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Abstract: A randomized block Kaczmarz method and a randomized extended block Kaczmarz
method are proposed for solving the matrix equation AXB = C, where the matrices A and B may be
full-rank or rank-deficient. These methods are iterative methods without matrix multiplication, and
are especially suitable for solving large-scale matrix equations. It is theoretically proved that these
methods converge to the solution or least-square solution of the matrix equation. The numerical
results show that these methods are more efficient than the existing algorithms for high-dimensional
matrix equations.
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1. Introduction

Consider the linear matrix equation

AXB = C, (1)

where A ∈ Rm×p, B ∈ Rq×n and C ∈ Rm×n. Such problems arise in many practical
applications such as surface fitting in computer-aided geometric design (CAGD), signal
and image processing, photogrammetry, etc.; see, for example, [1–4] and the large body
of literature therein. If AXB = C is consistent, X∗ = A†CB† is the minimum Frobenius
norm solution. If AXB = C is inconsistent, X∗ = A†CB† is the minimum Frobenius
norm least-squares solution. When the matrices A and B are small and dense, direct
methods based on QR fractions are attractive [5,6]. However, for large A and B matrices,
iterative methods have attracted a lot of attention [7–11]. Recently, Du et al. proposed the
randomized block coordinate descent (RBCD) method for solving the matrix least-squares
problem min

X∈Rp×q
‖C− AXB‖F without strong convexity assumption in [12]. This method

requires that matrix B is a full row-rank matrix. Wu et al. [13] introduced two kinds
of Kaczmarz-type methods to solve the consistent matrix equation AXB = C: relaxed
greedy randomized Kaczmarz (ME-RGRK) and maximal weighted residual Kaczmarz (ME-
MWRK). Although the row and column index selection strategy is time-consuming, the
ideas of these two methods are suitable for solving large-scale consistent matrix equations.

In this paper, the randomized Kaczmarz method [14] and the randomized extended
Kaczmarz method [15] are used to solve consistent and inconsistent matrix equation (1)
with the product of the matrix and vector.

All the results in this paper hold in the complex field. But for the sake of simplicity,
we only discuss them in terms of the real number field.

In this paper, we denote AT , A†, r(A), R(A), ‖A‖F =
√

trace(AT A) and 〈A, B〉F =
trace(AT B) as the transpose, the Moore–Penrose generalized inverse, the rank of A, the
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column space of A, the Frobenius norm of A and the inner product of two matrices A
and B, respectively. For an integer n ≥ 1, let [n] = {1, 2, . . . , n}. We use I to denote
the identity matrix whose order is clear from the context. In addition, for a given matrix
G = (gij) ∈ Rm×n, Gi,:, G:,j, σmax(G) and σmin(G) are used to denote the ith row, the
jth column, the maximum singular value and the smallest nonzero singular value of G,
respectively. Let Ek denote the expected value conditional on the first k iterations, that
is, Ek[·] = E[·|i0, j0, i1, j1, . . . , ik−1, jk−1], where is and js(s = 0, 1, . . . , k − 1) are the row
and the column chosen at the sth iteration. Let the conditional expectations with respect
to the random row index be Ei

k[·] = E[·|i0, j0, i1, j1, . . . , ik−1, jk−1, jk] and with respect to

the random column index be Ej
k[·] = E[·|i0, j0, i1, j1 . . . , ik−1, jk−1, ik]. By the law of total

expectation, it holds that Ek[·] = Ei
k[E

j
k[·]].

The organization of this paper is as follows. In Section 2, we will discuss the block
Kaczmarz method (ME-RBK) for finding the minimal F-norm solution (A†CB†) of consistent
matrix equation (1). In Section 3, we discuss the extended block Kaczmarz method (IME-
REBK) for finding the minimal F-norm least-squares solution of matrix equation (1). In
Section 4, some numerical examples are provided to illustrate the effectiveness of our new
methods. Finally, some brief concluding remarks are described in Section 5.

2. The Randomized Block Kaczmarz Method for Consistent Equation

At the kth iteration, the Kaczmarz method selects randomized a row i ∈ [m] of
A and performs an orthogonal projection of the current estimate matrix X(k) onto the
corresponding hyperplane Hi = {X ∈ Rp×q|Ai,:XB = Ci,:}, that is,

min
X∈Rp×q

1
2
‖X− X(k)‖2

F s.t. Ai,:XB = Ci,:. (2)

The Lagrangian function of the conditional optimization problem (2) is

L(X, Y) =
1
2
‖X− X(k)‖2

F + 〈Y, Ai,:XB− Ci,:〉, (3)

where Y ∈ R1×n is a Lagrangian multiplier. Via the matrix differentiation, we obtain the
gradient of L(X, Y) and set ∇L(X, Y) = 0 to find the stationary matrix:

∇X L(X, Y)
∣∣
X(k+1) = X(k+1) − X(k) + AT

i,:YBT = 0,

∇Y L(X, Y)
∣∣
X(k+1) = Ai,:X(k+1)B− Ci,: = 0.

