)

where q : I → G is the horizontal lift of the development curve α̂ : I → G/H through
q(0) = e and S : I → O(p) is a curve in the orthogonal group of p through S(0) = idp.

In the next theorem, we reproduce from [10] the kinematic equations for the rolling of
p over G/H. This statement holds for general normal naturally reductive homogeneous
spaces, and the proof is provided to keep this paper as self-contained as possible.

Theorem 1. Let G/H be a normal naturally reductive homogeneous space, α : I → p a given curve,
and u : I → p defined by u(t) = α̇(t) the associated control curve. Moreover, let S : I → O(p) and
q : I → G be determined by the initial value problem

Ṡ(t) = − 1
2 prp ◦ adS(t)u(t) ◦ S(t), S(0) = idp,

q̇(t) =
(
(deLq(t)) ◦ S(t)

)
u(t), q(0) = e.

(42)

Then, the triple
(
α(t), α̂(t), A(t)

)
, where

α̂ : I → G/H, t 7→ α̂(t) = (π ◦ q)(t) (43)

and
t 7→ A(t) = (dq(t)π) ◦ (deLq(t)) ◦ S(t) : Tα(t)p

∼= p→ Tα̂(t)(G/H), (44)

is an intrinsic rolling of p over G/H.

Proof. We show that (α(t), α̂(t), A(t)) satisfies the conditions of Definition 4. The solution
S of the first equation in (42) is indeed a curve in O(p) because − 1

2 prp ◦ adSu : p → p is
skew-adjoint for all S ∈ O(p) and u ∈ p with respect to the scalar product on p defined by
means of the bi-invariant metric on G. In fact, by exploiting that G/H is naturally reductive,
using Definition 2, we obtain for X, Y ∈ p.〈

− 1
2 prp ◦ adSu(X), Y

〉
=
〈
− 1

2 prp
(
[Su, X]

)
, Y
〉

=
〈

X, 1
2 prp ◦ adSu(Y)

〉
,

(45)

showing that − 1
2 prp ◦ adSu ∈ so(p). Thus, S(t) ∈ O(p) because it is the integral curve of

the time-variant vector field − 1
2 prp ◦ adSu(t) ◦ S on O(p).

Next, we set α̂(t) = (π ◦ q)(t). Obviously, the ODE for q in (42) implies that q : I → G is
the horizontal lift of α̂ through q(0) = e. Moreover, the map A(t) : Tα(t)p

∼= p→ Tα̂(t)(G/H)
is well defined and an isometry because it is a composition of isometries.

We now show the no-slip condition. Indeed, by the chain-rule,

˙̂α(t) = d
d t (π ◦ q(t))

= (dq(t)π)q̇(t)

=
(
dq(t)π

)(
deLq(t) ◦ S(t)

)
u(t)

= A(t)α̇(t).

(46)

It remains to show the no-twist condition. Let Z : I → p be a parallel vector field
along α : I → p, i.e., Z can be viewed as a constant function Z(t) = Z0 for all t ∈ I and
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some Z0 ∈ p. We prove that the vector field Ẑ(t) = A(t)Z0 is parallel along the curve α̂, by
exploiting the result in Corollary 2. The curve z : I → p defined by

z(t) = (deLq(t))
−1 ◦ (dq(t)π)−1 A(t)Z0 = S(t)Z0 (47)

fulfills

ż(t) = Ṡ(t)Z0

= − 1
2 ◦ prp ◦ adS(t)u(t) ◦ S(t)(Z0)

= − 1
2
[
S(t)u(t), S(t)(Z0)

]∣∣∣
p

= − 1
2
[
S(t)u(t), z(t)

]∣∣∣
p

.

(48)

Thus, Z(t) = A(t)Z0 is parallel along α̂(t) = (π ◦ q)(t) by Corollary 2, due to the identity(
deLq(t)

)−1q̇(t) = S(t)u(t).
Conversely, assume that A(t)Z(t) is parallel along α̂ for some vector field Z(t) along

α. We define the parallel frame Ai(t) = A(t)Ai, where {A1, · · · , Ak} forms a basis of p,
and expand A(t)Z(t) in this basis to obtain A(t)Z(t) = ∑k

i=1 zi Ai(t), where the coefficients
zi ∈ R are constant, because A(t)Z(t) is assumed to be parallel, see [5] (Chap. 4, p.109). By
the linearity of A(t), we obtain

A(t)Z(t) =
k

∑
i=1

zi Ai(t) = A(t)

(
k

∑
i=1

zi Ai

)
= A(t)Z0, (49)

for Z0 = ∑k
i=1 zi Ai ∈ p, i.e., Z(t) = Z0 is constant. Thus, Z(t) is a parallel vector field along

α, as desired.

Remark 6. It is not clear whether the curve S : I → O(p) from Theorem 1 is defined on the same
interval I as the control curve u : I → p due to the nonlinearity of (42). We cannot rule out that
S is defined only on a proper subinterval I′ ( I with 0 ∈ I′. By abuse of notation, we write
S : I → O(p) nevertheless, even if S was defined on a proper subinterval. However, we are not
aware of an example.

If G/H is a Riemannian normal naturally reductive space, i.e., if the metric is positive
definite, and the control defined on R is bounded, following [10], we can prove that S is
defined on the whole interval R. This is the next lemma.

Lemma 6. Let u : R→ p be bounded and let G/H be a Riemannian normal naturally reductive
homogeneous space. Then, the vector field given by

X(t, S) =
(
1,− 1

2 prp ◦ adS(t)u(t) ◦ S(t)
)

(50)

on R×O(p) is complete.

Proof. We will show that this vector field is bounded in a complete Riemannian metric on
R×O(p). Completeness then follows by [11] (Prop. 23.9). To this end, we view O(p) as
a subset of End(p). Because G/H is Riemannian, the corresponding scalar product on p

denoted by 〈·, ·〉 is positive definite, i.e., an inner product. The norm on p induced by this
inner product is denoted by ‖ · ‖. We denote an extension of 〈·, ·〉 to an inner product on g

by 〈·, ·〉, too. The corresponding norm is denoted by ‖ · ‖, as well. We now endow End(p)
with the Frobenius scalar product given by 〈S, T〉F = trace(S>T), where S> is the adjoint
of S with respect to 〈·, ·〉. Then, 〈·, ·〉F induces a bi-invariant and hence a complete metric
on O(p). Moreover, the norm ‖ · ‖F defined by the Frobenius scalar product is equivalent
to the operator norm ‖ · ‖2. In particular, there is a C > 0 such that ‖S‖F ≤ C‖S‖2 holds
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for all S ∈ End(p). In addition, on the R-component, define the metric to be the Euclidean
metric. In other words, the Riemannian metric on R×O(p) is given by

〈(v, V), (w, W)〉(s,S) = vw + trace(V>W), (51)

for all (s, S) ∈ R×O(p) and (v, V), (w, W) ∈ T(s,S)(R×O(p)). Moreover, ad : p× p→ g is
bounded because p is finite dimensional. Hence, there exists a C′ ≥ 0 with ‖ad(X, Y)‖ ≤
C′‖X‖‖Y‖. Consequently, for fixed X ∈ p, the operator norm of adX : p → g can be
estimated by ‖ad(X, ·)‖2 ≤ C′‖X‖. By this notation, we compute

‖X(t, S)‖2
R×O(p) = 1 + ‖ 1

2 prp ◦ adSu(t) ◦ S‖2
F

≤ 1 + C2

4 ‖prp ◦ adSu(t) ◦ S‖2
2

≤ 1 + C2

4 ‖prp‖
2
2‖adSu(t)‖2

2‖S‖2
2

≤ 1 + (CC′)2

4 ‖S‖2
2‖u(t)‖2

≤ 1 + (CC′)2

4 ‖u‖2
∞ < ∞,

(52)

where ‖u‖∞ denotes the supremum norm of u and we exploited ‖S‖2 = 1 due to S ∈ O(p)
and ‖prp‖2 ≤ 1, showing that X is bounded in a complete Riemannian metric.

6. Rolling Stiefel Manifolds

A first attempt to generalize the rolling for pseudo-Riemannian symmetric spaces, as
discussed in Section 5, does not work for Stiefel manifolds by Section 5.2. However, rolling
maps for Stiefel manifolds have already appeared in [2] and more recently also in [1] (Sec. 5).

In this section, we reformulate the most recent results in [10], without using fiber-
bundle techniques, to describe the intrinsic rolling of Stiefel manifolds equipped with the
so-called α-metrics defined in [9]. Although, up to now, we have used the Greek letter
α for rolling curves, in the first part of this section we will use the same letter α for the
real parameter that defines a family of metrics on Stiefel manifolds. This will not create
difficulties, because it will be clear from the context. In order to reach the above-mentioned
objective, we specialize Theorem 1 to Stiefel manifolds. Eventually, this rolling is extended
to an extrinsic rolling for the Euclidean metric. Finally, we show that our findings coincide
with the rolling results from [2].

