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Abstract: Long COVID, a long-lasting disorder following an acute infection of COVID-19, represents
a significant public health burden at present. In this paper, we propose a new mechanistic model
based on differential equations to investigate the population dynamics of long COVID. By connecting
long COVID with acute infection at the population level, our modeling framework emphasizes the
interplay between COVID-19 transmission, vaccination, and long COVID dynamics. We conducted a
detailed mathematical analysis of the model. We also validated the model using numerical simulation
with real data from the US state of Tennessee and the UK.
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1. Introduction

A serious consequence following infection with SARS-CoV-2 is the potential occur-
rence of a long-lasting disorder known as post-acute sequelae of COVID-19 (or, long
COVID) [1,2]. The cause of long COVID is unclear at present, but possible contributors
include persistent reservoirs of SARS-CoV-2 in certain tissues and their continued interac-
tions with host microbiome communities, injuries to one or more organs from the acute
infection, ongoing activities of primed immune cells and other immune dysregulations,
clotting/coagulation issues, and dysfunctional vagus nerve signals [3–5].

A number of studies have highlighted the persistence and complications of the long
COVID syndrome. For example, a cohort study followed 147 Italian patients who were
hospitalized for COVID-19 and found that 87% still had symptoms 60 days after they were
discharged from the hospital [6]. Another study [7] found that 76% of hospitalized COVID-
19 patients (or, 1265 out of 1655) in Wuhan, China, were still experiencing symptoms
6 months after their infection. In the United States, CDC estimated that up to a third of
COVID-19 cases may result in long-term symptoms [8], indicating that tens of millions of
Americans diagnosed with COVID-19 may endure long-lasting consequences of the illness.
The situation is further complicated by the fact that individuals who are infected with
only mild symptoms, and those who are fully vaccinated but later develop breakthrough
infections, can become COVID long-haulers [9–11].

In order to assess the impact of long COVID on the healthcare system and to design
effective strategies for resource distribution, it is critical to quantify and predict the burden
of long COVID at the population level. However, several systematic reviews and meta-
analyses found that COVID long-haulers exhibited a wide variety of symptoms and that
the long COVID rates are highly heterogeneous across different populations, ranging from
10% to 67% [11–15]. Such a heterogeneous pattern indicates that no single formula can be
applied to every population to quantify the burden of long COVID. Instead, the evaluation
and prediction of long COVID prevalence have to take into account the specific population
characteristics and the epidemic/pandemic trends.
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Mathematical models can overcome such challenges and help us to better quantify
the population dynamics associated with long COVID. However, in contrast to the large
number of mathematical, statistical, and computational models already published for
COVID-19 transmission and spread (see reviews in [16–19]), very few modeling studies
have been devoted to long COVID. The currently available models for long COVID are
mainly based on machine learning and statistical techniques, with a focus on identifying
individuals at risk of long COVID [20–25]. Their findings, though very useful, do not
improve the understanding of the population dynamics of long COVID. Moreover, none of
these studies have employed mechanistic models.

In this work, we propose a novel mechanistic model based on differential equations to
investigate the dynamics of long COVID and its population-level prevalence. Since long
COVID stems from acute infection, we will link the population dynamics of long COVID
with the transmission dynamics of COVID-19. In addition, since COVID-19 vaccines have
played an important role in fighting the virus, we will also incorporate the impact of
vaccination in our model. Our goal is to accurately predict the prevalence of long COVID
in a given population with the available data. We will implement the model in real-world
applications using data from both the US and the UK.

The remainder of this paper is organized as follows. We present the formulation of our
mechanistic model in Section 2 and perform a detailed mathematical analysis in Section 3.
We then present data fitting and numerical simulation in Section 4. Finally, we conclude
our paper with some discussion in Section 5.

2. Model Formulation

We used differential equations to construct our mathematical model and investi-
gated the population dynamics of long COVID. We considered a model that involves
five compartments representing the number of the following individuals: the susceptible
individuals (denoted by S), the vaccinated individuals (denoted by V), the infected and
infectious individuals with short-term symptoms (denoted by I), the individuals with
long-term symptoms; i.e., COVID long-haulers (denoted by L), and the recovered individ-
uals (denoted by R). Based on numerous clinical studies, the duration of infectiousness
of SARS-CoV-2 is always limited to a relatively short period [26]. We, thus, assume that
individuals with long COVID are not contagious.

