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Abstract: A fresh censored δ shock model is investigated. The arrival of random shocks follows a
generalized Pólya process, and the failure mechanism of the system occurs based on the censored
δ shock model. The generalized Pólya process is used for modeling because the generalized Pólya
process has excellent properties, including the homogeneous Poisson process, the non-homogeneous
Poisson process, and the Pólya process. Thus far, the lifetime properties of the censored δ shock
model under the generalized Pólya process have not been studied. Therefore, for the established
generalized Pólya censored δ shock model, the corresponding reliability function, the upper bound of
the reliability function, the mean lifetime, the failure rate, and the class of life distribution are obtained.
In addition, a replacement strategy N, based on the number of failures of the system, is considered
using a geometric process. We determined the optimal replacement policy N∗ by objective function
minimization. Finally, a numerical example is presented to verify the rationality of the model.

Keywords: reliability indices; generalized Pólya process; censored δ shock model; failure rate; optimal
replacement policy

MSC: 60K10

1. Introduction

Shock models are widely used in practical life and have significant implications in
the study of engineering reliability. For example, earthquakes, sudden epidemics, etc.,
can be considered external shocks. Esary et al. [1] pioneered classical shock models, in
which the lifetime distributions of systems suffering from shocks were derived and some
lifetime distribution properties were investigated. Shortly afterward, two conventional
shock models, the cumulative shock model [2] and the extreme shock model [3] were put
forward. Subsequently, Mallor et al. [4] extended the models of [3] by proposing a relaxed
run shock model. The shock effects produced by the three shock models described above
all depend on the shock magnitude. These three shock models have also been intensively
studied in the last three decades. For example, Shanthikumar et al. [5] investigated further
general shock models by assuming that the pairs of shock interval and shock magnitude
follow a correlated renewal process. More extensions can be seen in [6–8].

In addition, two special shock models have also been put forward successively, i.e.,
the δ shock model and the censored δ shock model. The failure mechanism in both
models depends on the inter-arrival time between successive shocks and not on the shock
magnitude produced by the shocks. The δ shock model is based on the traffic problems
proposed by Li et al. [9]. For the δ shock model, Wang et al. [10] considered a mixed
shock model, in which the system fails when the magnitude of a shock surpasses a defined
level γ or the time inter-arrival between consecutive shocks is no greater than the limit δ,
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whichever occurs first. Eryilmaz [11] studied a generalized δ shock model by considering
the run shock model and δ shock model simultaneously. Bian et al. [12] studied reliability
analysis for systems subject to mutually dependent competing failure processes under the
δ shock model. Additional relevant research works focusing on the systems subjected to
the shock model can be found in [13–16].

Later, the δ shock model was extended, and the censored δ shock model proposed
by Ma et al. [17] was based on the customer lifetime value. The censored δ shock model
has crucial practical implications in customer relationship management (CRM). In [17],
the lifetime of customers was characterized utilizing the censored δ shock model; the
customer’s lifetime was defined as the sum of all previous trade times and δ, and the
probabilistic properties of the lifetime were also derived. Based on the above background,
the failure mechanism of the censored δ shock model can be defined, i.e., the system fails
when the time interval between two successive shocks does not reach the given threshold
value δ. Next, a model comparison between the δ shock model and the censored δ shock
model is given in Table 1, which contains the parameters of both models, the failure mech-
anism, and the lifetime of the system. The censored δ shock model can also be applied
to medical treatment, insurance, and other aspects. There are relatively few studies on
the censored δ shock model. In the past decade, Eryilmaz et al. [18] investigated the
lifetime distribution of the censored δ shock model assuming that the external shocks
arrive according to a renewal process. Bai et al. [19] studied the parameter estimations of
the censored δ shock model in uniform intervals. Bian et al. [20,21] considered the lifetime
distribution of two types of discrete censored δ shock models under the Markov shock
arrival process. Ma et al. [22] exhibited a different way to find a system’s reliability with
the Poisson censored δ shock model by directly calculating probabilities. Lately, Chad-
jiconstantinidis et al. [23] considered the survival function of a system subjected to the
censored δ shock model, in which the inter-arrival times have well-known discrete and
continuous distributions. There is no other literature except the above, so the censored δ
shock model is a hot topic worth studying.