6.1. Stiefel Manifolds Equipped with α-Metrics as Normal Naturally Reductive
Homogeneous Spaces

The Stiefel manifold Stn,k can be viewed as the embedded submanifold

Stn,k = {X ∈ Rn×k | X>X = Ik}, 1 ≤ k ≤ n (53)

of Rn×k. In the sequel, we recall the so-called α-metrics on Stn,k introduced in [9] and
show that Stn,k equipped with an α-metric can be viewed as a normal naturally reductive
homogeneous space. The

(
O(n)×O(k)

)
-left action

Φ :
(
O(n)×O(k)

)
×Rn×k → Rn×k,

(
(R, θ), X

)
→ RXθ>, (54)

by linear isomorphisms restricts to a transitive action

(O(n)×O(k))× Stn,k → Stn,k, ((R, θ), X)→ RXθ> (55)

on Stn,k, also denoted by Φ, which coincides with the action from in [9] (Eq. 12). Next, let
X ∈ Stn,k be fixed, and denote by H = Stab(X) ⊂ O(n)×O(k) the isotropy subgroup of X
under the action Φ. Moreover, we write G = O(n)×O(k). Then, the Stiefel manifold Stn,k
is diffeomorphic to the homogeneous space G/H. Moreover, the map



Mathematics 2023, 11, 4540 18 of 36

ιX : G/H 3 (R, θ) · H 7→ RXθ> ∈ Stn,k ⊂ Rn×k (56)

is a G-equivariant embedding, where (R, θ) · H denotes the coset in G/H represented by
(R, θ) ∈ G.

In order to construct the α-metrics, the map

〈·, ·〉αso(n)×so(k) : so(n)× so(k)→ R (57)

is defined on so(n)× so(k), for α ∈ R \ {0}, by〈
(Ω1, Ψ1), (Ω2, Ψ2)

〉α

so(n)×so(k) = − trace(Ω1Ω2)− 1
α trace(Ψ1Ψ2), (58)

see [9] (Eq. (21)).
Obviously, 〈·, ·〉α

so(n)×so(k) yields a symmetric bilinear form on g = so(n) × so(k),
which is AdG-invariant. Moreover, by [9] (Prop. 2), the subspace h ⊂ g being the Lie
algebra of H = Stab(X) for X ∈ Stn,k is non-degenerated for all α ∈ R \ {−1, 0}.

After this preparation, we are in the position to reformulate [9] (Def. 3.3).

Definition 8. Let α ∈ R \ {−1, 0}. The α-metric on Stn,k
∼= G/H is defined as the G =

O(n)×O(k)-invariant metric on G/H that turns the canonical projection π : G → G/H into a
pseudo-Riemannian submersion, where G is equipped with the bi-invariant metric defined by means
of the scalar product from (58).

This definition turns G/H into a normal naturally reductive homogeneous space.

Lemma 7. Let α ∈ R \ {−1, 0}. Then, G/H ∼= Stn,k equipped with an α-metric is a normal
naturally reductive space. In particular, it is a naturally reductive homogeneous space.

Proof. Obviously, Stn,k
∼= G/H is a normal naturally reductive homogeneous space be-

cause the metric on G is bi-invariant and h ⊂ g is a non-degenerated subspace. Hence, it is
naturally reductive by Lemma 1.

By requiring that ιX : G/H → Stn,k from (56) is an isometry, the α-metric on Stn,k for
α ∈ R \ {−1, 0}, viewed as an embedded submanifold of Rn×k, is given by

〈V, W〉(α)X = 2 trace(V>W) + 2α+1
α+1 trace(V>XX>W), (59)

where X ∈ Stn,k and V, W ∈ TXStn,k by [9] (Cor. 2). In addition, if Stn,k is equipped with an
α-metric, and O(n)×O(k) is equipped with the corresponding bi-invariant metric defined
by the scalar product from (58), the map

ΦX = ιX ◦ π : O(n)×O(k)→ Stn,k, (R, θ) 7→ RXθ> (60)

is a pseudo-Riemannian submersion, where X ∈ Stn,k is arbitrary but fixed.
For considering the intrinsic rolling of Stn,k

∼= G/H, we need a formula for the
orthogonal projection prp : so(n)× so(k) → p with respect to the metric defined in (58),
where p = h⊥, h is the Lie algebra of H = Stab(X) ⊂ G for a fixed X ∈ Stn,k. This is the
next lemma, which is taken from [9] (Lem. 3.2).

Lemma 8. Let α ∈ R \ {−1, 0}. The orthogonal projection

prp : so(n)× so(k)→ p, (Ω, η) 7→ (Ω⊥X , η⊥X ), (61)

is given by
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Ω⊥X = XX>Ω + ΩXX> − 2α+1
α+1 XX>ΩXX> − 1

α+1 XηX>,

η⊥X = α
α+1
(
η − X>ΩX

)
.

(62)

Proof. This is just a reformulation of [9] (Lem. 3.2).

Because π : G → G/H is a pseudo-Riemannian submersion whose horizontal bundle
is defined point-wise by Hg = (d(In ,Ik)

Lg)(p) ⊂ TgG and ιX : G/H → Stn,k is an isometry,
the map

d(In ,Ik)
(ιX ◦ π)

∣∣
p

: p→ TXStn,k, (Ω, η) 7→ ΩX− Xη, (63)

as well as its inverse are linear isometries. For the discussion of rolling Stiefel manifolds,
we need an explicit formula for(

d(In ,Ik)
(ιX ◦ π)

∣∣
p

)−1 : TXStn,k → p. (64)

Such a formula is given in the next lemma, which is a trivial reformulation of [9] (Prop. 3).

Lemma 9. Let α ∈ R \ {−1, 0} and X ∈ Stn,k. The map(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1 : TXStn,k → p, V 7→
(
Ω(V)⊥X , η(V)⊥X

)
, (65)

is given by

Ω(V)⊥X = VX> − XV> + 2α+1
α+1 XV>XX>,

η(V)⊥X = − α
α+1 X>V.

(66)

Proof. This is a consequence of [9] (Prop. 3).

Finally, we specialize the previous two lemmas for α = − 1
2 . For this choice, the

α-metric coincides with the Euclidean metric, scaled by the factor 2, see [9] (Sec. 4.2).
Therefore, this special case will be important for discussing the extrinsic rolling of Stiefel
manifolds equipped with the Euclidean metric.

Corollary 4. Let α = − 1
2 . Using the notation of Lemma 9, the following assertions are fulfilled:

1. The projection prp : so(n)× so(k)→ p is given by

Ω⊥X = XX>Ω + ΩXX> − 2XηX>,

η⊥X = −
(
η − X>ΩX

)
.

(67)

2. The map
(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1 : TXStn,k → p is given by

V 7→
(
Ω(V)⊥X , η(V)⊥X

)
=
(
VX> − XV>, X>V

)
. (68)

Proof. This is a consequence of Lemmas 8 and 9.

6.2. Intrinsic Rolling

In this section, using ideas from [10], we apply Theorem 1 to Stn,k equipped with an
α-metric. More precisely, we use the isometry

ιX : G/H → Stn,k (69)

to identify Stn,k
∼= G/H as a normal naturally reductive homogeneous space, as well as the

linear isometry
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(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1 : TXStn,k → p, (70)

identifying TXStn,k
∼= p as vector spaces equipped with the scalar product from Section 6.1.

Throughout this section, if not indicated otherwise, we always assume that the maps
from (69) and (70) are used to identify G/H ∼= Stn,k and p ∼= TXStn,k, respectively.

These identifications allow for the construction of an intrinsic rolling of TXStn,k over
Stn,k, where both manifolds are considered as embedded into Rn×k. We state the next
definition in order to make this notion more precise.

Although, in the first part of this section, we have used the Greek letter α for the real
parameter that defines a family of metrics on Stiefel, the same letter will be used later for
rolling curves. This will not create difficulties, because it will be clear from the context.

Definition 9. Consider the Stiefel manifold Stn,k ⊂ Rn×k, equipped with an α-metric, as a
submanifold of Rn×k. Moreover, let X ∈ Stn,k be fixed. Consider the triple (β(t), β̂(t), B(t)),
where β : I → TXStn,k ⊂ Rn×k and β̂ : I → Stn,k ⊂ Rn×k are curves and B(t) : Tβ(t)(TXStn,k) ∼=
TXStn,k → T

β̂(t)Stn,k is a linear isometry. This triple is called an intrinsic rolling of TXStn,k over

Stn,k, with both manifolds embedded into Rn×k, if the following conditions hold:

1. No-slip condition: β̂(t) = B(t)β̇(t);
2. No-twist condition: B(t)Z(t) is a parallel vector field along β̂(t) iff Z(t) is a parallel vector

field along β(t).

The curve β is called a rolling curve and β̂ is called a development curve.

The next lemma uses Theorem 1 to obtain a rolling of TXStn,k over Stn,k in the sense of
Definition 9.