The model is described by the following differential equations:

dS
dt

= Λ− βSI − (φ + µ)S,

dV
dt

= φS− θβVI − µV,

dI
dt

= βI(S + θV)− (γ + ω + µ)I,

dL
dt

= γρI − (γL + ωL + µ)L,

dR
dt

= γ(1− ρ)I + γLL− µR.

(1)

A flow chart for this model is shown in Figure 1. The parameter Λ is the population influx
rate, β is the transmission rate, µ is the natural death rate for the human hosts, and φ
is the vaccination rate. Susceptible individuals become infected by contacting infectious
individuals. In addition, susceptible individuals are vaccinated at the rate φ. We assume
that a portion of θ (0 < θ < 1) in vaccinated individuals are at risk for breakthrough
infections, that is, the degree of protection for the vaccines is 1− θ. Infected individuals
exit the acute infection period at the rate γ; among these, a portion ρ will develop long
COVID and enter the L compartment, whereas the other portion 1− ρ will truly recover
from the disease and enter the R compartment. Since we are concerned with a relatively
long time period, individuals in all these compartments are subject to natural mortality
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at an average rate µ. In addition, the parameter γL is the rate of recovery for COVID
long-haulers, and ω and ωL are the disease-induced death rates in the acute infection and
long COVID states, respectively.

S

V

I

L

R

φS

βSI

θβVI

γρI

γ(1− ρ)I

γLL

Λ

µS

µV

(ω + µ)I

(ωL + µ)L

µR

Figure 1. A flow chart showing movement between the compartments of the system (1).

3. Mathematical Analysis

System (1) has a feasible domain

Ω =
{
(S, V, I, L, R) ≥ 0

∣∣∣ S ≤ Λ
φ + µ

, V ≤ φΛ
µ(φ + µ)

, S + V + I + L + R ≤ Λ
µ

}
. (2)

It can be easily verified that Ω is positively invariant for the vector field of (1). It is
also straightforward to obtain the following result:

Theorem 1. System (1) has a unique disease-free equilibrium (DFE) in the domain Ω

X0 =
(
S0, V0, I0, L0, R0

)
=
( Λ

φ + µ
,

φΛ
µ(φ + µ)

, 0, 0, 0
)

. (3)

The basic reproduction number of our model can be derived by the standard next-
generation matrix technique [27], with the new infection matrix F and the transition matrix
V computed as

F =

[
βΛ(µ+φθ)

µ(φ+µ)
0

0 0

]
, V =

[
γ + ω + µ 0
−γρ γL + ωL + µ

]
.

The spectral radius of the next-generation matrix FV−1 then gives the basic reproduction
number of system (1):

R0 =
βΛ(µ + φθ)

µ(φ + µ)(γ + ω + µ)
. (4)

Note that the term related to φθ in Equation (4) represents the risk associated with the
breakthrough infection.

Theorem 2. System (1) has a positive endemic equilibrium

X̂ =
(
Ŝ, V̂, Î, L̂, R̂

)
(5)

in Ω if and only if R0 > 1. The endemic equilibrium is unique when it exists.
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Proof. At a nontrivial equilibrium of system (1), we have

0 = Λ− βSI − (φ + µ)S, (6)

0 = φS− θβVI − µV, (7)

0 = βIS + θβVI − (γ + ω + µ)I, (8)

0 = γρI − (γL + ωL + µ)L, (9)

0 = γ(1− ρ)I + γLL− µR. (10)

Now, we write each equation as a function of I. From (6)–(8), we obtain

S =
Λ

βI + φ + µ
, (11)

V =
φS

(θβI + µ)
, (12)

and

V =
(γ + ω + µ)− βS

βθ
, (13)

respectively. Substituting (11) into (12), we obtain

V(I) =
φΛ

(φβI + µ)(βI + φ + µ)
. (14)

Similarly, substitution of (11) into (13) yields

V(I) =
γ + ω + µ

βθ
− Λ

θ(βI + φ + µ)
. (15)

Equating (14) and (15), we obtain an equation in terms of a single variable I:

f (I) =
γ + ω + µ

βθ
, (16)

where the function f is defined as

f (I) :=
φΛ

(φβI + µ)(βI + φ + µ)
+

Λ
θ(βI + φ + µ)

. (17)

The function f (I) is strictly decreasing for I > 0, and f (I) → 0 when I → ∞. Hence,
Equation (16) has a positive solution at I = Î > 0 if and only if

f (0) >
γ + ω + µ

βθ
. (18)

Through simple algebraic manipulation, it can be easily seen that Equation (18) is equivalent
to R0 > 1. Clearly, the positive solution Î is unique when R0 > 1, due to the monotonicity
of the function f .