Table 1. Model comparison between δ shock model and censored δ shock model.

Model Parameter Failure Mechanism System Lifetime

δ shock model δ X1 ≥ δ, · · · , Xn−1 ≥ δ, Xn < δ T =
n
∑

i=1
Xi

censored δ shock model δ X1 ≤ δ, · · · , Xn−1 ≤ δ, Xn > δ T =
n
∑

i=1
Xi + δ

In the existing methods of reliability modeling, under a random shock environ-
ment, the arrival of random shocks is mostly characterized by homogeneous Poisson
processes [24] (HPP) and the non-homogeneous Poisson processes [24] (NHPP). It is
well-known that the HPP is a typical renewal process where the inter-arrival time of
the random shocks follows an exponential distribution, while the NHPP is a stochastic
process with a non-constant hazard rate. Although most studies assume that the shock
arrival process follows HPP and NHPP only for the sake of mathematical formulation sim-
plicity and mathematical tractability, this is extremely restrictive due to their independent
increments. At the same time, this assumption can lead to significant errors in assessing
the impact of shocks on the system. Therefore, to avoid this error, Teugels et al. [25]
studied the occurrence of external shocks according to a Pólya process. The Pólya process
is introduced as a mixed Poisson process in [26]; it has a general dependence increment. It
is characterized by a negative binomial distribution of shock arrivals. Moreover, another
essential important property is that the shock arrival times are mutually dependent.
Based on these advantages, the Pólya process is increasingly used to model the point
process of real life. Eryilmaz [27] considered the modeling of a shock model using the
Pólya process and investigated the system’s reliability. To the authors’ knowledge, there
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is not enough research on shock model modeling using the Pólya process. This is mainly
because the Pólya process is considered mutually dependent on the inter-arrival time
between the successive shock arrival times.

Later on, Konno [28] further extended the Pólya process and proposed the general-
ized Pólya process (GPP) within the framework of a non-stationary-type master equation
approach. The GPP can be viewed as a further generalization of the NHPP, which pos-
sesses neither the independent increments nor the stationary increment property. Only
the marginal distribution of the number of events in (0, t] was obtained in Konno [28]
based on a differential equation. The GPP processes the Markovian property. The GPP
is a different and more general counting process, and the HPP, the NHPP, and the Pólya
process can be regarded as special situations of the GPP. Although the GPP has neither
independent increments nor stationary increments, it has pleasant properties and can be
used in various applications to obtain closed-form results. In addition, one of the most
valuable contributions to the field of reliability is that the GPP allows the definition of a new
type of maintenance and a different type of failure process. It has been a great inspiration
for the development of various different maintenance modeling techniques. Moreover, the
GPP can simulate shocks triggered by a correlated system failure. The current literature
on shock models with GPP is as follows. Cha [29] expounded the GPP at great length by
deriving a variety of properties that can be used in numerous applications. Cha et al. [30]
derived and analyzed the corresponding survival and failure rate functions of the extreme
shock model under the GPP. Goyal et al. [31] studied the survival function and correlation
properties of a history-dependent mixed shock model under the GPP. Goyal et al. [32]
investigated the correlation properties of the time-dependent δ shock model under the GPP
and studied the optimal replacement strategy of the established model and the associated
random properties. Goyal et al. [33] studied a general δ shock model when the recovery
time depends on both the arrival times and the magnitudes of shocks. In view of the above
discussion, the extension of the existing literature results to the GPP characterization shock
model is of great significance for practical application.

Currently, in the literature, we can conclude that all the published research on the
censored δ shock model has been carried out under the assumption of the HPP and the
NHPP. However, this assumption is overly restrictive and unrealistic to describe various
real-life scenarios. Therefore, we aim to study some lifetime distribution properties of the
censored δ shock model based on the generalized Pólya shock process, which is highly rare
among existing research. Thus, the present paper aims to consider the extension of the
shock arrival process from the renewal process to the GPP. This assumption is efficient and
mathematically tractable for modeling point processes with correlated increments. Thus, it
is necessary to consider the lifetime properties of the censored δ shock model system under
the generalized Pólya shock process. Finally, an optimal replacement policy N under the
generalized Pólya censored δ shock process is developed.