Lemma 10. Let β : I → TXStn,k ⊂ Rn×k be a curve and define the curve α : I → p by α(t) =(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1(
β(t)

)
for t ∈ I. Let (α(t), α̂(t), A(t)) be the triple obtained in Theorem 1

for the rolling along α of TXStn,k (identified with p), over G/H (identified with Stn,k). Moreover,
define the curve

β̂ : I → Stn,k, t 7→ β̂(t) = ιX(α̂(t)) (71)

and the isometry B(t) : Tβ(t)(TXStn,k) ∼= TXStn,k → T
β̂(t)Stn,k by

B(t) =
(
dα̂(t)ιX

)
◦ A(t) ◦

(
d(In ,Ik)

(ιX ◦ π)−1). (72)

Then, the triple (β(t), β̂(t), B(t)) defines an intrinsic rolling of TXStn,k over Stn,k in the sense of
Definition 9.

Proof. The proof follows by applying Theorem 1 because G/H can be isometrically and
G-equivariantly identified with Stn,k via ιX : G/H → Stn,k. Moreover, parallel vector fields
are mapped to parallel vector fields by isometries.

In more detail, the no-slip condition holds as

˙̂β(t) = d
d t (ιX ◦ α̂)(t)

= (dα̂(t)ιX) ˙̂α(t)

= (dα̂(t)ιX)
(

A(t)α̇(t)
)

= (dα̂(t)ιX) ◦ A(t) ◦
(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1(
β̇(t)

)
= B(t)β̇(t).

(73)

Next, we consider a parallel vector field V : I → T(TXStn,k) along β, i.e., V can
be viewed as the constant map V(t) = V0 for t ∈ I and some V0 ∈ TXStn,k. Clearly,
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Z(t) =
(
d(In ,Ik)

(ιX ◦ π)−1)(V(t)) = Z0 is constant, with Z0 =
(
d(In ,Ik)

(ιX ◦ π)−1)(V0), i.e.,
Z(t) is a parallel vector field along the curve α. Thus, by Theorem 1, the vector field A(t)Z(t)
is parallel along α̂. Because ιX : G/H → Stn,k is an isometry, this parallel vector field is
mapped to the parallel vector field dα̂(t)ιX

(
A(t)Z(t)

)
along the curve β̂(t) = ιX(α̂(t)).

Conversely, assuming that dα̂(t)ιX(A(t)Z(t)) is parallel along β̂, one shows by exploit-
ing Theorem 1 that Z(t) is parallel along α̂ because ι−1

X : Stn,k → G/H is an isometry. Hence,
V(t) = T(In ,Ik)

(ιX ◦ π)(Z(t)) is parallel along β.

As a corollary, we reformulate the kinematic equations for the intrinsic rolling of Stiefel
manifolds in the sense of Definition 9.

Corollary 5. Let β : I → Stn,k be a curve and let u : I → p be the associated control curve, so
that u(t) =

(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1(
β̇(t)

)
for t ∈ I. Consider the curves S : I → O(p) as well as

q : I 3 t 7→ q(t) = (R(t), θ(t)) ∈ O(n)×O(k) defined by the initial value problems

Ṡ(t) = − 1
2 prp ◦ adS(t)u(t) ◦ S(t), S(0) = idp

q̇(t) =
(
d(In ,Ik)

Lq(t)
)
S(t)u(t), q(0) = (In, Ik).

(74)

Then, the triple (β(t), β̂(t), B(t)) defines an intrinsic rolling of TXStn,k over Stn,k, where

β̂ : I → Stn,k, t 7→ (ιX ◦ π)(q(t)) = R(t)Xθ(t)> (75)

and
B(t) = dq(t)(ιX ◦ π) ◦ deLq(t) ◦ S(t) ◦ d(In ,Ik)

(ιX ◦ π)−1. (76)

Proof. This is a consequence of Lemma 10 combined with Theorem 1.

6.3. Extrinsic Rolling

We now consider Stn,k embedded into Rn×k, equipped with the metric induced by the
Frobenius scalar product scaled by the factor of two, i.e., the metric on Stn,k is given by

〈V, W〉X = 2 trace
(
V>W

)
, X ∈ Stn,k, V, W ∈ TXStn,k. (77)

This metric corresponds to the α-metric, when α = − 1
2 . In the sequel, we will refer to this

metric as the Euclidean metric.
We now construct a quadruple (β(t), β̂(t), B(t), C(t)), which satisfies Definition 5.
To this end, we first recall that a vector field Ẑ : I → NStn,k along a curve β̂ : I → Stn,k

is normal parallel if
∇ ˙̂β(t)

Ẑ(t) = P⊥
β̂(t)

( d
d t Ẑ(t)

)
= 0, t ∈ I, (78)

holds, where P⊥X : Rn×k → NXStn,k denotes the orthogonal projection onto the normal
space NXStn,k = (TXStn,k)

⊥ of Stn,k at the point X with respect to the Euclidean metric.
This projection is given by

P⊥X (V) = 1
2 X(X>V + V>X), V ∈ Rn×k, (79)

see, e.g., [12].
In order to determine the curve T : I → O(NXStn,k), we derive an ODE that is satisfied

by a curve associated to a normal vector field iff the vector field is parallel. To this end,
we first recall that ΦX = ιX ◦ π : O(n)×O(k) → Stn,k from (60) is a pseudo-Riemannian
submersion. Hence, it makes sense to consider the horizontal lift of a curve β̂ : I → Stn,k. In
addtion, for fixed (ξ1, ξ2) ∈ so(n)× so(k), we define the linear map:

f(ξ1,ξ2)
: Rn×k → Rn×k, V 7→ ξ1V −Vξ2. (80)
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Lemma 11. Let X ∈ Stn,k be fixed, β̂ : I → Stn,k a curve, and Ẑ : I → NStn,k be a normal vector
field along β̂. Moreover, let q : I 3 t 7→ q(t) = (R(t), θ(t)) ∈ O(n)×O(k) be a horizontal lift of
β̂. Then, Ẑ is parallel along β̂ iff the curve

z⊥ : I → NXStn,k, t 7→ z⊥(t) = Φq(t)−1
(
Ẑ(t)

)
= R(t)>Ẑ(t)θ(t), (81)

satisfies the ODE
ż⊥(t) = −

(
P⊥X ◦ f(ξ1(t),ξ2(t))

)(
z⊥(t)

)
, t ∈ I, (82)

where (ξ1(t), ξ2(t)) =
(

R(t)>Ṙ(t), θ(t)> θ̇(t)
)
∈ so(n)× so(k).

Proof. Let (R, θ) ∈ O(n)×O(k) and X ∈ Stn,k. Then,

P⊥Φ(R,θ)(X)(V) = Φ(R,θ) ◦ P⊥X ◦Φ(R> ,θ>)(V) (83)

holds for V ∈ Rn×k by the Φ-invariance of the Euclidean metric. Because q(t) = (R(t), θ(t))
is a horizontal lift of β̂, i.e., β̂(t) = (ιX ◦ π)(q(t)) = R(t)Xθ(t)>, (83) implies that

P⊥
β̂(t)

(V) = Φ(R(t),θ(t)) ◦ P⊥X
(

R(t)>Vθ(t)
)
. (84)

Moreover, the condition P⊥
β̂(t)

( d
d t Ẑ(t)

)
= 0 is equivalent to

P⊥X
(

R(t)>
( d

d t Ẑ(t)
)
θ(t)

)
= 0 (85)

by (84), because Φ(R(t),θ(t)) : Rn×k → Rn×k is a linear isomorphism. Obviously, by the
definition of z⊥, we have

Ẑ(t) = R(t)z⊥(t)θ(t)>. (86)

Plugging (86) into (85) yields

0 = P⊥X
(

R(t)>
( d

d t
(

R(t)z⊥(t)θ(t)>
))

θ(t)
)

= P⊥X
(

R(t)>
(

Ṙ(t)z⊥(t)θ(t)> + R(t) ˙z⊥(t)θ(t)> + R(t)z⊥(t)θ̇(t)>
)
θ(t)

)
= P⊥X

(
R(t)>Ṙ(t)z⊥(t) + ˙z⊥(t) + z⊥(t)θ̇(t)>θ(t)

)
.

(87)

Using (ξ1(t), ξ2(t)) =
(

R(t)>Ṙ(t), θ(t)> θ̇(t)
)

and θ(t)> θ̇(t) = −θ̇(t)>θ(t), as well as
P⊥X
( ˙z⊥(t)

)
= ˙z⊥(t) due to z⊥(t) ∈ NXStn,k, we can equivalently rewrite (87) by

0 = P⊥X
(
ξ1(t)z⊥(t) + ˙z⊥(t)− z⊥(t)ξ2(t)

)
= ˙z⊥(t) +

(
P⊥X ◦ f(ξ1(t),ξ2(t))

)(
z⊥(t)

)
.

(88)

This yields the desired result.

After this preparation, we are in the position to determine the extrinsic rolling of
TXStn,k over Stn,k with respect to the Euclidean metric in the sense of Definition 5.