Consequently, S, V, L, and R at the positive equilibrium can all be uniquely determined
from Î based on the equations presented above, and this positive equilibrium clearly belongs
to Ω. Hence, there is a unique endemic equilibrium X̂ =

(
Ŝ, V̂, Î, L̂, R̂

)
for system (1) if and

only if R0 > 1.

From [27], we know that the DFE X0 is locally asymptotically stable when R0 < 1
and unstable when R0 > 1. The result below establishes the local stability for the
endemic equilibrium.

Theorem 3. When R0 > 1, the endemic equilibrium X̂ is locally asymptotically stable.
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We provide the proof of Theorem 3 in Appendix A. In what follows, we focus on the
global stability properties of the DFE and the endemic equilibrium.

Theorem 4. When R0 < 1, the DFE X0 is globally asymptotically stable in Ω. When R0 > 1,
the endemic equilibrium X̂ is globally asymptotically stable in Ω.

Proof. We first consider the case R0 > 1, where the endemic equilibrium X̂ =
(
Ŝ, V̂, Î, L̂, R̂

)
exists and is unique. We aim to establish that all the orbits of (S, V, I) approach

(
Ŝ, V̂, Î

)
.

To that end, we introduce the following Lyapunov function [28]:

L(S, V, I) = (S− Ŝ ln S) + (V − V̂ ln V) + (I − Î ln I). (19)

Taking the derivative of L along the solution of system (1) gives us

dL
dt

=

(
Ṡ− Ŝ

Ṡ
S

)
+

(
V̇ − V̂

V̇
V

)
+

(
İ − Î

İ
I

)
, (20)

where the dot notation is used for the time derivatives of S, V, and I. We will show that
dL
dt ≤ 0. To do so, we will manipulate the three parts in Equation (20) separately. For

convenience, we will denote these terms by (21)–(23). Our first term is equal to(
1− Ŝ

S

)[
βŜ Î − βSI − (φ + µ)(S− Ŝ)

]
=

(
1− Ŝ

S

)
[β(Ŝ Î − SI)− (φ + µ)(S− Ŝ)]

= β

(
Ŝ Î − SI − Ŝ2 Î

S
+ ŜI

)
+ φŜ

(
2− S

Ŝ
− Ŝ

S

)
+ µŜ

(
2− S

Ŝ
− Ŝ

S

)
. (21)

Similarly, the second term in (20) is(
1− V̂

V

)[
φS− θβVI − µV − φŜ + θβV̂ Î + µV

]
=

(
1− V̂

V

)[
φ(S− Ŝ) + β(θV̂ Î − θVI) + µ(V̂ −V)

]
= φ

(
S− Ŝ− SV̂

V
+

ŜV̂
V

)
+ β

(
θV̂ Î − θVI − θV̂2 Î

V
+ θV̂ I

)
+ µV̂

(
2− V

V̂
− V̂

V

)
. (22)

Now, the last term of (20) is(
1− Î

I

)
[βI(S + θV)− I(γ + ω + µ)− β Î(Ŝ + θV̂) + Î(γ + ω + µ)]

=

(
1− Î

I

)
[β(SI + θVI − Ŝ Î − θV̂ Î)] + (γ + ω + µ)( Î − I)

= β

(
SI + θVI − Ŝ Î − θV̂ Î − SÎ − θVÎ +

Ŝ Î2

I
+

θVÎ2

I

)
+ (γ + ω + µ) Î

(
2− I

Î
− Î

I

)
. (23)

From here, we will begin the process of canceling out many terms and showing that
all that remains are nonpositive terms. We can rewrite the following terms as

(γ + ω + µ) Î = β Î(Ŝ + θV̂)

from (8). Therefore,
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(23) = β
(
SI + θVI − Ŝ Î − θV̂ Î

)
− β

(
SÎ + θVÎ − Ŝ Î2

I
− θV̂ Î2

I

)

+ βŜ Î
(

2− I
Î
− Î

I

)
+ βθV̂ Î

(
2− I

Î
− Î

I

)
.

Similarly, from (7), the terms in (22) can be rewritten as

µV̂
(

2− V
V̂
− V̂

V

)
= (φŜ− βθV̂ Î)

(
2− V

V̂
− V̂

V

)
,

giving us

(22) = φ

(
S− Ŝ− SV̂

V
+

ŜV̂
V

)
+ β

(
θV̂ Î − θVI − θV̂2 Î

V
+ θV̂ I

)
+ φŜ

(
2− V

V̂
− V̂

V

)
− βθV̂ Î

(
2− V

V̂
− V̂

V

)
.