The rest of the paper is organized as follows. In Section 2, the definition of the
censored δ shock model and the generalized Pólya process are introduced. There are
some preliminaries, followed by a description of the model. In Section 3, the closed-form
reliability function of the system and its corresponding properties under the generalized
Pólya censored δ shock model are derived. In Section 4, under the generalized Pólya
shock process, a replacement policy N based on the failure number of the system using
geometric processes is developed. In Section 5, numerical examples are presented to
validate the rationality and effectiveness of the proposed model. Some conclusions are
given in Section 6.

2. Preliminaries and Model Description
Model Description

Consider a system operating in a stochastic environment. The system is subjected
to external shocks, and the failure mechanism of external shocks occurs according to
the censored δ shock model. In this section, some basic assumptions are given, and the
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definition of the generalized Pólya process, the generalized Pólya censored δ shock model,
the failure rate, the increasing (decreasing) mean failure rate type, and some degradation
models for the generalized Pólya process are given.

Let T denote the lifetime of a system that has started operation at t = 0. The arrival of
external shocks follows a generalized Pólya process {N(t), t > 0} with a set of parameters
{λ(t), α, β}, α ≥ 0, β > 0. Let 0 = T0 < T1 < T2 < · · · be a sequence of the arrival times
and Xm = Tm − Tm−1, m = 1, 2, · · · represent the inter-arrival time between the mth and
the (m− 1)th shocks. Let X0 = 0; the system fails if no shock occurs within a δ length
time period from the last shock, where δ is the system failure threshold. The lifetime of the

system is defined as T =
M
∑

i=0
Xi + δ, where M represents the number of shocks until the

system fails. Based on the above assumptions, the definition of the censored δ shock model
is given, i.e., the system fails when the inter-arrival time between two consecutive shocks
is more than the time interval threshold δ. Figure 1 shows the trajectory diagram for the
censored δ shock model. A system survives in [0, t) if all shocks’ inter-arrival times are less
than δ.

Figure 1. Trajectory diagram for censored δ shock model.

In the following, some definitions of the corresponding models are given.

Definition 1 ([30,31]). A counting process {N(t), t ≥ 0} with stochastic intensity λt is said to
be a generalized Pólya process (GPP) with a set of parameters {λ(t), α, β}, α ≥ 0, β > 0, if

(a) N(0) = 0;
(b) λt = (αN(t−) + β)λ(t).

Remark 1 ([31]). The following observations can be made:

(a) The GPP with the set of parameters {λ(t), α, β}, where λ(t) = λ(> 0), α→ 0 and β = 1,
is an HPP with intensity λ.

(b) The GPP with the set of parameters {λ(t), α, β}, where α→ 0 and β = 1, is an NHPP with
intensity λ(t).

(c) The GPP with the set of parameters {λ(t), α, β}, where λ(t) = 1/(b + t), b > 0 and α = 1,
is a Pólya process with a set of parameters {β, b}.

Definition 2. Let a sequence of random variables X = {Xn, n = 1, 2, · · · } be a generalized Pólya
process with stochastic intensity λt, denoted by GPP(λ(t), α, β). For a constant δ > 0, define the
total number of shocks before the failure of the system as

M = inf{n|Xn+1 > δ, n = 0, 1, 2, · · · }, (1)

and the lifetime of the system as

T =
M

∑
i=0

Xi + δ, (2)

where X0 = δ and infA := minA if A 6= ∅; otherwise, infA := ∞ if A = ∅. The model defined
by Equations (1) and (2) is called a generalized Pólya censored δ shock model with the shock rate
λ(t) and failure threshold δ, denoted by SM{GPP[(λ(t), α, β)], CD(δ)}.
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Definition 3 ([34]). Let the distribution and the density function of system lifetime T be F(t) and
f (t), respectively. Then, the failure rate is

r(t) =
f (t)
F̄(t)

, t ∈ {t : F(t) < 1}. (3)

Definition 4 ([34]). If − 1
t lnR(t) is an increasing (decreasing) function of t ≥ 0, then it belongs

to the increasing (decreasing) mean failure rate type.