Theorem 2. Let X ∈ Stn,k be fixed and let β : I → TXStn,k be a curve. Moreover, let (β(t), β̂(t), B(t))
denote the intrinsic rolling of TXStn,k over Stn,k from Lemma 10 for α = − 1

2 . Furthermore, let q : I 3 t 7→
q(t) = (R(t), θ(t)) ∈ O(n)×O(k) be the horizontal lift of β̂ : I → Stn,k through q(0) = (In, Ik)
and define (ξ1, ξ2) : I → so(n)× so(k) by

(ξ1(t), ξ2(t)) =
(
d(In ,Ik)

Lq(t)
)−1q̇(t) =

(
R(t)>Ṙ(t), θ(t)> θ̇(t)

)
, (89)

for t ∈ I. Let T : I → O(NXStn,k) be the solution of the initial value problem
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Ṫ(t) = −P⊥X ◦ f(ξ1(t),ξ2(t)) ◦ T(t), T(0) = idNXStn,k . (90)

Then, the quadruple (β(t), β̂(t), B(t), C(t)), with

C(t) : Nβ(t)(TXStn,k) ∼= NXStn,k → N
β̂(t)Stn,k, (91)

defined by
C(t) = Φ(R(t),θ(t)) ◦ T(t), (92)

is an extrinsic rolling of TXStn,k over Stn,k with respect to the Euclidean metric.

Proof. We only need to show the normal no-twist condition because the tangential no-twist
condition and the no-slip condition are fulfilled by Lemma 10. We start with proving that
T(t) ∈ O(NXStn,k), for t ∈ I. For that, we compute〈

(−P⊥X ◦ f(ξ1(t),ξ2(t)))(Y), Z
〉

X = −
〈

f(ξ1(t),ξ2(t))(Y), Z
〉

X

= −2 trace
((

ξ1(t)Y−Yξ2(t)
)>Z

)
= 2 trace

(
Y>ξ1(t)Z− ξ2(t)Y>Z

)
= 2 trace

(
Y>
(
ξ1(t)Z− Zξ2(t)

))
=
〈
Y, (P⊥X ◦ f(ξ1(t),ξ2(t)))(Z)

〉
,

(93)

for Y, Z ∈ NXStn,k, by exploiting (ξ1(t), ξ2(t)) ∈ so(n)× so(k). Thus, −P⊥X ◦ f(ξ1(t),ξ2(t)) :
NXStn,k → NXStn,k is skew-adjoint with respect to the Euclidean metric, implying that
−P⊥X ◦ f(ξ1(t),ξ2(t))) ◦ T, for T ∈ O(NXStn,k), can be viewed as a time-variant vector field on
O(NXStn,k).

Next, we note that C(t) : Nβ(t)(TXStn,k) ∼= NXStn,k → N
β̂(t)Stn,k is an isometry (as the

composition of isometries). Now, let Z⊥ : I → N(TXStn,k) be a normal parallel vector field
along β : I → TXStn,k. Then, Z⊥ can be viewed as the constant curve Z⊥(t) = Z⊥0 , for t ∈ I
and some Z⊥0 ∈ NXStn,k. Obviously, Ẑ⊥ : I → NStn,k given by

Ẑ⊥(t) = C(t)Z⊥(t) =
(
Φ(R(t),θ(t)) ◦ T(t)

)
(Z⊥0 ), t ∈ I, (94)

is a normal vector field along the curve β̂. It remains to show that Ẑ⊥ is parallel along β̂. To
this end, we exploit Lemma 11. We consider the curve z⊥ : I → NXStn,k given by

z⊥(t) = Φ(R(t)> ,θ(t)>)
(
Ẑ⊥(t)

)
= T(t)(Z⊥0 ) (95)

and obtain

˙z⊥(t) = Ṫ(t)(Z⊥0 )

= −
(

P⊥X ◦ f(ξ1(t),ξ2(t)) ◦ T(t)
)
(Z⊥0 )

= −
(

P⊥X ◦ f(ξ1(t),ξ2(t))
)(

z⊥(t)
) (96)

due to (90). Thus, Ẑ⊥ is parallel along β̂ by Lemma 11.
Conversely, assume that Ẑ⊥ : I → NStn,k given by Z⊥(t) = C(t)Z(t)⊥ for some

Z⊥ : I → NXStn,k is normal parallel along β̂. We define the normal parallel frame along
β̂ by A⊥i (t) = C(t)Ai, where the vectors A⊥i ∈ NXStn,k for i ∈ {1, . . . , `n} with `n =
dim(NXStn,k) form a basis. Then, analogously to [5] (Chap. 4, p. 106), one shows that
Ẑ⊥ is normal parallel along β̂ iff the coefficient functions zi : I → R defined by Ẑ⊥(t) =
∑`n

i=1 zi(t)A⊥i (t) are constant. Because Ẑ⊥ is assumed to be normal parallel, there exists
a uniquely determined zi ∈ R such that Z⊥(t) = ∑`n

i=1 zi A⊥i (t) is fulfilled. Hence, by the
linearity of C(t) : Nβ(t)(TXStn,k) ∼= NXStn,k → N

β̂(t)Stn,k, we obtain
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Ẑ⊥(t) =
`n

∑
i=1

zi A⊥i (t) =
`n

∑
i=1

ziC(t)A⊥i =
`n

∑
i=1

C(t)(zi A⊥i ) = C(t)Z⊥, (97)

where Z⊥ = ∑`n
i=1 zi A⊥i is viewed as a normal vector field along β, which is clearly normal

parallel. This yields the desired result.

As a corollary of Theorem 2, we obtain the kinematic equations for the extrinsic rolling
of TXStn,k over Stn,k with respect to the Euclidean metric.

Corollary 6. Let X ∈ Stn,k be fixed and let β : I → TXStn,k be a prescribed rolling curve with an
associated control curve

u : I 3 t 7→
(
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1
(β̇(t)) ∈ p (98)

viewed as a curve in p, where (
d(In ,Ik)

(ιX ◦ π)
∣∣
p

)−1 : TXStn,k → p (99)

is given by Corollary 4. Moreover, let the curves S : I → O(p) and q : I → O(n)×O(k), as well
as T : I → O(NXStn,k), be defined by the initial value problem

Ṡ(t) = − 1
2 prp ◦ adS(t)u(t) ◦ S(t), S(0) = idp,

q̇(t) =
(
d(In ,Ik)

Lq(t)
)
S(t)u(t), q(0) = (In, Ik),

Ṫ(t) = −P⊥X ◦ f(ξ1(t),ξ2(t)) ◦ T(t), T(0) = idNXStn,k ,

(100)

where f(ξ1,ξ2)
: Rn×k → Rn×k is given by (80) and prp : so(n) × so(k) → p is determined in

Corollary 4. Then, (β(t), β̂(t), B(t), C(t)) defines an extrinsic rolling of TXStn,k over Stn,k with
respect to the Euclidean metric, where

β̂ : I → Stn,k, t 7→ (ιX ◦ π)(q(t)) = R(t)Xθ(t)>, (101)

B(t) = d(q(t))(ιX ◦ π) ◦
(
(deLq(t)) ◦ S(t)

)
◦ d(In ,Ik)

(ιX ◦ π)−1, (102)

and
C(t) = Φ(R(t),θ(t)) ◦ T(t). (103)

We call the Equation (100) kinematic equations for the extrinsic rolling of TXStn,k over Stn,k with
respect to the Euclidean metric.

6.4. Rolling Along Special Curves

In this subsection, we consider a rolling of TXStn,k over Stn,k such that its development
curve β̂ : I → Stn,k is the projection of a not necessarily horizontal one-parameter subgroup,
i.e., a curve

β̂ : I → Stn,k, t 7→ (ιX ◦ π)(exp(tξ)) = etξ1 Xe−tξ2 , (104)

for some (ξ1, ξ2) ∈ so(n)× so(k), where X ∈ Stn,k is fixed. For this special case, which in-
cludes the curves considered in [13], we determine an extrinsic rolling (β(t), β̂(t), B(t), C(t))
explicitly. To this end, we proceed as in [10], where the intrinsic rolling of general reductive
spaces along such a curve are determined explicitly. However, for the following discussion,
we will restrict to the study of Stiefel manifolds equipped with the Euclidean metric, as it
allows for simplifying some arguments.

Before we continue, we fix some notations. Let ξ = (ξ1, ξ2) ∈ so(n)× so(k). Let ξh =
(ξ1,h, ξ2,h) and ξp = (ξ1,p, ξ2,p) denote the projections of ξ onto h and onto p, respectively.
Here, the reductive decomposition is always understood to be taken with respect to the α-
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metric, where α = − 1
2 . In particular, the subspaces h and p of so(n)× so(k) are orthogonal

with respect to the scalar product 〈·, ·〉α
so(n)×so(k) defined in (58).

We first consider the horizontal lift of a curve given by (104).

Lemma 12. Let X ∈ Stn,k and ξ = (ξ1, ξ2) ∈ so(n)× so(k). The horizontal lift of

β̂ : I → Stn,k, t 7→ β̂(t) =
(
ιX ◦ π

)(
exp(tξ)

)
= etξ1 Xe−tξ2 , (105)

through q(0) = (In, Ik) is given by

q : I → O(n)×O(k)

t 7→ exp(tξ) exp(−tξh) =
(
etξ1 e−tξ1,h , etξ2e−tξ2,h

)
.