Note that, in all of the terms of (21)–(23), there are common factors of β, µ, φ. We will
simplify dL

dt by first summing all of the terms from (21)–(23) that share one of these common
factors before combining what we have left afterwards. Starting with β,

β

[
Ŝ Î − SI − Ŝ2 Î

S
+ ŜI + θV̂ Î − θVI − θV̂2 Î

V
+ θV̂ I − θV̂ Î

(
2− V

V̂
− V̂

V

)

+ SI + θVI − Ŝ Î − θV̂ Î − SÎ − θVÎ +
Ŝ Î2

I
+

θV̂ Î2

I
+ Ŝ Î

(
2− I

Î
− Î

I

)
+ θV̂ Î

(
2− I

Î
− Î

I

)]
.

Many terms can immediately be canceled. Doing so gives

β

[
− Ŝ2 Î

S
+ ŜI − θV̂2 Î

V
+ θV̂ I − θV̂ Î

(
2− V

V̂
− V̂

V

)
− SÎ − θVÎ +

Ŝ Î2

I
+

θV̂ Î2

I

+ Ŝ Î
(

2− I
Î
− Î

I

)
+ θV̂ Î

(
2− I

Î
− Î

I

)]

=β

[
− Ŝ2 Î

S
+ ŜI − θV̂2 Î

V
+ θV̂ I − θV̂ Î

(
2− V

V̂
− V̂

V

)
− SÎ − θVÎ +

Ŝ Î2

I
+

θV̂ Î2

I

+ 2Ŝ Î − ŜI − Ŝ Î2

I
+ 2θV̂ Î − θV̂ I − θV̂ Î2

I

]

=β

[
− Ŝ2 Î

S
− θV̂2 Î

V
− θV̂ Î

(
2− V

V̂
− V̂

V

)
− SÎ − θVÎ + 2Ŝ Î + 2θV̂ Î

]

=β

[
− Ŝ2 Î

S
− SÎ + 2Ŝ Î − θV̂ Î

(
2− V

V̂
− V̂

V

)
+ θV̂ Î

(
2− V

V̂
− V̂

V

)]

=β

[
Ŝ Î

(
2− S

Ŝ
− Ŝ

S

)]
≤ 0.
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For terms that share a common factor of φ,

φŜ

[
2− S

Ŝ
− Ŝ

S
+

S
Ŝ
− 1− SV̂

ŜV
+

V̂
V

+ 2− V
V̂
− V̂

V

]

=φŜ

[
3− Ŝ

S
− SV̂

ŜV
− V

V̂

]
≤ 0.

This leaves us with one remaining term with a common factor of µ:

µŜ

(
2− S

Ŝ
− Ŝ

S

)
≤ 0.

Now, by combining all of the three terms, we are left with

dL
dt

= µŜ

(
2− S

Ŝ
− Ŝ

S

)
+ βŜ Î

(
2− S

Ŝ
− Ŝ

S

)
+ φŜ

(
3− Ŝ

S
− V

V̂
− SV̂

ŜV

)
, (24)

all of which are nonpositive terms since the arithmetic mean is greater than or equal to the
geometric mean. Hence, dL

dt ≤ 0 and the equality holds if and only if (S, V, I) = (Ŝ, V̂, Î),
which shows that (S, V, I) → (Ŝ, V̂, Î) for all the solution orbits. Consequently, letting
I → Î, we immediately obtain L→ L̂ and R→ R̂ from the last two equations of system (1).
This establishes the global asymptotic stability of the endemic equilibrium X̂ when R0 > 1.

When R0 < 1, the DFE X0 = (S0, V0, I0, L0, R0) is the only equilibrium of system (1).
We consider the Lyapunov function

W(S, V, I) = (S− S0 ln S) + (V −V0 ln V) + I, (25)

which yields
dW
dt

=
(

Ṡ− S0
Ṡ
S

)
+
(

V̇ −V0
V̇
V

)
+ İ (26)

along the solution of system (1). It can be easily observed that the algebraic manipula-
tions we performed previously for (Ŝ, V̂, Î) will still hold for (S0, V0, 0) and all the terms
associated with Î will disappear. We thus obtain

dW
dt

= µS0

(
2− S

S0
− S0

S

)
+ φS0

(
3− S0

S
− V

V0
− SV0

S0V

)
. (27)

With similar arguments as before, we can establish the global asymptotic stability of the
DFE X0 when R0 < 1.