(4)

Using the first equation of (4), we have X(k+1) = X(k) − AT
i,:YBT . Substituting this

into the second equation of (4), we can obtain Y = − 1
‖Ai,:‖2

2
(Ci,: − Ai,:X(k))(BT B)†. So, the

projected randomized block Kacmarz (ME-PRBK) for solving AXB = C iterates as

X(k+1) = X(k) +
AT

i,:

‖Ai,:‖2
2
(Ci,: − Ai,:X(k)B)B†. (5)

However, in practice, it is very expensive to calculate the pseudoinverse of large-scale
matrices. Next, we generalize the average block Kaczmarz method [16] for solving linear
equation to matrix equation.

At the kth step, we obtain the approximate solution X(k+1) by projecting the current
estimate X(k) onto the hyperplane Hi,j = {X ∈ Rp×q|Ai,:X(k)B:,j = Ci,j}. Using the La-
grangian multiplier method, we can obtain the following Kaczmarz method for AXB = C:

X(k+1) = X(k) +
AT

i,:(Ci,: − Ai,:X(k)B:,j)BT
:,j

‖Ai,:‖2
2‖B:,j‖2

2
.
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Inspired by the idea of the average block Kaczmaz algorithm for Ax = b, we consider
the average block Kaczmaz method for AXB = C with respect to B.

X(k+1) = X(k) + λ
AT

i,:

‖Ai,:‖2
2

n

∑
j=1

vk
j

(Ci,: − Ai,:X(k)B:,j)BT
:,j

‖B:,j‖2
2

,

where λ is stepsize and vk
j are the weights that satisfy vk

j ≥ 0 and
n
∑

j=1
vk

j = 1. If vk
j =

‖B:,j‖2
2

‖B‖2
F

, then

X(k+1) = X(k) +
λ

‖B‖2
F

AT
i,:

‖Ai,:‖2
2
(Ci,: − Ai,:X(k)B)BT .

Setting α = λ
‖B‖2

F
> 0, we obtain the following randomized block Kaczmarz iteration:

X(k+1) = X(k) +
α

‖Ai,:‖2
2

AT
i,:

(
(Ci,: − (Ai,:X(k))B)BT

)
, k = 0, 1, 2, . . . , (6)

where i is selected with probability pi =
‖Ai,:‖2

2
‖A‖2

F
. We describe this method as Algorithm 1,

which is called the ME-RBK algorithm.

Algorithm 1 Randomized Block Kaczmarz Method for AXB = C (ME-RBK)

Input: A ∈ Rm×p, B ∈ Rq×n, C ∈ Rm×n, X(0) = 0 ∈ Rp×q

1: for k = 0, 1, 2, . . . , do
2: Pick i with probability pi(A) =

‖Ai,:‖2
2

‖A‖2
F

3: Compute X(k+1) = X(k) + α
‖Ai,:‖2

2
AT

i,:

(
(Ci,: − (Ai,:X(k))B)BT

)
4: end for

We arrange the computational process of calculating X(k+1) in Table 1, which only
costs 4q(n + p) + p + 1− 2q flopping operations (flops) if the square of the row norm of A
has been calculated in advance.

Table 1. The complexities of computing X(k+1) in ME-RBK.

y1 = Ai,:X(k) y2 = Ci,: − y1B y3 = y2BT yT
4 = α

‖Ai,:‖2
2

AT
i,: Y1 = yT

4 y3 X(k) + Y1

(2p− 1)q (2q− 1)n + n (2n− 1)q 1 + p pq pq

Remark 1. Note that the problem of finding a solution of AXB = C can be posed as the following
linear least-squares problem:

min
X∈Rp×q

1
2
‖AXB− C‖2

F = min
X∈Rp×q

1
2

m

∑
i=1
‖Ai,:XB− Ci,:‖2

2. (7)

Define the component function

fi(X) =
1
2
‖Ai,:XB− Ci,:‖2

2,

then differentiate with X to obtain its gradient

∇ fi(X) = AT
i,:(Ai,:XB− Ci,:)BT .

Therefore, the randomized block Kaczmarz method (6) is equivalent to one step of the stochastic
gradient descent method [17] applied to (7) with stepsize α

‖Ai,:‖2
2
.



Mathematics 2023, 11, 4554 4 of 15

First, we give the following lemma, whose proof can be found in [12].

Lemma 1 ([12]). Let A ∈ Rm×p and B ∈ Rq×n be any nonzero matrix. Let

M = {M ∈ Rp×q | ∃Y ∈ Rm×n s.t. M = ATYBT}.

For any matrix M ∈ M, it holds that

‖AMB‖2
F ≥ σ2

min(A)σ2
min(B)‖M‖2

F.

Remark 2. M ∈ M means that M:,j ∈ R(AT), j = 1, 2, . . . , q and (Mi,:)
T ∈ R(B), i =

1, 2, . . . , p. In fact,M is well defined because 0 ∈ M and A†CB† ∈ M.

In the following theorem, with the idea of the RK method [14], we will prove that X(k)

generated by Algorithm 1 converges to the least F-norm solution of AXB = C.