(106)

Moreover, it is the solution of the initial value problem

q̇(t) =
(
d(In ,Ik)

Lq(t)
)
Adexp(tξh)(ξp), q(0) = (In, Ik). (107)

Proof. Obviously, q(0) = (In, Ik) holds and

β̂(t) =
(
ιX ◦ π

)
(exp(tξ)) =

(
ιX ◦ π

)(
exp(tξ) exp(−tξh)

)
(108)

is fulfilled because t 7→ exp(−tξh) is a curve in H ⊂ O(n)×O(k).
We claim that q is horizontal. Indeed, by using the well-known properties of the matrix

exponential

d
d t exp(tξ) = exp(tξ)ξ and d

d t exp(tξh) = ξh exp(tξh), (109)

we compute
q̇(t) = exp(tξ)ξ exp(−tξh)− exp(tξ)ξh exp(−tξh) (110)

yielding

(d(In ,Ik)
Lq(t))

−1q̇(t) = exp(tξh) exp(−tξ)q̇(t)

= exp(tξh) exp(−tξ)
(

exp(tξ)ξ exp(−tξh)

− exp(tξ)ξh exp(−tξh)
)

= exp(tξh)ξ exp(−tξh)

− exp(tξh)ξh exp(−tξh)

= exp(tξh)ξp exp(−tξh)

= Adexp(tξh)(ξp).

(111)

Here, we exploited the fact that that O(n)×O(k) can be viewed as a matrix Lie group.
Hence, q : I → O(n)×O(k) is horizontal due to Adexp(tξh(ξp) ∈ p because so(n)× so(k) =
h⊕ p is a reductive decomposition. In addition, (111) implies that q is the solution of (107),
as desired.

Next, we determine the intrinsic rolling (α(t), α̂(t), A(t)) of TXStn,k
∼= p over Stn,k

∼=
(O(n) ×O(k))/H viewed as a normal naturally reductive homogeneous space, where
α̂(t) = π(exp(tξ)) for some ξ ∈ so(n)× so(k).

To this end, we recall the kinematic equations from Theorem 1. They are given by

Ṡ(t) = − 1
2 prp ◦ adS(t)u(t) ◦ S(t), S(0) = idp,

q̇(t) =
(
d(In ,Ik)

Lq(t)
)
S(t)u(t), q(0) = (In, Ik),

(112)
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where
S(t)u(t) = Adexp(tξh)(ξp), (113)

for t ∈ I, by the definition of α̂(t) = π(exp(tξ)) = (ιX)
−1(β̂(t)) and Lemma 12. Thus, the

ODE for S : I → O(p) in (112) becomes

Ṡ(t) = − 1
2 prp ◦ adAdexp(tξh)

(ξp) ◦ S(t), S(0) = idp. (114)

In order to determine the intrinsic rolling explicitly, we need to solve this equation.
As a preparation, we state a lemma on time-variant linear ODEs, which is inspired by [14]
(p. 48).

Lemma 13. Let V be a finite-dimensional real vector space and let A, B ∈ End(V) be linear maps
on V. Consider the curve S : I → GL(V) defined by the initial value problem

Ṡ(t) = exp(tA) ◦ B ◦ exp(−tA) ◦ S(t), S(0) = S0 ∈ GL(V). (115)

Then, S is given by
S(t) = exp(tA) ◦ exp(t(B− A)) ◦ S0. (116)

Proof. Define S̃ : I → GL(V) by S̃(t) = exp(−tA) ◦ S(t). Then,

˙̃S(t) = −A ◦ exp(−tA) ◦ S(t) + exp(−tA) ◦ Ṡ(t)

= −A ◦ S̃(t) + exp(−tA) ◦ exp(tA) ◦ B ◦ exp(−tA) ◦ S(t)

= (B− A) ◦ S̃(t),

(117)

for t ∈ I, implying that S̃(t) = exp(t(B − A)) ◦ S0. Consequently, by the definition of S̃,
we obtain

S(t) = exp(tA) ◦ S̃(t) = exp(tA) ◦ exp(t(B− A)) ◦ S0, t ∈ I. (118)

Lemma 14. Let ξ ∈ so(n)× so(k). The solution of the initial value problem

Ṡ(t) = − 1
2 prp ◦ adAdexp(tξh)

(ξp) ◦ S(t), S(0) = idp, (119)

is given by

S : I → O(p), t 7→ Adexp(tξh) ◦ exp
(
− t
(
adξh +

1
2 (prp ◦ adξp)

))
. (120)

Proof. Rewrite (119) such that Lemma 13 can be applied. We compute

Ṡ(t) = − 1
2 prp ◦ adAdexp(tξh)

(ξp) ◦ S(t)

= − 1
2 Adexp(tξh) ◦ prp ◦ adξp ◦Adexp(−tξh) ◦ S(t)

= − 1
2 exp(tadξh) ◦ prp ◦ adξp ◦ exp(−tadξh) ◦ S(t),

(121)

where in the first equality we used the fact that Adexp(tξh) : g→ g is a Lie algebra morphism
and, moreover, Adh ◦ prp = prp ◦Adh holds due to Adh(p) ⊂ p as well as Adh(h) ⊂ h,
for h ∈ H. For the second equality, Adexp(tξh) = exp(adtξh) is used. Hence, we can apply

Lemma 13 with A = adξh and B = − 1
2 prp ◦ adξp . This yields

S(t) = exp(tadξh) ◦ exp
(
t
(
− 1

2 prp ◦ adξp − adξh

))
◦ idp

= Adexp(tξh) ◦ exp
(
−t
(
adξh +

1
2 prp ◦ adξp

))
,

(122)
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as desired.

We proceed with determining the intrinsic rolling (α(t), α̂(t), A(t)). Recall that the
control curve u : I → p is defined by u(t) = α̇(t). Hence, (113) yields

α̇(t) = S(t)−1Adexp(tξh)(ξp) = exp
(
t
(
adξh +

1
2 (prp ◦ adξp)

))
(ξp), (123)

where we used the formula for S : I → O(p) from Lemma 14. Therefore,

α(t) =
∫ t

0
exp

(
s
(
adξh +

1
2 (prp ◦ adξp)

))
(ξp)d s (124)

is the rolling curve α : I → p.
We summarize our findings for the intrinsic rolling of TXStn,k over Stn,k in the next

proposition.

Proposition 4. Let ξ = (ξ1, ξ2) ∈ so(n)× so(k) and X ∈ Stn,k. Then, the triple (α(t), α̂(t), A(t))
with

α(t) =
∫ t

0
exp

(
s
(
adξh +

1
2 (prp ◦ adξp)

))
(ξp)d s,

α̂(t) = π(exp(tξ)),

A(t) = (dq(t)π) ◦ d(In ,Ik)
Lq(t) ◦ S(t),

(125)

for t ∈ I, where q : I 3 t 7→ exp(tξ) exp(−tξh) ∈ O(n)×O(k) and

S : I → O(p), t 7→ Adexp(tξh) ◦ exp
(
− t
(
adξh +

1
2 (prp ◦ adξp)

))
, (126)

is an intrinsic rolling of TXStn,k
∼= p over Stn,k

∼= (O(n)×O(k))/H, viewed as normal naturally
reductive homogeneous space.

Remark 7. Obviously, proceeding analogously to the proof of Proposition 4, one derives an explicit
expression for the intrinsic rolling (α(t), α̂(t), A(t)) of TXStn,k

∼= p over Stn,k, where α̂(t) =
π(exp(tξ)) for ξ ∈ so(n)× so(k) for any α-metric, where α ∈ R \ {−1, 0}. Indeed, an explicit
expression for the rolling of general reductive homogeneous spaces G/H whose development curve
is given by t 7→ π(exp(tξ)) for ξ ∈ g is known, see [10].

From now on, whenever convenient, we may interchangeably use two different
notations, eA and exp(A), for the exponential of a matrix.

To determine an extrinsic rolling (β(t), β̂(t), B(t), C(t)) of TXStn,k over Stn,k, with
respect to the Euclidean metric whose development curve is given by β̂ : I 3 t 7→

(
ιX ◦

π
)(

exp(tξ)
)
∈ Stn,k, we recall from Corollary 6 that the normal part C(t) is given by

C(t) = Φ(R(t),θ(t)) ◦ T(t), t ∈ I. (127)

Here, T : I → O(NXStn,k) is the solution of the initial value problem

Ṫ(t) = −P⊥X ◦ f(ξ1(t),ξ2(t)) ◦ T(t), T(0) = idNXStn,k , (128)

and the horizontal lift q : I → O(n)×O(k) of β̂ and S(t)u(t) are, as in the intrinsic case,
given by (106) and (113), respectively. That is,

q(t) = exp(tξ) exp(−tξh) ∈ O(n)×O(k),



Mathematics 2023, 11, 4540 28 of 36

(ξ1(t), ξ2(t)) = S(t)u(t) =Adexp(tξh)(ξp)

=
(
etξ1,hξ1,pe−tξ1,h , etξ2,hξ2,pe−tξ2,h

)
.