These theoretical results concerning the different types of equilibria and their stability
properties, with a sharp threshold at R0 = 1, are common in many epidemiological
models [27,29]. Nevertheless, an important message from Theorems 2–4 is that long
COVID may persist in the host population in the long run, unless COVID-19 is completely
eradicated. In the next section, we will utilize a numerical simulation to implement our
model for real-world applications. We fitted and simulated the model using reported data
from relatively short time periods to gain insights for the population-level progression of
long COVID.

4. Numerical Simulation

We conducted numerical simulation with real data to validate our model. In contrast
to the large amount of surveillance data for COVID-19, time series data for long COVID
at the population level are very rare at present. We performed two simulation studies.
The first one was for the state of Tennessee in the US, where detailed data for COVID-19
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cases, deaths, and vaccination coverage are available [30], but there are no population-level
data available for long COVID. The second study was concerned with the UK which, as
an exception, published monthly data for long COVID prevalence in the UK population
through its Office for National Statistics (ONS) [31].

4.1. Simulation for the Tennessee State in the US

We first applied our model to the COVID-19 data for the US state of Tennessee for
the 4-month period between 31 August 2021 and 30 December 2021. An estimation given
by the US Census Bureau of the total population in Tennessee on 1 July 2021 gave us a
value of N = 6,975,218 [32]. Our time period was relatively short, so we assumed that
immigration and emigration were equal, and that the natural birth rate was equal to the
natural death rate, µ. We defined the natural death rate as the inverse of the life expectancy,
which in 2019, before COVID-19 started in Tennessee, was 75.6 years [33]. We were then
able to define the population influx rate as the product of the natural birth rate and the total
population: Λ = µN. We defined γ as the recovery rate for acute infections, calculated as
the reciprocal of the acute infection period reported in [34]. For ω, i.e., the disease-induced
death rate for acute infections, we used the estimate provided in [35]. The breakthrough
infection ratio, θ, ranged from 1% to 20% in the US [36], and we took an average θ = 10%
in this study. The values for these parameters can be found in Table 1.

Table 1. Parameter values for the simulation of the Tennessee data.

Parameter Definition Value Source

Λ Population influx rate 252.780 persons per day [32,33]
µ Natural death rate 3.624× 10−5 per day [33]
θ Breakthrough infection ratio 10% [36]
γ−1 Acute infection recovery period 9.5 days [34]
ω Death rate for acute infection 0.012 per day [35]
β Transmission rate Found via data fitting -
φ Vaccination rate Found via data fitting -
ρ Proportion of long COVID cases Varied -
γ−1

L Long COVID recovery period 90 days Assumed
ωL Death rate for long COVID 0.0012 per day Assumed

In our model, the susceptible, vaccinated, and infected compartments form a system
that is not dependent on long COVID cases or the recovered compartment. So next, we
estimated the transmission rate β and the vaccination rate φ by fitting a simplified model
consisting of only the S, V, and I compartments to the COVID-19 infection and vaccination
data reported on a daily basis by the Tennessee Department of Health [30]. The initial
condition for this simulation was set as (S(0), V(0), I(0)) = (3,023,763, 2,888,057, 46,260),
based on the reported data for the number of fully vaccinated individuals and infected
individuals in Tennessee on 31 August 2021. The fitted parameter values are given in
Table 2 and the result of the data fitting for the number of cumulative cases is shown
graphically in Figure 2.

Table 2. Parameter estimates found by fitting the Tennessee data.

Parameter Value 95% Confidence Interval

β 4.046× 10−8/person/day (3.969× 10−8, 4.123× 10−8)
φ 0.00474/day (0.00326, 0.00622)



Mathematics 2023, 11, 4541 9 of 16

Figure 2. Fitting result for the number of cumulative COVID-19 cases in the US state of Ten-
nessee beginning from 31 August 2021. The horizontal axis represents the number of days since
31 August 2021, and the vertical axis represents the number of cumulative cases.