Theorem 1. Assume 0 < α < 2
‖B‖2

2
. If matrix equation (1) is consistent, the sequence {X(k)}

generated by the ME-RBK method starting from the initial matrix X(0) ∈ Rp×q, in which X(0)
:,j ∈

R(AT), j = 1, 2, . . . , q and (X(0)
i,: )

T ∈ R(B), i = 1, 2, . . . , p, converges linearly to A†CB† in mean
square form. Moreover, the solution error in expectation for the iteration sequence X(k) obeys

E
[∥∥∥X(k) − A†CB†

∥∥∥2

F

]
≤ ρk

∥∥∥X(0) − A†CB†
∥∥∥2

F
, (8)

where ρ = 1− 2α−α2‖B‖2
2

‖A‖2
F

σ2
min(A)σ2

min(B), and i ∈ [m] picked with probability pi(A) =
‖Ai,:‖2

2
‖A‖2

F
.

Proof. For k = 0, 1, 2, . . ., by (6) and Ai,: A†CB†B = Ci,: (consistency), we have

X(k+1) − A†CB† = X(k) +
α

‖Ai,:‖2
2

AT
i,:(Ci,: − Ai,:X(k)B)BT − A†CB†

= (X(k) − A†CB†)− α

‖Ai,:‖2
2

AT
i,: Ai,:(X(k) − A†CB†)BBT ,

then

‖X(k+1) − A†CB†‖2
F =

∥∥∥X(k) − A†CB†
∥∥∥2

F
+

α2

‖Ai,:‖4
2
‖AT

i,: Ai,:(X(k) − A†CB†)BBT‖2
F

− 2α

‖Ai,:‖2
2
〈X(k) − A†CB†, AT

i,: Ai,:(X(k) − A†CB†)BBT〉F.

It follows from

α2

‖Ai,:‖4
2
‖AT

i,: Ai,:(X(k) − A†CB†)BBT‖2
F

=
α2

‖Ai,:‖4
2

trace(BBT(X(k) − A†CB†)T AT
i,: Ai,: AT

i,: Ai,:(X(k) − A†CB†)BBT)

=
α2

‖Ai,:‖2
2

trace(BBT(X(k) − A†CB†)T AT
i,: Ai,:(X(k) − A†CB†)BBT)

=
α2

‖Ai,:‖2
2
‖Ai,:(X(k) − A†CB†)BBT‖2

2 (by trace(uuT) = ‖u‖2
2 for any vector u)

≤
α2‖B‖2

2
‖Ai,:‖2

2
‖Ai,:(X(k) − A†CB†)B‖2

2 (by ‖uT BT‖2 = ‖Bu‖2 ≤ ‖B‖2‖u‖2),
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and

2α

‖Ai,:‖2
2
〈X(k) − A†CB†, AT

i,: Ai,:(X(k) − A†CB†)BBT〉F

=
2α

‖Ai,:‖2
2

trace(BT(X(k) − A†CB†)T AT
i,: Ai,:(X(k) − A†CB†)B)

=
2α

‖Ai,:‖2
2
‖Ai,:(X(k) − A†CB†)B‖2

2

that

‖X(k+1) − A†CB†‖2
F ≤

∥∥∥X(k) − A†CB†
∥∥∥2

F
−

2α− α2‖B‖2
2

‖Ai,:‖2
2
‖Ai,:(X(k) − A†CB†)B‖2

2.

By taking the conditional expectation, we have

Ek

[∥∥∥X(k+1) − A†CB†
∥∥∥2

F

]
≤
∥∥∥X(k) − A†CB†

∥∥∥2

F

−Ek

[
2α− α2‖B‖2

2
‖Ai,:‖2

2
‖Ai,:(X(k) − A†CB†)B‖2

2

]

=
∥∥∥X(k) − A†CB†

∥∥∥2

F
−

2α− α2‖B‖2
2

‖A‖2
F

‖A(X(k) − A†CB†)B‖2
F.

From X(0) ∈ M and A†CB† ∈ M, we have X(0) − A†CB† ∈ M. Noting AT
i,: = AT I:,i,

it is easy to show that X(k) − A†CB† ∈ M through induction. Then, from Lemma 1 and
0 < α < 2

‖B‖2
2
, we can obtain

Ek

[∥∥∥X(k+1) − A†CB†
∥∥∥2

F

]
≤
∥∥∥X(k) − A†CB†

∥∥∥2

F
−

2α− α2‖B‖2
2

‖A‖2
F

· σ2
min(A)σ2

min(B)
∥∥∥X(k) − A†CB†

∥∥∥2

F

=

(
1−

2α− α2‖B‖2
2

‖A‖2
F

σ2
min(A)σ2

min(B)

)∥∥∥X(k) − A†CB†
∥∥∥2

F
. (9)

Finally, from (9) and induction on the iteration index k, we obtain the estimate (8).

Remark 3. Using a similar approach to that used in the proof of Theorem 1, we can prove that the
iterate X(k) generated by ME-PRBK (5) satisfies the following estimate:

E
[∥∥∥X(k) − A†CB†

∥∥∥2

F

]
≤ ρ̂k

∥∥∥X(0) − A†CB†
∥∥∥2

F
,

where ρ̂ = 1− σ2
min(A)σ2

min(B)
‖A‖2

F‖B‖2
2

. The convergence factor of GRK in [18] is ρGRK = 1− σ2
min(A)σ2

min(B)
‖A‖2

F‖B‖2
F

.