(129)

In order to determine the normal part of the extrinsic rolling explicitly, we need to
solve (128).

Lemma 15. Let X ∈ Stn,k and ξ = (ξ1, ξ2) ∈ so(n)× so(k). Then, the initial value problem

Ṫ(t) = −P⊥X ◦ f
(etξ1,h ξ1,pe−tξ1,h ,etξ2,h ξ2,pe−tξ2,h )

◦ T(t),

T(0) = idNXStn,k ,
(130)

has the unique solution T : I → NXStn,k given by

T(t) = Φexp(tξh) ◦ exp
(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)
. (131)

Proof. By direct computation, we verify that T from (131) is indeed a solution. We first
calculate two alternative formulas for d

d t Φexp(tξh)(V), with V ∈ Rn×k, as follows:

d
d t Φexp(tξh)(V) = d

d t
(
etξ1,hVe−tξ2,h

)
= etξ1,hξ1,hVe−tξ2,h − etξ1,hVξ2,he−tξ2,h

= etξ1,hξ1,he−tξ1,hetξ1,hVe−tξ2,h − etξ1,hVe−tξ2,hetξ2,hξ2,he−tξ2,h

= f
(etξ1,h ξ1,he−tξ1,h ,etξ2,h ξ2,he−tξ2,h )

◦Φexp(tξh)(V),

(132)

and also

Φexp(tξh) ◦ f(ξ1,p,ξ2,p)
(V) = etξ1,h

(
ξ1,pV −Vξ2,p

)
e−tξ2,h

= (etξ1,hξ1,pe−tξ1,h)(etξ1,hVe−tξ2,h)

− (etξ1,hVe−tξ2,h)(etξ2,hξ2,pe−tξ2,h)

= f
(etξ1,h ξ1,pe−tξ1,h ,etξ2,h ξ2,pe−tξ2,h )

(
etξ1,hVe−tξ2,h

)
= f

(etξ1,h ξ1,pe−tξ1,h ,etξ2,h ξ2,pe−tξ2,h )
◦Φexp(tξh)(V).

(133)

Using (132) and (133), we can write:

Ṫ(t) = d
d t
(
Φexp(tξh) ◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
))

(132)
= f

(etξ1,h ξ1,he−tξ1,h ,etξ2,h ξ2,he−tξ2,h )
◦Φexp(tξh) ◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
))

−Φexp(tξh) ◦ (P⊥X ◦ f(ξ1,ξ2)
) ◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)

= P⊥X ◦Φexp(tξh) ◦ f(ξ1,h,ξ2,h)
◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
))

− (P⊥X ◦Φexp(tξh) ◦ f(ξ1,ξ2)
) ◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)

= P⊥X ◦Φexp(tξh) ◦
(

f(ξ1,h,ξ2,h)
− f(ξ1,ξ2)

)
◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)

= −P⊥X ◦Φexp(tξh) ◦ f(ξ1,p,ξ2,p)
◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)

(133)
= −P⊥X ◦ f

(etξ1,h ξ1,pe−tξ1,h ,etξ2,h ξ2,pe−tξ2,h )
◦Φexp(tξh) ◦ exp

(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)

= −P⊥X ◦ f
(etξ1,h ξ1,pe−tξ1,h ,etξ2,h ξ2,pe−tξ2,h )

◦ T(t),

(134)
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where we have also used P⊥X ◦ f(ξ1,h,ξ2,h)
= f(ξ1,h,ξ2,h)

◦ P⊥X . Together with the obvious
observation that the initial condition T(0) = idNXStn,k is satisfied, this gives the desired
result.

Now, we are in the position to give an explicit expression for the extrinsic rolling of
TXStn,k over Stn,k with respect to the Euclidean metric whose development curve is of the
desired form.

Proposition 5. Let ξ = (ξ1, ξ2) ∈ so(n)× so(k) and X ∈ Stn,k. Then, the quadruple (β(t), β̂(t),
B(t), C(t)) is an extrinsic rolling of TXStn,k over Stn,k with respect to the Euclidean metric, where

β(t) = (d(In ,Ik)
ιX ◦ π)(α(t)),

β̂(t) = (ιX ◦ π)(exp(tξ)) = etξ1 Xe−tξ2 ,

B(t) = (d(In ,Ik)
ιX) ◦ A(t) ◦ (d(In ,Ik)

ιX ◦ π)−1,

C(t) = Φq(t) ◦ T(t),

(135)

for t ∈ I, and

α(t) =
∫ t

0
exp

(
s
(
adξh +

1
2 (prp ◦ adξp)

))
(ξp)d s,

q(t) = exp(tξ) exp(−tξh) =
(
etξ1e−tξ1,h , etξ2e−tξ2,h

)
,

S(t) = Adexp(tξh) ◦ exp
(
− t
(
adξh +

1
2 (prp ◦ adξp)

))
,

A(t) = (dq(t)π) ◦ (d(In ,Ik)
Lq(t)) ◦ S(t),

T(t) = Φexp(tξh) ◦ exp
(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)
.

(136)

Proof. This is a consequence of the above discussion. Essentially, the assertion follows by
combining Proposition 4, Lemma 15, and Theorem 2.

Proposition 5 implies an explicit expression for the rolling along geodesics. In fact, by
exploiting that geodesics on naturally reductive homogeneous spaces are projections of
horizontal one-parameter groups, we obtain the next corollary.

Corollary 7. Let ξ = (ξ1, ξ2) ∈ p and X ∈ Stn,k. Then, the quadruple (β(t), β̂(t), B(t), C(t)) is
an extrinsic rolling of TXStn,k over Stn,k with respect to the Euclidean metric, where

β(t) = (d(In ,Ik)
ιX ◦ π)(tξ1, tξ2) = t(ξ1X− Xξ2),

β̂(t) = (ιX ◦ π)(exp(tξ)) = etξ1 Xe−tξ2 ,

B(t) = (d(In ,Ik)
ιX ◦ π) ◦ (d(In ,Ik)

L(etξ1 ,etξ2 )),

◦ exp
(
− 1

2 t(prp ◦ adξp)
)
◦ (d(In ,Ik)

ιX ◦ π)−1,

C(t) = Φ(etξ1 ,etξ2 ) ◦ exp
(
− t(P⊥X ◦ f(ξ1,ξ2)

)
)
,

(137)

for t ∈ I, whose development curve is a geodesic.

Proof. Clearly, ξ ∈ p implies ξh = 0. Thus, the assertion follows by Proposition 5.

6.5. Comparison with Existing Literature

In this final section, we relate our results with the known rolling of Stiefel manifolds
from [2].
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We discuss how the rolling of TXStn,k over Stn,k is related to the rolling obtained in [2].

As in [2], we specify X = E =
[

Ik
0

]
. It is well known that

TEStn,k =
{[

Ω
B
]
| Ω ∈ so(k), B ∈ R(n−k)×k

}
= so(n)E (138)

holds. We now recall the rolling map from [2], where trivial modifications concerning the
terminology and notations were made in order to adapt it to our notation.

Let α : I → Stn,k be a rolling curve with α(0) = E. Then, there exists a curve U : I →
SO(n) such that α(t) = U(t)E. Denote

G = {W ∈ SO(nk) |W = V ⊗U, V ∈ SO(k), U ∈ SO(n)} ⊂ SO(nk) (139)

and

U (t) = {Q(t) ∈ G | Q(t) vec(E) = (V(t)⊗U(t)) vec(E) = vec(α(t))}. (140)

The rotational part, R(t) ∈ SO(nk), describing the rolling of TEStn,k over Stn,k is obtained
in [2] by the following Ansatz:

R(t) = Q(t)S̃(t), (141)

where Q(t) ∈ U (t) and S̃(t) is a curve in the isotropy subgroup of E under the SO(nk)-
action on Rnk = vec(Rn×k), i.e.,

S̃(t) ∈ {R ∈ SO(nk) | R vec(E) = vec(E)}
= Stab(vec(E)) ∼= SO(nk− 1),

(142)

where the isomorphism in the above equation is obtained by choosing an orthogonal
transformation P0 ∈ O(nk) such that P0E ∈ span{enk} holds, as well as

P0(TEStn,k) = span{e1, . . . e`t},
P0(NEStn,k) = span{e`t+1, . . . enk},

(143)

where `t = dim(Stn,k) and `n = dim(NXStn,k), yielding

P0
(
Stab(E)

)
P>0 =

{[
S 0
0 1

]
| S ∈ SO(nk− 1)

}
. (144)

Note that S̃ in this text corresponds to S in [2]. By this notation, it is shown in [2] that S̃(t)
needs to fulfill

S̃(t) ∈
[

O(`t) 0 0
0 O(`n−1) 0

0 1

]
∩ SO(nk), (145)

where `t = dim(TEStn,k) and `n = dim(NEStn,k).
The orthogonal projection of a matrix A ∈ Rnk×nk onto a matrix with the structure

given in the above equation is denoted by Abl−diag. Using this notation, we recall [2]
(Lem. 3.2).