According to the above assumptions and definitions, under the generalized Pólya
shock process, the relevant reliability indices for the built model are studied in Section 3.

3. Reliability of a System with a Generalized Pólya Censored δ Shock Model

The reliability function R(t) of the system lifetime is one of the major reliability indices
in the study of the system. Therefore, in this section, the reliability of the system subjected to
the generalized Pólya process censored δ shock model is analyzed. Based on the established
model, we will firstly obtain some reliability indices of the system, such as the system
reliability, and the mean lifetime of the system. Then, the failure rate of the system, the
upper bound of reliability of the system, and distribution properties are also derived. Before
giving the main results above, the definition of the reliability of the system is given as

R(t) = P(T > t) =
∞

∑
m=0

P(T > t|N(t) = m)P(N(t) = m), (4)

which is very important for assessing the reliability of the lifetime of a system.
To obtain the reliability function for the system under SM{[GPP(λ(t), α, β)], CD(δ)},

the following lemma is needed.

Lemma 1 ([24]). Let {N(t), t ≥ 0} be a GPP with the set of parameters {λ(t), α, β}, α ≥ 0, and
β > 0. The following results hold.

(1) The distribution of N(t) is given by

P(N(t) = m) =
Γ( β

α + m)

Γ( β
α )m!

(1− exp{−αΛ(t)})m(exp{−αΛ(t)})
β
α , (5)

where m = 0, 1, 2, · · · ; Λ(t) ≡
∫ t

0 λ(u)du.
(2) The conditional joint probability density function of T1, T2, · · · , TN(t) in (0, t], given that

N(t) = m, is

f (T1, · · · , Tm)(τ1, · · · , τm|N(t) = m) = m!
m

∏
i=1

(
αλ(τi)exp{αΛ(τi)}

exp{αΛ(t)} − 1
), (6)

where 0 < τ1 < · · · < τm ≤ t.

In the following theorem, the survival function of a system for the generalized Pólya
censored δ shock model is obtained.

Theorem 1. The reliability of SM{[GPP(λ(t), α, β)], CD(δ)} is

R(t) =

exp{−βΛ(t)}(1 +
∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

1
(exp{αΛ(t)})m · fm,δ(t)), t > δ;

1, t ≤ δ;

(7)
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where

fm,δ(t) =
∫ t

0∨(t−δ)

∫ τm

0∨(τm−δ)
· · ·

∫ τ2

0∨(τ2−δ)

m

∏
i=1

αλ(τi)exp{αΛ(τi)}I{0≤τ1<δ}dτ1 · · ·dτm−1dτm.

The following two special situations of the system’s lifetime should also be of concern.
According to the characteristics of the survival function curve in [17], the distribution

of lifetime T = δ can be calculated as

P(T = δ) = 1− lim
t→δ+

R(t)

= 1− exp{−βΛ(δ)}
[

1−
∞

∑
m=1

Γ( β
α ) + m

Γ( β
α )m!

(1− 1
exp{αΛ(δ)} )

m+1 1
exp{αΛ(δ)}

]
;

and the distribution of lifetime T > δ can be derived as

P(T > δ) = 1− P(T ≤ δ)

= exp{−βΛ(δ)}
[

1−
∞

∑
m=1

Γ( β
α ) + m

Γ( β
α )m!

(1− 1
exp{αΛ(δ)} )

m+1 1
exp{αΛ(δ)}

]
.

It is worth noting that these two special cases include the results of the non-homogeneous
Poisson censored δ shock model (SM{[NHPP(λ(t), 1)], CD(δ)}) and Poisson censored δ
shock model SM{[HPP(λ)], CD(δ)}, which are given in [17]. That is, when λt = λ(t) and
λt = λ, respectively, the above two results degenerate to

P(T = δ) = exp{−Λ(δ)};

P(T > δ) = P(X < δ) = 1− exp{−Λ(δ)};

where X is an exponential random variable with the parameter λt = λ(t) and

P(T = δ) = exp{−λδ};

P(T > δ) = P(X < δ) = 1− exp{−λδ};

where X is an exponential random variable with the parameter λt = λ.
Moreover, the following corollary follows from Theorem 1 using Remark 1(b).