It is obvious that

ρGRK > min
0<α< 2

‖B‖22

ρ = 1−
σ2

min(A)σ2
min(B)

‖A‖2
F‖B‖2

2
= ρ̂

and ρ < ρGRK when
1−
√

1− ‖B‖
2
2

‖B‖2F
‖B‖2

2
< α <

1+

√
1− ‖B‖

2
2

‖B‖2F
‖B‖2

2
. This means that the convergence factor of

ME-PRBK is the smallest and the factor of ME-RBK can be smaller than that of GRK when α is
properly selected.
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3. The Randomized Extended Block Kaczmarz Method for Inconsistent Equation

In [15,19,20], the authors proved that the Kaczmarz method does not converge to the
least-squares solution of AX = b when AX = b is inconsistent. Analogously, if the matrix
equation (1) is inconsistent, the above ME-PRBK method dose not converge to A†CB†. The
following theorem gives the error bound of the inconsistent matrix equation.

Theorem 2. Assume that the consistent equation AXB = C has a solution X∗ = A†CB†.
Let X̂(k) denote the kth iterate of the ME-PRBK method applied to the inconsistent equation
AXB = C + W for any W ∈ Rm×n starting from the initial matrix X(0) ∈ Rp×q, in which
X(0)

:,j ∈ R(AT), j = 1, 2, . . . , q and (X(0)
i,: )

T ∈ R(B), i = 1, 2, . . . , p. In exact arithmetic, it
follows that

E
[∥∥∥X̂(k) − A†CB†

∥∥∥2

F

]
≤ ρ̂k

∥∥∥X(0) − A†CB†
∥∥∥2

F
+

1− ρ̂k

1− ρ̂

‖WB†‖2
F

‖A‖2
F

, (10)

Proof. Set Hi = {X|AiXB = Ci}, Ĥi = {X|AiXB = Ci + Wi}. Let Y denote the iterate of
the PRBK method applied to the consistent equation AXB = C at the kth step, that is,

Y = X̂(k) +
AT

i,:

‖Ai,:‖2
2
(Ci,: − Ai,:X̂(k)B)B†.

It follows from

〈Y− A†CB†, X̂(k+1) − A†CB†〉F = 〈Y− A†CB†,
AT

i,:

‖Ai,:‖2
2

WiB†〉F

= trace

(
(B†)TWT

i
Ai,:

‖Ai,:‖2
2
(Y− A†CB†)

)

= trace

(
WT

i
Ai,:Y− Ai,: A†CB†

‖Ai,:‖2
2

(B†)T

)

= trace

(
WT

i
Ai,:Y− Ai,: A†CB†

‖Ai,:‖2
2

B(BT B)†

)
(by (B†)T = B(BT B)†)

= trace

(
WT

i
Ai,:YB− Ai,: A†CB†B

‖Ai,:‖2
2

(BT B)†

)
= 0

and

∥∥∥X̂(k+1) −Y
∥∥∥2

F
=

∥∥∥AT
i,:WiB†

∥∥∥2

F
‖Ai,:‖4

2
=

1
‖Ai,:‖4

2
trace

(
(B†)TWT

i Ai,: AT
i,:WiB†

)
=

∥∥WiB†
∥∥2

2
‖Ai,:‖2

2

that ∥∥∥X̂(k+1) − A†CB†
∥∥∥2

F
=
∥∥∥Y− A†CB†

∥∥∥2

F
+
∥∥∥X̂(k+1) −Y

∥∥∥2

F

=
∥∥∥Y− A†CB†

∥∥∥2

F
+

∥∥WiB†
∥∥2

2
‖Ai,:‖2

2
. (11)
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By taking the conditional expectation on both sides of (11), we can obtain

Ek

[∥∥∥X̂(k+1) − A†CB†
∥∥∥2

F

]
= Ek

[∥∥∥Y− A†CB†
∥∥∥2

F

]
+Ek

[∥∥WiB†
∥∥2

2
‖Ai,:‖2

2

]

≤ ρ̂
∥∥∥X̂(k) − A†CB†

∥∥∥2

F
+

∥∥WB†
∥∥2

F
‖A‖2

F

The inequality is obtained using Remark 3. Applying this recursive relation iteratively,
we have

E
[∥∥∥X̂(k+1) − A†CB†

∥∥∥2

F

]
≤ ρ̂E

[∥∥∥X̂(k) − A†CB†
∥∥∥2

F

]
+

∥∥WB†
∥∥2

F
‖A‖2

F

≤ ρ̂2E
[∥∥∥X̂(k−1) − A†CB†

∥∥∥2

F

]
+ (ρ̂ + 1)

∥∥WB†
∥∥2

F
‖A‖2

F

≤ · · ·

≤ ρ̂k+1
∥∥∥X̂(0) − A†CB†

∥∥∥2

F
+ (ρ̂k + · · ·+ ρ̂ + 1)

∥∥WB†
∥∥2

F
‖A‖2

F

= ρ̂k+1
∥∥∥X(0) − A†CB†

∥∥∥2

F
+

1− ρ̂k+1

1− ρ̂

‖WB†‖2
F

‖A‖2
F

.

This completes the proof.