Lemma 16. Let h = (R, s) be a rolling map for the Stiefel manifold Stn,k. If Q(t) ∈ U (t) and
R(t) = Q(t)S̃(t) with S̃(t) ∈ Stab(E), then S̃(t) obeys the ODE

˙̃S(t) = P>0
(

P0Q̇(t)>Q(t)P>0
)

bl−diagP0S̃(t)

= −P>0
(

P0Q(t)>Q̇(t)P>0
)

bl−diagP0S̃(t),
(146)
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where s : I → Rnk fulfills the ODE

ṡ(t) = −S̃(t)Q̇(t)>Q(t) vec(E) = S̃(t)Q(t)>Q̇(t) vec(E) (147)

by [2] (Eq. (44)).

Note that the second equations in (146) and (146) of Lemma 16 are correct by Q>Q̇ ∈
so(nk) because of Q : I → SO(nk).

The goal of the remaining part of this subsection is to show that the extrinsic rolling
of the Stiefel manifold obtained in Section 6.3 fulfills Lemma 16. To this end, we recall
that the extrinsic rolling (β(t), β̂(t), B(t), C(t)) from Section 6.3 is constructed by using the
kinematic equations

u(t) = (d(In ,Ik)
(ιE ◦ π)

∣∣
p)
−1(β̇(t)),

Ṡ(t) = − 1
2 prp ◦ adS(t)u(t) ◦ S(t), S(0) = S0 = idp ∈ O(p),

q̇(t) = (d(In ,Ik)
Lq(t)) ◦ S(t)u(t), q(0) = (In, Ik) ∈ O(n)×O(k),

Ṫ(t) = −P⊥E ◦ f(ξ1(t),ξ2(t)) ◦ T(t), T(0) = idNEStn,k ∈ O(NEStn,k),

(148)

according to Corollary 6 for X = E. The development curve reads

β̂(t) = R(t)Eθ(t)>. (149)

Hence, q(t) = (R(t), θ(t)) ∈ U (t) is fulfilled by the definition of U (t), after identifying q(t)
with Q(t) = θ(t)⊗ R(t) by the map

O(n)×O(k) 3 (R, θ) 7→ θ ⊗ R ∈ O(k)⊗O(n), (150)

which is an isomorphism of the Lie groups onto its images. Using this identification, we
obtain that (

deLq(t)
)−1q̇(t) = S(t)u(t) = (ξ1(t), ξ2(t)) (151)

corresponds to

Q>Q̇ = ξ2(t)⊗ In + Ik ⊗ ξ1(t), (152)

by using properties of the Kronecker product, see, e.g., [15] (Sec. 7.1).
It remains to relate the curves S(t) and T(t) from (148) to the curve S̃(t) considered in

Lemma 16.
We first consider the normal part. We show that E ∈ NEStn,k is invariant under

T : I → O(NEStn,k), where T is defined by the kinematic equation. We obtain, by the
definition of f(ξ1,ξ2)

for X = E,

f(ξ1,ξ2)

(
E
)
=
(
ξ1E− Eξ2

)
(153)

implying that f(ξ1,ξ2)

(
span{E}

)
⊂ TEStn,k by the linearity of f(ξ1,ξ2)

: Rn×k → Rn×k. Next,
we consider the curve I 3 t 7→ E(t) = T(t)(E), where T : I → O(NXStn,k) is given by the
kinematic equation. We may view E(t) as a solution of the initial value problem

Ė(t) = −
(

P⊥E ◦ f(ξ1(t),ξ2(t))
)
(E(t)), E(0) = E. (154)

The unique solution of this ODE is given by E(t) = E, for t ∈ I, because E(0) = E is clearly
fulfilled and

−
(

P⊥E ◦ f(ξ1(t),ξ2(t))
)
(E) = 0 = Ė(t) (155)
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holds due to f(ξ1,ξ2)

(
span{E}

)
⊂ TEStn,k. In other words, because T(0) = idNEStn,k , one has

T(t)E = E, t ∈ I. (156)

Clearly, by choosing P0 ∈ O(nk) such that (143) holds, one obtains, for v ∈ Rnk,

P0 vec(P⊥E (vec−1(v))) =
[ 0`t 0

0 I`n

]
P0v ∈ Rnk,

P0 vec(PE(vec−1(v))) =
[ I`t 0

0 0`n

]
P0v ∈ Rnk,

(157)

which implies, for v ∈ Rnk,

vec ◦PE ◦ vec−1(v) = P>0
[ I`t 0

0 0`n

]
P0v,

vec ◦P⊥E ◦ vec−1(v) = P>0
[ 0`t 0

0 I`n

]
P0v.

(158)

We now identify the curve S : I → O(p) with the curve Ŝ : I → O(TEStn,k) via

Ŝ(t) =
(
d(In ,Ik)

(ιE ◦ π)
)
◦ S(t) ◦

(
d(In ,Ik)

(ιE ◦ π)
∣∣
p

)−1. (159)

In the sequel, we find a matrix representation for Ŝ, roughly speaking, by considering
S = vec ◦Ŝ ◦ vec−1.

We start with computing (159) explicitly. The ODE (148) for S(t) ∈ O(p) can be
equivalently rewritten as

Ṡ(t) ◦ S(t)−1 = − 1
2 prp ◦ ad(ξ1(t),ξ2(t)) (160)

and, therefore,

˙̂S(t) ◦ Ŝ(t)−1

=
(
d(In ,Ik)

(ιE ◦ π)
)
◦
(
− 1

2 prp ◦ ad(ξ1(t),ξ2(t))
)
◦ (d(In ,Ik)

(ιE ◦ π)
∣∣
p
)−1

=
(
d(In ,Ik)

(ιE ◦ π)
)
◦
(
− 1

2 ad(ξ1(t),ξ2(t))
)
◦ (d(In ,Ik)

(ιE ◦ π)
∣∣
p
)−1,

(161)

where, for the last equality, we use the fact that h belongs to the kernel of d(In ,Ik)
(ιE ◦ π).

We now compute the right-hand side of the above equation. To this end, we write

V =
[

Ω
C
]
∈ TEStn,k and (ξ1, ξ2) =

([
2Ψ −B>
B 0

]
, Ψ
)
∈ p. (162)

Taking into account that Ω> = −Ω, Ψ> = −Ψ, and

d(In ,Ik)
(ιE ◦ π)

([
2Ψ −B>
B 0

]
, Ψ
)
=
[

2Ψ −B>
B 0

][
Ik
0

]
−
[

Ik
0

]
Ψ =

[
Ψ
B
]
, (163)
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we can write(
d(In ,Ik)

(ιE ◦ π)
)
◦ Ṡ(t) ◦ S(t)−1 ◦ (d(In ,Ik)

(ιE ◦ π)
∣∣
p
)−1(V)

= − 1
2 d(In ,Ik)

(ιX ◦ π)
(
[ξ1, (EV> −VE>], [ξ2, E>V]

)
= − 1

2 d(In ,Ik)
(ιX ◦ π)

([
2Ψ −B>
B 0

][
2Ω −C>
C 0

]
−
[

2Ω −C>
C 0

][
2Ψ −B>
B 0

]
, ΨΩ−ΩΨ

)
= − 1

2 d(In ,Ik)
(ιX ◦ π)

([
4ΨΩ−B>C −2ΨC>

2BΩ −BC>

]
−
[

4ΩΨ−C>B −2ΩB>

2CΨ −CB>

]
, ΨΩ−ΩΨ

)
= − 1

2 d(In ,Ik)
(ιX ◦ π)

([
4ΨΩ−B>C−4ΩΨ+C>B −2ΨC>+2ΩB>

2BΩ−2CΨ −BC>+CB>

]
, ΨΩ−ΩΨ

)
= − 1

2

([
4ΨΩ−B>C−4ΩΨ+C>B −2ΨC>+2ΩB>

2BΩ−2CΨ −BC>+CB>

][
Ik
0

]
−
[

Ik
0

]
(ΨΩ−ΩΨ)

)
= − 1

2

[
4ΨΩ−B>C−4ΩΨ+C>B−ΨΩ+ΩΨ

2BΩ−2CΨ

]
= − 1

2

[
3ΨΩ−3ΩΨ−B>C+C>B

2BΩ−2CΨ

]
,

(164)

as well as

PE

(
ξ1V −Vξ2

)
= PE

([
2Ψ −B>
B 0

][
Ω
C
]
−
[

Ω
C
]
Ψ
)

= PE

([
2ΨΩ−B>C−ΩΨ

BΩ−CΨ

])
=

[
(ΨΩ−(ΨΩ)>)− 1

2 (B>C−(B>C)>)− 1
2 (ΩΨ−(ΨΩ)>)

BΩ−CΨ

]
=

[
ΨΩ−ΩΨ− 1

2 B>C+ 1
2 C>B− 1

2 ΩΨ+ 1
2 ΨΩ

BΩ−CΨ

]
= 1

2

[
3ΨΩ−3ΩΨ−B>C+C>B

2BΩ−2CΨ

]
.