Based on our data fitting results, which included the number of active infections I in
particular, we proceeded to conduct a numerical simulation for the possible prevalence
levels of long COVID in Tennessee using the equation for the L compartment in system (1).
We assumed that the mortality rate caused by long COVID was much lower than that
caused by the acute infection, with ωL = 0.1 ω, and that the average recovery period for
long COVID was 90 days, with γL = 1/90 per day. We then picked three different values
for ρ, i.e., the portion of infected individuals who went on to develop long COVID, with
ρ = 10%, 20%, and 30%. Figure 3 displays the simulation curves for the number of active
long COVID cases with the three values of ρ. The highest and lowest points on each curve
are marked by a square and a circle, respectively. We observed that the peak of L ranged
from about 2.5× 104 (when ρ = 10%) to almost 8× 104 (when ρ = 30%). Even with the
minimal estimate of ρ = 10%, the lowest point on the simulation curve was L ≈ 1.5× 104,
indicating a substantial public health burden caused by long COVID.

Because long COVID data are not available for the Tennessee population, we were not
able to fit the parameters relevant to long COVID dynamics and predict the progression of
long COVID in Tennessee. Nevertheless, our simulation results provide possible ranges for
the prevalence of long COVID in this population, which could inform the public health
administration in their design of control and intervention strategies.

Figure 3. Simulation results for the number of active long COVID cases in Tennessee using different
values of ρ. The horizontal axis represents the number of days since 31 August 2021, and the vertical
axis represents the number of active long COVID cases. On each simulation curve, the square marks
the peak and the circle marks the lowest point of the curve.

4.2. Simulation for the UK

In addition to the regular, daily reported data for COVID-19 infections, the UK Office
for National Statistics (ONS) has published survey data for the prevalence of long COVID
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in the UK population on a monthly basis [31]. The time period covered by the long COVID
data starts from 6 February 2021. The ONS data allowed us to fit our model to the number
of long COVID cases. We focused our attention on fitting the L compartment in system (1),
where the variable I involved in the L equation was determined by the reported number of
active COVID-19 cases. We set the time from 6 February 2021 to 4 July 2022, a period about
17 months, for model fitting, and the time from 5 July 2022 to 6 December 2022, a period
about 5 months, for model testing.

The values of the parameters for the UK simulation study are listed in Table 3. There
were five parameters, i.e., γ, ρ, γL, ωL, and µ, that were involved in the L equation in
system (1). We also conducted a sensitivity analysis for these five parameters in terms
of the variable L, using the method from [37] for computing relative sensitivities. The
results are presented in Figure 4. We observed that ρ, γL, and γ were the three most
sensitive parameters, while ωL and µ had very low sensitivities. This indicates that µ and
ωL would have very little impact on the long COVID prevalence L. We calculated the
natural death rate µ from the demographic information of the UK population [38]. We took
the long COVID-induced death rate ωL = 0.0012 per day, i.e., the same value used in the
Tennessee simulation. We additionally noted that the recovery rate γ was determined by
the characteristics of the acute infection. We thus set the (average) recovery period from the
acute infection as γ−1 = 10 days, based on reported values for COVID-19 in the UK [39].

We proceeded to use data fitting to estimate the two key parameters ρ and γL associ-
ated with the long COVID prevalence. Specifically, we fitted the L equation in our model
to the monthly reported long COVID data over the 17-month fitting period. Next, we
conducted a numerical simulation to generate a prediction for the 5-month testing period
using the parameter values estimated from the fitting period.

Table 3. Parameter values for the simulation of the UK long COVID data.

Parameter Definition Value Source

µ Natural death rate 3.91× 10−5 per day [38]
γ−1 Acute infection recovery period 10 days [39]
ωL Death rate for long COVID 0.0012 per day Assumed
γ−1

L Long COVID recovery period Found via data fitting -
ρ Proportion of long COVID cases Found via data fitting -

Figure 4. Relative sensitivities for the five parameters γ, ρ, γL, ωL, and µ that are related to the long
COVID compartment L.

Table 4 lists the fitted parameter values. Figure 5 displays the fitting and prediction
curves for the number of active long COVID cases in the UK, compared with the ONS data.
The vertical dashed line in the figure separates the fitting and prediction periods.

Our fitting result for ρ shows that about 31.6% of the infected individuals in the UK
went on to develop long COVID. The fitted value for the recovery rate of long COVID was
γL ≈ 0.0112 per day, indicating that long COVID would last about 1/γL ≈ 89.3 days on
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average in the UK population. This is indeed very close to the assumed value of 90 days in
our simulation study for the Tennessee data. These numbers, together with the predictive
capability of the model, can provide useful quantitative information to assess the burden of
long COVID in the UK and to guide relevant policy developments and resource allocation.

Table 4. Parameter estimates found by fitting the UK long COVID data.