Next, we use the idea of the randomized extended Kaczmarz method (see [20–22] for
details) to solve the least-squares solution of the inconsistent Equation (1). At each iteration,
Z(k) is the kth iterate of ME-RBK applied to ATZBT = 0 with the initial guess Z(0), and
X(k) is the one-step ME-RBK update for AXB = C − Z(k). We can obtain the following
randomized extended block Kaczmarz iteration:

Z(k+1) = Z(k) − α
‖A:,j‖2

2
A:,j(((AT

:,jZ
(k))BT)B),

X(k+1) = X(k) + α
‖Ai,:‖2

2
AT

i,:

(
(Ci,: − Z(k+1)

i,: − (Ai,:X(k))B)BT
)

,
(12)

where α > 0 is the step size, and i and j are selected with probability pi =
‖Ai,:‖2

2
‖A‖2

F
and

p̂j(A) =
‖A:,j‖2

2
‖A‖2

F
, respectively. The cost of each iteration of this method is 4n(q + m) + m +

1− 2n− q for updating Z(k) and (4q + 1)(n + p) + 1− 2q for updating X(k) if the square of
the row norm and the column norm of A have been calculated in advance. We describe
this method as Algorithm 2, which is called the ME-REBK algorithm.

Algorithm 2 Randomized Extended Block Kaczmarz Method for AXB = C (ME-REBK)

Input: A ∈ Rm×p, B ∈ Rq×n, C ∈ Rm×n, X(0) = 0 ∈ Rp×q, Z(0) = C
1: for k = 0, 1, 2, . . . , do

2: Pick j with probability p̂j(A) =
‖A:,j‖2

2
‖A‖2

F

3: Compute Z(k+1) = Z(k) − α
‖A:,j‖2

2
A:,j(((AT

:,jZ
(k))BT)B)

4: Pick i with probability pi(A) =
‖Ai,:‖2

2
‖A‖2

F

5: Compute X(k+1) = X(k) + α
‖Ai,:‖2

2
AT

i,:

(
(Ci,: − Z(k+1)

i,: − (Ai,:X(k))B)BT
)

6: end for
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Theorem 3. Assume 0 < α < 2
‖B‖2

2
. Let {Z(k)} denote the kth iteration of ME-RBK applied

to ATZBT = 0 starting from the initial matrix Z(0) ∈ Rm×n, in which Z(0)
:,j ∈ C:,j + R(A),

j = 1, 2, . . . , n and (Z(0)
i,: )T ∈ (Ci,:)

T + R(BT), i = 1, 2, . . . , m. Then, {Z(k)} converges linearly
to C − AA†CB†B in mean square form, and the solution error in expectation for the iteration
sequence X(k) obeys

E
[∥∥∥Z(k) − (C− AA†CB†B)

∥∥∥2

F

]
≤ ρk

∥∥∥Z(0) − (C− AA†CB†B)
∥∥∥2

F
, (13)

where the jth column of A is selected with probability p̂j(A) =
‖A:,j‖2

2
‖A‖2

F
.

Proof. In Theorem 1, replacing A with AT , B with BT and C with 0, we can prove Theorem 3
based on the result of Theorem 1. For the sake of conciseness, we omit the proof process.

Theorem 4. Assume 0 < α < 2
‖B‖2

2
. The sequence {X(k)} is generated using the ME-REBK method

for AXB = C , starting from the initial matrix X(0) ∈ Rp×n and Z(0) ∈ Rm×n, where X(0)
:,j ∈ R(AT),

j = 1, 2, . . . , q, (X(0)
i,: )

T ∈ R(B), i = 1, 2, . . . , p Z(0)
:,j ∈ C:,j + R(A), j = 1, 2, . . . , n and

(Z(0)
i,: )T ∈ (Ci,:)

T + R(BT), i = 1, 2, . . . , m. For any ε > 0, it holds that

E
[∥∥∥X(k) − A†CB†

∥∥∥2

F

]
≤ (1 + ε)k+1 − (1 + ε)

ε2
α2‖B‖2

2ρk

‖A‖2
F

∥∥∥Z(0) − (C− AA†CB†B)
∥∥∥2

F

+ (1 + ε)kρk
∥∥∥X(0) − A†CB†

∥∥∥2

F
, (14)

where i ∈ [m], j ∈ [p] are picked with probability pi(A) =
‖Ai,:‖2

2
‖A‖2

F
and p̂j(A) =

‖A:,j‖2
2

‖A‖2
F

, respectively.

Proof. Let X(k) denote the kth iteration of the ME-REBK method for AXB = C, and X̃(k+1)

be the one-step Kaczmarz update for the matrix equation AXB = AA†CB†B from X(k), i.e.,

X̃(k+1) = X(k) +
α

‖Ai,:‖2
2

AT
i,:(Ai,: A†CB†B− Ai,:X(k)B)BT .

We have

X̃(k+1) − A†CB† = X(k) − A†CB† − α

‖Ai,:‖2
2

AT
i,: Ai,:(X(k) − A†CB†)BBT

and
X(k+1) − X̃(k+1) =

α

‖Ai,:‖2
2

AT
i,:(Ci,: − Z(k+1)

i,: − Ai,: A†CB†B)BT .