(165)

By comparing (164) and (165), we obtain(
d(In ,Ik)

(ιE ◦ π)
)
◦ Ṡ(t) ◦ S(t)−1 ◦ (d(In ,Ik)

(ιX ◦ π)
∣∣
p
)−1(V)

= −PE
(
ξ1(t)V −Vξ2(t)

)
.

(166)

Therefore, (161) can be written as

˙̂S(t) ◦ Ŝ(t)−1(V) = −PE
(
ξ1(t)V −Vξ2(t)

)
, (167)

for V ∈ TEStn,k or, equivalently, as

˙̂S(t) ◦ Ŝ(t)−1(V) = −PE ◦ f(ξ1(t),ξ2(t))(V), (168)

for V ∈ TEStn,k. Applying vec : Rn×k → Rnk, we obtain for S = vec ◦ Ŝ(t) ◦ vec−1 the ODE

Ṡ(t) = −
(

vec ◦PE ◦ vec−1 ) ◦ ( vec ◦ f(ξ1(t),ξ2(t)) ◦ vec−1 ) ◦ S(t). (169)

For W ∈ Rn×k, we have

vec
(

f(ξ1(t),ξ2(t))(W)
)
= vec(ξ1(t)W −Wξ2(t))

= (Ik ⊗ ξ1(t) + ξ2(t)⊗ In) vec(W).
(170)

Denoting the representation matrix of S by S , as well, and using the identity (170) with W
replaced by vec−1 ◦ S(t) ◦ vec(V), we obtain

Ṡ(t) vec(V) = −
(

vec ◦PE ◦ vec−1 )(Ik ⊗ ξ1(t) + ξ2(t)⊗ In)S vec(V), (171)
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for V ∈ TEStn,k.
Recalling the definition of P0 ∈ SO(nk) from (143), and using (158), we can rewrite (171)

for V ∈ TEStn,k equivalently as

Ṡ(t) ◦ S(t)−1 vec(V)

= −P>0
[

I`t 0
0 0

]
P0(Ik ⊗ ξ1(t) + ξ2(t)⊗ In)P>0 P0 vec(V)

= −P>0
[

I`t 0
0 0

]
P0(Ik ⊗ ξ1(t) + ξ2(t)⊗ In)P>0

[
I`t 0
0 0

]
P0 vec(V)

= −P>0
[

I`t 0
0 0

]
P0Q(t)>Q̇(t)P>0

[
I`t 0
0 0

]
P0 vec(V),

(172)

where the last equality holds due to (152).
Similarly, for T : I → O(NEStn,k), if we define T (t) = vec ◦T(t) ◦ vec−1 and denote its

representation matrix by the same symbol, we have, for V ∈ NXStn,k,

Ṫ (t) ◦ T (t)−1 vec(V)

= −P>0
[

0 0
0 I`n

]
P0(Ik ⊗ ξ1(t) + ξ2(t)⊗ In)P>0

[
0 0
0 I`n

]
P0 vec(V)

= −P>0
[

0 0
0 I`n

]
P0Q(t)>Q̇(t)P>0

[
0 0
0 I`n

]
P0 vec(V).

(173)

Next, we define S̃ : I 3 t 7→ S̃(t) ∈ Rnk×nk and show that this curve S̃(t) is exactly the
curve S̃(t) from Lemma 16. For that, let v ∈ Rnk and compute

˙̃S(t)S̃(t)−1v = Ṡ(t) ◦ S(t)−1 ◦ (vec ◦PE ◦ vec−1)(v)

+ Ṫ (t) ◦ T (t)−1 ◦ (vec ◦P⊥E ◦ vec−1)(v)

= −P>0
[

I`t 0
0 0

]
P0Q(t)>Q̇(t)P>0

[
I`t 0
0 0

]
P0v

− P>0
[

0 0
0 I`n

]
P0Q(t)>Q̇(t)P>0

[
0 0
0 I`n

]
P0v

= −P>0
([

I`t 0
0 0

]
P0Q(t)>Q̇(t)P>0

[
I`t 0
0 0

]
+
[

0 0
0 I`n

]
P0Q(t)>Q̇(t)P>0

[
0 0
0 I`n

])
P0v.

(174)

In order to show that S̃(t) indeed satisfies the ODE from Lemma 16, we state the following
auxiliar result.

Lemma 17. Let `t, `n ∈ N with `t + `n = nk, and consider the matrix A ∈ so(nk) partitioned as

A =

[ A11 A12 0
−A>12 A22 0

0 0 0

]
, where A11 ∈ so(`t), A22 ∈ so(`n − 1).

Then, for v ∈ Rnk,

Abl−diagv =
([

0 0
0 I`n

]
A
[

0 0
0 I`n

]
+
[

I`t 0
0 0

]
A
[

I`t 0
0 0

])
v (175)

holds.

Proof. Writing v =
[ v1

v2
v3

]
, where v1 ∈ R`t , v2 ∈ R`n−1 and v3 ∈ R, we compute

Abl−diagv =

[
A11 0 0

0 A22 0
0 0 0

][ v1
v2
v3

]
=

[
A11v1
A22v2

0

]
. (176)
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Moreover, we also have([
0 0
0 I`n

]
A
[

0 0
0 I`n

]
+
[

I`t 0
0 0

]
A
[

I`t 0
0 0

])[ v1
v2
v3

]
=
[

0 0
0 I`n

][ A11 A12 0
A21 A22 0

0 0 0

][ 0
v2
v3

]
+
[

I`t 0
0 0

][ A11 A12 0
A21 A22 0

0 0 0

][ v1
0
0

]
=
[

0 0
0 I`n

][ A12v2
A22v2

0

]
+
[

I`t 0
0 0

][ A11v1
A21v1

0

]
=

[
A11v1
A22v2

0

]
,

(177)

showing the desired result.

Applying Lemma 17 to (174) yields

˙̃S(t)S̃(t)−1 = −P>0
(

P0Q(t)>Q̇(t)P>0
)

bl−diagP0. (178)

So, S̃ defined in (174) fulfills the ODE from Lemma 16.
It remains to show that our approach also gives the curve s : I → Rnk from Lemma 16.

Recalling that (
deLq(t)

)−1q̇(t) = S(t)u(t) = (ξ1(t), ξ2(t)), (179)

we write S(t)−1(ξ1(t), ξ2(t)) = (u1(t), u2(t)), and

β̇(t) =
(
d(In ,Ik)

(ιE ◦ π)
)(

u1(t), u2(t)
)
= u1(t)E− Eu2(t), (180)

where β is the rolling curve for the rolling of TEStn,k over Stn,k. We now consider the curve
s : I → Rnk from Lemma 16 and perform the following computations:

ṡ(t) = S̃(t)>Q(t)>Q̇(t) vec(E)

= S̃(t)> vec(ξ1(t)E− Eξ2(t))

= vec ◦
(
d(In ,Ik)

(ιE ◦ π)
)
◦ S(t)−1 ◦

(
d(In ,Ik)

(ιE ◦ π)
∣∣
p

)−1

◦ vec−1 ◦ vec(ξ1(t)E− Eξ2(t))

= vec ◦
(
d(In ,Ik)

(ιE ◦ π)
)
◦ S(t)−1(ξ1(t), ξ2(t))

= vec
(
d(In ,Ik)

(ιE ◦ π)(u1(t), u2(t))
)

= vec(u1(t)E− Eu2(t))

= vec(β̇(t)).

(181)

By (181), vec(β(t)) + b0 = s(t) holds for t ∈ I and some b0 ∈ Rnk.
Recalling, from Lemma 16, that (R(t)>, s(t)) defines a rolling of Stn,k over TEStn,k,

the development curve is given by Q(t) vec(E) = vec(β̂(t)) and the rolling curve by
s(t) = vec(β(t)). Thus, α̂(t), α(t), and R(t) from Proposition 3 correspond to vec(β(t)),
Q(t) vec(E), and (Q(t)S̃(t))>, respectively. Therefore, we obtain

s(t) = vec(β(t))− (Q(t)S̃(t))>Q(t) vec(E)

= vec(β(t))− S̃(t)>Q(t)>Q(t) vec(E)

= vec(β(t))− S̃(t)>Q(t)>Q(t)S̃(t) vec(E)

= vec(β(t))− E,

(182)



Mathematics 2023, 11, 4540 36 of 36

by exploiting that S̃(t) vec(E) = vec(E). Obviously, using (181), we may conclude that s(t)
from (182) fulfills the ODE

ṡ(t) = S̃(t)>Q(t)>Q̇(t) vec(E) (183)

from Lemma 16.
In conclusion, after having developed the theoretical results for the rolling normal

naturally reductive homogeneous spaces over their tangent spaces, we specialized this to
the Stiefel manifold. The results presented here for rolling extrinsically the Stiefel manifold
Stn,k over its tangent space TEStn,k coincide with those obtained previously in [2].
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