Parameter Value 95% Confidence Interval

γL 0.0112 per day (0.00, 0.169)
ρ 0.316 (0.280, 1.00)

Figure 5. Fitting and prediction results for the long COVID cases in the UK from 6 February 2021 to
6 December 2022. The vertical dashed line in purple separates the fitting and prediction periods. The
red circles represent the reported data. The blue solid line represents the fitting result and the green
solid line represents the prediction result.

5. Discussion

As stated in a recent review article, “measuring COVID-19 morbidity is an immediate
priority in this pandemic” [40]. Long COVID contributes substantially to the overall
COVID-19 morbidity, and quantifying the burden of long COVID at the population level is
important for public health planning and policy making. In this pilot study, we present
a new mechanistic model based on differential equations to investigate the population
dynamics of long COVID. Our model emphasizes the interaction between COVID-19
transmission, vaccination, and long COVID dynamics. A detailed mathematical analysis
was conducted and the main dynamical properties of the model were completely resolved.
Furthermore, numerical simulation was carried out with real data from the US state of
Tennessee and the UK to validate this modeling framework.

The two simulation studies demonstrate the utility of our modeling framework. For a
place such as the US state of Tennessee, where long COVID data are not currently available,
our model was able to generate useful information for the range of the long COVID
prevalence at the population level. For a place such as the UK, which has published long
COVID data, our model can be used to fit the prevalence and predict the future progression
of long COVID. It is our hope that more population-level long COVID data will be reported
in the near future, which will enable wider applications of our mechanistic model.

This work contributes to the quantitative and predictive studies of long COVID,
which are emerging but still in the initial stage at present. Our findings add quantitative
knowledge for the transmission of COVID-19, the progression from acute infection to
long-lasting disorder, and the population-level prevalence and burden of long COVID.
These results can be used to provide helpful guidelines for the public health administration
to engage in science-based long COVID management and resource allocation, and for
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healthcare providers to target early intervention strategies and facilitate the timely recovery
of long COVID patients.

The current model can be extended in several directions. For example, we may refine
the model structure by adding another compartment to represent hospitalized COVID-19
patients who typically exhibit severe illness from acute infection and who are more likely to
develop long COVID [6,7]. In addition, there are a number of other factors associated with
COVID-19 patients that have been linked to an increased risk of long COVID, including
the presence of underlying health conditions, the occurrence of multiple acute infection
symptoms, old age, and a high body mass index [5,25,41]. Such factors and related clinical
data may be used to improve our modeling framework.

Finally, the model proposed in this paper was built on a deterministic system of
ordinary differential equations. Several other mechanistic modeling approaches, such as
difference equations [42], partial differential equations [43,44], and stochastic differential
equations [45,46], have been used in epidemic forecasting. These modeling techniques may
also be extended to investigate the population dynamics of long COVID. It is expected that
more mechanistic studies for long COVID will be generated in the near future, and it is yet
to be seen which modeling technique will achieve the best performance.
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Appendix A

Proof of Theorem 3. The Jacobian matrix of system (1) at the endemic equilibrium X̂ is
given by

J =


−β Î − φ− µ 0 −βŜ 0 0

φ −θβ Î − µ −θβV̂ 0 0
β Î θβ Î β(Ŝ + θV̂)− γ−ω− µ 0 0
0 0 γp −γL −ωL − µ 0
0 0 γ(1− p) γL −µ

.

We now use the characteristic equation, det(λI5 − J), to find the eigenvalues of J where I5
is the 5× 5 identity matrix. From elementary concepts of linear algebra, we quickly see
that det(λI5 − J) is

(λ + γL + ωL + µ)(λ + µ)

∣∣∣∣∣∣
λ + β Î + φ + µ 0 βŜ

−φ λ + θβ Î + µ θβV̂
−β Î −θβ Î λ + γ + ω + µ− β(Ŝ + θV̂)

∣∣∣∣∣∣.
Now, for the sake of clarity, let us define an,m to be the corresponding matrix entry excluding
any λ. Then, we have
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det(λI5 − J) =(λ + γL + ωL + µ)(λ + µ)

∣∣∣∣∣∣
λ + a1,1 0 a1,3

a2,1 λ + a2,2 a2,3
a3,1 a3,2 λ + a3,3

∣∣∣∣∣∣
= (λ + γL + ωL + µ)(λ + µ)(λ3 + λ2x + λy + z),

for

x := a1,1 + a2,2 + a3,3,

y := a2,2a3,3 + a1,1a2,2 + a1,1a3,3 − a2,3a3,2 − a1,3a3,1,

z := a1,1a2,2a3,3 + a1,3a2,1a3,2 − a1,3a2,2a3,1 − a1,1a2,3a3,2.