For any ε > 0, via triangle inequality and Young’s inequality, we can obtain∥∥∥X(k+1) − A†CB†
∥∥∥2

F
=
∥∥∥(X(k+1) − X̃(k+1)) + (X̃(k+1) − A†CB†)

∥∥∥2

F

≤(
∥∥∥X(k+1) − X̃(k+1)

∥∥∥
F
+
∥∥∥X̃(k+1) − A†CB†

∥∥∥
F
)2

≤
∥∥∥X(k+1) − X̃(k+1)

∥∥∥2

F
+
∥∥∥X̃(k+1) − A†CB†

∥∥∥2

F

+ 2
∥∥∥X(k+1) − X̃(k+1)

∥∥∥
F

∥∥∥X̃(k+1) − A†CB†
∥∥∥

F

≤(1 + 1
ε
)
∥∥∥X(k+1) − X̃(k+1)

∥∥∥2

F
+ (1 + ε)

∥∥∥X̃(k+1) − A†CB†
∥∥∥2

F
. (15)



Mathematics 2023, 11, 4554 9 of 15

By taking the conditional expectation on the both sides of (15), we have

Ek

[∥∥∥X(k+1) − A†CB†
∥∥∥2

F

]
≤ (1 +

1
ε
)Ek

[∥∥∥X(k+1) − X̃(k+1)
∥∥∥2

F

]
+ (1 + ε)Ek

[∥∥∥X̃(k+1) − A†CB†
∥∥∥2

F

]
. (16)

It follows from

∥∥∥X(k+1) − X̃(k+1)
∥∥∥2

F
=

∥∥∥∥∥ α

‖Ai,:‖2
2

AT
i,:(Ci,: − Z(k+1)

i,: − Ai,: A†CB†B)BT

∥∥∥∥∥
2

F

=
α2

‖Ai,:‖2
2

trace
(

B(Ci,: − Z(k+1)
i,: − Ai,: A†CB†B)T(Ci,: − Z(k+1)

i,: − Ai,: A†CB†B)BT
)

≤
α2‖B‖2

2
‖Ai,:‖2

2

∥∥∥Ci,: − Z(k+1)
i,: − Ai,: A†CB†B

∥∥∥2

2

that

Ek

[∥∥∥X(k+1) − X̃(k+1)
∥∥∥2

F

]
≤ α2‖B‖2

2E
j
kE

i
k


∥∥∥Ci,: − Z(k+1)

i,: − Ai,: A†CB†B
∥∥∥2

2
‖Ai,:‖2

2


= α2‖B‖2

2E
j
k

[
1
‖A‖2

F

m

∑
i=1

∥∥∥Ci,: − Z(k+1)
i,: − Ai,: A†CB†B

∥∥∥2

2

]

=
α2‖B‖2

2
‖A‖2

F
Ek

[∥∥∥Z(k+1) − (C− AA†CB†B)
∥∥∥2

F

]
.

By Theorem 3, it yields

E
[∥∥∥X(k+1) − X̃(k+1)

∥∥∥2

F

]
≤

α2‖B‖2
2

‖A‖2
F
E
[∥∥∥Z(k+1) − (C− AA†CB†B)

∥∥∥2

F

]
≤

α2‖B‖2
2

‖A‖2
F

ρk+1
∥∥∥Z(0) − (C− AA†CB†B)

∥∥∥2

F
. (17)

From X(0) − A†CB† ∈ M, we have X(k) − A†CB† ∈ M. Then, by using Theorem 1,
we can obtain

Ek[‖X̃(k+1) − A†CB†‖2
F] = Ek

∥∥∥∥∥X(k) − A†CB† − α

‖Ai,:‖2
2

AT
i,: Ai,:(X(k) − A†CB†)BBT

∥∥∥∥∥
2

F


≤ ρ

∥∥∥X(k) − A†CB†
∥∥∥2

F
,

then

E
[∥∥∥X̃(k+1) − A†CB†

∥∥∥2

F

]
≤ ρE

[∥∥∥X(k) − A†CB†
∥∥∥2

F

]
. (18)
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Combining (16)–(18) yields

E
[∥∥∥X(k+1) − A†CB†

∥∥∥2

F

]
≤(1 + 1

ε
)E
[∥∥∥X(k+1) − X̃(k+1)

∥∥∥2

F

]
+ (1 + ε)E

[∥∥∥X̃(k+1) − A†CB†
∥∥∥2

F

]
≤(1 + 1

ε
)

α2‖B‖2
2ρk+1

‖A‖2
F

∥∥∥Z(0) − (C− AA†CB†B)
∥∥∥2

F

+ (1 + ε)ρE
[∥∥∥X(k) − A†CB†

∥∥∥2

F

]
≤(1 + 1

ε
)

α2‖B‖2
2ρk+1

‖A‖2
F

∥∥∥Z(0) − (C− AA†CB†B)
∥∥∥2

F
[1 + (1 + ε)]

+ (1 + ε)2ρ2E
[∥∥∥X(k−1) − A†CB†

∥∥∥2

F

]
≤ · · ·

≤(1 + 1
ε
)

α2‖B‖2
2ρk+1

‖A‖2
F

∥∥∥Z(0) − (C− AA†CB†B)
∥∥∥2

F

k

∑
i=0

(1 + ε)i

+ (1 + ε)k+1ρk+1
∥∥∥X(0) − A†CB†

∥∥∥2

F

=
(1 + ε)k+2 − (1 + ε)

ε2
α2‖B‖2

2ρk+1

‖A‖2
F

∥∥∥Z(0) − (C− AA†CB†B)
∥∥∥2

F

+ (1 + ε)k+1ρk+1
∥∥∥X(0) − A†CB†

∥∥∥2

F
.