We know that both (λ + γL + ωL + µ) and (λ + µ) have negative eigenvalues. Therefore,
to ensure asymptotic stability, we only need to prove x, y, z > 0 and xy > z to satisfy the
Routh–Hurwitz criteria.

We first seek to show that x > 0.

x = a1,1 + a2,2 + a3,3

= β Î + φ + θβ Î + γ + ω + 3µ− β(Ŝ + θV̂).

This is surely positive except, potentially, for the last term. However, since we are observing
this at the endemic equilibrium point X̂, (6)–(10) still hold true. Thus, we quickly see
from (8) that

Ŝ =
γ + ω + µ

β
− θV̂.

Therefore,

β Î + φ + θβ Î + γ + ω + 3µ− β(Ŝ + θV̂)

= β Î + φ + θβ Î + γ + ω + 3µ− β

(
γ + ω + µ

β
− θV̂ + θV̂

)
= β Î + φ + θβ Î + 2µ,

which is positive. Hence, we have that, not only is x > 0, but from our last steps, we see
that a3,3 = 0.

Next, we work towards proving that y > 0 while noting a3,3 = 0.

y = a2,2a3,3 + a1,1a2,2 + a1,1a3,3 − a2,3a3,2 − a1,3a3,1

= a1,1a2,2 − a2,3a3,2 − a1,3a3,1

= (β Î + φ + µ)(θβ Î + µ)− (θβV̂)(−θβ Î)− (βŜ)(−β Î)

= (β Î + φ + µ)(θβ Î + µ) + (θβV̂)(θβ Î) + (βŜ)(β Î).

Thus, clearly y > 0.
Similarly, to show that z > 0, we see that

z = a1,1a2,2a3,3 + a1,3a2,1a3,2 − a1,3a2,2a3,1 − a1,1a2,3a3,2

= a1,3a2,1a3,2 − a1,3a2,2a3,1 − a1,1a2,3a3,2

= (βŜ)(−φ)(−θβ Î)− (βŜ)(θβ Î + µ)(−β Î)− (β Î + φ + µ)(θβV̂)(−θβ Î)

= (βŜ)(φ)(θβ Î) + (βŜ)(θβ Î + µ)(β Î) + (β Î + φ + µ)(θβV̂)(θβ Î),

which is also clearly greater than 0.
Lastly, we show that xy > z. Note that
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xy = (a1,1 + a2,2)(a1,1a2,2 − a2,3a3,2 − a1,3a3,1)

= (a1,1)
2a2,2 + a1,1(a2,2)

2 − a1,1a1,3a3,1 − a1,1a2,3a3,2 − a1,3a2,2a3,1 − a2,2a2,3a3,2.

Here, we can note that xy and z share common terms: −a1,3a2,2a3,1,−a1,1a2,3a3,2; so to prove
xy > z, it suffices to show that

(a1,1)
2a2,2 + a1,1(a2,2)

2 − a1,1a1,3a3,1 − a2,2a2,3a3,2 > a1,3a2,1a3,2. (A1)

Let us analyze these terms more closely. First of all, we can see that the term on the
right-hand side of (A1) is

a1,3a2,1a3,2 = (βŜ)(−φ)(β Î) = β2 ÎŜφ.

Moreover, we see that one of the terms on the left-hand side of (A1) is

−a1,1a1,3a3,1 = −(β Î + φ + µ)(βŜ)(−β Î)

= β3 Î2Ŝ + β2 ÎŜφ + β2 ÎŜµ.

Therefore, we have a term that is strictly greater than what we need to prove that (A1)
is true as long as none of the other terms on the left-hand side subtract away more than
β3 Î2Ŝ + β2 ÎŜµ. We will see, however, that this is not a problem, and in fact, the rest of the
terms will be positive additions to the left-hand side of (A1). It is easy to see that both
(a1,1)

2a2,2 and a1,1(a2,2)
2 are positive values, ensuring that our inequality is true. We now

look at the last value of (A1).

−a2,2a2,3a3,2 = −(θβ Î + µ)(θβV̂)(−θβV̂)

= θ3β3 Î2V̂ + θ2β2 ÎV̂µ,

which is another positive term. Hence, our inequality (A1) is true, proving that xy > z,.
Therefore, using the Routh–Hurwitz criteria, the endemic equilibrium is locally asymptoti-
cally stable when R0 > 1.
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