This completes the proof.

Remark 4. Replacing BT in (12) with B†, we obtain the following projection-based randomized
extended block Kaczmarz mathod (ME-PREBK) iteration:

Z(k+1) = Z(k) − α
‖A:,j‖2

2
A:,j(((AT

:,jZ
(k))BT)(B†)T),

X(k+1) = X(k) + α
‖Ai,:‖2

2
AT

i,:

(
(Ci,: − Z(k+1)

i,: − (Ai,:X(k))B)B†
)

,
(19)

4. Numerical Experiments

In this section, we will present some experimental results of the proposed algorithms
for solving various matrix equations, and compare them with ME-RGRK and ME-MWRK
in [13] for consistent matrix equations and RBCD in [12] for inconsistent matrix equations.
All experiments were carried out using MATLAB (version R2020a) on a DESKTOP-8CBRR86
with Intel(R) Core(TM) i7-4712MQ CPU @2.30GHz 2.29GHz, RAM 8GB and Windows 10.

All computations start from the initial guess X(0) = 0, and are terminated once the
relative error (RE) of the solution, defined by

RE =
‖X(k) − X∗‖2

F
‖X∗‖2

F

at the current iteration X(k), satisfies RE < 10−6 or exceeds the maximum iteration
K = 50,000, where X∗ = A†CB†. We report the average number of iterations (denoted
as “IT”) and the average computing time in seconds (denoted as“CPU”) for 20 repeated
trial runs of the corresponding method. Three examples are tested, and A and B are
generated as follows.
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• Type I: For given m, p, q, n, the entries of A and B are generated from a standard
normal distribution, i.e., A = randn(m, p), B = randn(q, n).

• Type II: Like [18], for given m, p, and r1 = rank(A), we construct a matrix A by
A = U1D1VT

1 , where U1 ∈ Rm×r1 and V1 ∈ Rp×r1 are orthogonal column matrices,
D ∈ Rr1×r1 is a diagonal matrix whose first r − 2 diagonal entries are uniformly
distributed numbers in [σmin(A), σmax(A)], and the last two diagonal entries are
σmax(A), σmin(A). The entries of B are generated using a similar method with parame-
ters q, n, r2 = rank(B).

• Type III: The real-world sparse data come from the Florida sparse matrix collection [23].
Table 2 lists the features of these sparse matrices.

Table 2. The detailed features of sparse matrices from [23].

Name Size Rank Sparsity

ash219 219× 85 85 2.3529%

ash958 958× 292 292 0.68493%

divorce 50× 9 9 50%

4.1. Consistent Matrix Equation

Given A, B, we set C = AX∗B with X∗ = randn(p, q) to construct a consistent matrix
equation. First, we test the impact of α in the ME-RBK method on the experimental results.
Figure 1 plots the IT and CPU versus different “para” with different matrices in Table 3,
where para = 0.1:0.1:1.9 so that α = para

‖B‖2
2

satisfies 0 < α < 2
‖B‖2

2
in Theorem 1. From

Figure 1, it can be seen that the number of iteration steps and the running time decrease
with the increase in parameters. However, when para = 1.9, both IT and CPU begin to
increase. The same situations occur when solving consistent or inconsistent equations with
different matrices in Tables 4 and 5. Therefore, we set α = 1.8

‖B‖2
2

in all experiments.
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Figure 1. IT (left) and CPU (right) of different para of ME-RBK for consistent matrix equations with
differnt matrices in Table 3.

In Tables 3–5, we report the average IT and CPU of the ME-RGRK, ME-MWRK, ME-
RBK and ME-PRBK methods for solving consistent eqautions. In the following tables,
the item “>” represents that the number of iteration steps exceeds the maximum iteration
(50,000), and the item “-” represents that the method does not converge.

From these tables, we can see that the ME-RBK and ME-PRBK methods vastly outper-
form the ME-RGRK and ME-MWRK methods in terms of both IT and CPU times regardless
of whether the matrices A and B are full column/row rank or not. As the matrix dimension
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increases, the CPU time of the ME-RBK and ME-PRBK methods increases slowly, while the
running time of ME-RGRK and ME-MWRK increases dramatically.

In addition, when the matrix size is small, the ME-PRBK method is competitive, be-
cause the pseudoinverse is less expensive and the number of iteration steps is small. When
the matrix size is large, the matrix is large, and the ME-RBK method is more challenging
because it does not need to calculate the pseudoinverse (see the last line in Table 3).

Table 3. IT and CPU of ME-RGRK, ME-MWRK, ME-RBK and ME-PRBK for the consistent matrix
equations with Type I.

No. m p q n ME-
RGRK

ME-
MWRK

ME-
RBK

ME-
PRBK

1 100 40 40 100 IT 49,707 27,579 7834.5 1152.8
CPU 0.78 2.01 0.20 0.04

2 40 100 100 40 IT > 49,332.7 6334.7 1507.2
CPU > 2.15 0.33 0.08

3 500 100 100 500 IT > 32,109 4021.8 1866.1
CPU > 57.61 0.52 0.19

4 1000 200 300 2000 IT > > 6429.6 4450.4
CPU > > 3.95 0.72

Table 4. IT and CPU of ME-RGRK, ME-MWRK, ME-RBK and ME-PRBK for the consistent matrix
equations with Type II.

m p r1 [σmin(A), σmax(A)] q n r2 [σmin(B), σmax(B)] ME-RGRK ME-MWRK ME-
RBK

ME-
PRBK

100 40 20 [1, 2] 40 100 40 [1, 2] IT 4361.0 1987.1 503.1 332.4
CPU 0.06 0.17 0.01 0.008

100 40 20 [1, 5] 40 100 20 [1, 5] IT 22,423.2 6439.8 9307.6 1056.3
CPU 0.33 0.57 0.20 0.02

1000 200 100 [1, 2] 100 1000 50 [1, 2] IT 20,055.5 7047.8 2587.4 1674.3
CPU 78.45 70.56 0.42 0.23

1000 100 50 [1, 5] 200 1000 200 [1, 5] IT > > 18,898.3 2833.6
CPU > > 3.61 0.42

Table 5. IT and CPU of ME-RGRK, ME-MWRK, ME-RBK and ME-PRBK for the consistent matrix
equations with Type III.

A B ME-RGRK ME-MWRK ME-RBK ME-PRBK

divorce ash219T IT 43,927.8 14,164.4 10,993.4 3873.5
CPU 1.15 1.35 0.36 0.13

divorce ash219 IT 40,198.7 17,251.4 11,557.4 3124.7
CPU 0.63 0.80 0.43 0.11

ash219 ash958T IT > > 6042.3 2267.0
CPU > > 1.04 0.36

ash219 ash958 IT > > 5745.4 2114.2
CPU > > 1.22 0.42

4.2. Inconsistent Matrix Equation

To construct an inconsistent matrix equation, we set C = AX∗B + R, where X∗ and
R are random matrices which are generated by X∗ = randn(p, q) and R = δ ∗ randn(p, q),
δ ∈ (0, 1). Numerical results of the RBCD, IME-REBK and IME-PREBK methods are listed
in Tables 6–8. From these tables, we can see that the IME-PREBK method is better than the
RBCD method in terms of IT and CPU time, especially when the σmax

σmin
is large (see the last

line in Table 7). The IME-REBK method is not competitive for B with full row rank because
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it needs to solve two equations. However, when B does not have full row rank, the RBCD
method does not converge, while the IME-REBK and IME-PREBK methods do.

Table 6. IT and CPU of RBCD, IME-REBK and IME-PREBK for the inconsistent matrix equations
with Type I.

m p q n RBCD IME-
REBK

IME-
PREBK

100 40 40 100 IT 17,212.2 21,270.5 2469.4
CPU 0.69 1.57 0.19

40 100 100 40 IT - 24,708.3 2174.6
CPU - 2.38 0.21

500 100 100 500 IT 6059.1 7352.8 2512.3
CPU 4.97 7.28 2.70

1000 200 300 2000 IT 14,209.2 12,490.4 5183.5
CPU 152.32 246.56 99.68

Table 7. IT and CPU of RBCD, IME-REBK and IME-PREBK for the inconsistent matrix equations
with Type II.

m p r1 [σmin(A), σmax(A)] q n r2 [σmin(B), σmax(B)] RBCD IME-REBK IME-PREBK

100 40 20 [1, 2] 40 100 40 [1, 2] IT 1035.9 762.2 384.5
CPU 0.04 0.05 0.03

100 40 20 [1, 5] 40 100 20 [1, 5] IT - 16,224.7 1507.8
CPU - 1.23 0.12

1000 200 100 [1, 2] 100 1000 50 [1, 2] IT - 4067.5 2217.8
CPU - 24.23 13.67

1000 200 100 [1, 5] 100 1000 100 [1, 5] IT > 48,269.6 4328.0
CPU > 365.78 30.25

Table 8. IT and CPU of RBCD, IME-REBK and IME-PREBK for the inconsistent matrix equations
with Type III.

A B RBCD IME-REBK IME-PREBK

divorce ash219T IT > 20,026.3 4308.4
CPU > 2.26 0.48

divorce ash219 IT - 19,199.1 4026.2
CPU - 1.49 0.31

ash219 ash958T IT 22,313.4 10,823.5 2561.8
CPU 15.69 19.03 5.89

ash219 ash958 IT - 10,020.7 2363.5
CPU - 15.83 4.72

5. Conclusions

In this paper, we have proposed a randomized block Kaczmarz algorithm for solving
the consistent matrix equation and its extended version for the inconsistent case. Theo-
retically, we have proved that the proposed algorithms converge linearly to the unique
minimal F-norm solution or least-squares solution (i.e., A†CB†) without requirements on A
and B having full column/row rank. The numerical results show the effectiveness of the
algorithms. Since the proposed algorithms only require one row or one column of A at each
iteration without a matrix–matrix product, they are suitable for the scenarios where the
matrix A is too large to fit in the memory or matrix multiplication is considerably expensive.
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