Corollary 1. The reliability of SM{[NHPP(λ(t), 1)], CD(δ)} is

R(t) =

exp{−Λ(t)}
∞

∑
m=1

fm,δ(t), t > δ;

1, t ≤ δ;

where fm,δ(t) =
∫ t

0∨(t−δ)

∫ τm
0∨(τm−δ) · · ·

∫ τ2
0∨(τ2−δ)

m
∏
i=1

λ(τi)I{0≤τ1<δ}dτ1 · · ·dτm−1dτm.

Corollary 2 follows from Theorem 1 using Remark 1(c).

Corollary 2. The reliability of SM{[HPP(λ)], CD(δ)} is

R(t) =


1
λ exp{−λt}

∞

∑
m=1

fm,δ(t) = exp{−λt}
[t/δ]

∑
m=1

(−1)i

i!
Λi−1

i expΛi (Λi + i), t > δ;

1, t ≤ δ;
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where Λi = λ(t − iδ), fm,δ(t) =
∫ t

0∨(t−δ)

∫ τm
0∨(τm−δ) · · ·

∫ τ2
0∨(τ2−δ)

m
∏
i=1

λI{0≤τ1<δ}dτ1 · · ·

dτm−1dτm.

From the second equation of Equation (A4), one has

fm,δ(t) <
(exp{αΛ(t)} − 1)m

m!
. (8)

Let um(t) =
(exp{αΛ(t)}−1)m

m! because of exp{αΛ(t)} − 1 < ∞. Thus,

lim
m→∞

um+1(t)
um(t)

= lim
m→∞

(exp{αΛ(t)}−1)m+1

(m+1)!
(exp{αΛ(t)}−1)m

m

= lim
m→∞

(exp{αΛ(t)} − 1)
m + 1

= 0. (9)

That is,
∞
∑

m=1

(exp{αΛ(t)}−1)m

m! converges. Thus,
∞
∑

m=1
fm,δ(t) converges.

In Theorem 1, the calculation of the function fm,δ(t) is very complicated, so the accurate
reliability of SM{[GPP(λ(t), α, β)], CD(δ)} is not easy to obtain. However, sometimes, only
the upper bound of the reliability is needed in practice.

Next, the upper bound of reliability is given by Theorem 2.

Theorem 2. When 0 < t < δ, λ(t) < 1
δ , then the upper bound of reliability of SM{[GPP(λ(t), α, β)],

CD(δ)} is

R(t) ≤ (exp{−αΛ(t)})
β
α

∞

∑
m=b t

δ c

(exp{αΛ(δ)} − 1)m

(exp{αΛ(t)})m ·
m

∏
j=1

(
β

α
+ j), (10)

where b t
δ c represents the largest positive integer not greater than t

δ .

In the study of shock models, there is another very important quantity to be studied,
which is the number of shocks before the system fails, i.e., M. Due to the generality of the
intensity function in GPP and the interdependence of the arrival times of shocks, it is quite
difficult to obtain explicit expression for the distribution of M. Therefore, for convenience,
we assume that the shock arrival process arrives according to SM{[GPP(λ(t) = 1/(b + αt),
α, β)], CD(δ)}. Under this assumption, the probability mass function, the survival function,
and the mean of M are obtained by Proposition 1.

Proposition 1. The following results hold.

(a) The probability mass function of M is given by

P(M = m) =
m−1

∑
i=0

(−1)i( i
m−1)(

1

1 + b(i+1)δ
α

)
β
α .

Proof. Note that
P(M = m) = P(X1 ≤ δ, X2 ≤ δ, · · · , Xm−1 ≤ δ, Xm > δ)

=
∫ ∞

0
P(X1 ≤ δ, X2 ≤ δ, · · · , Xm−1 ≤ δ, Xm > δ|Λ = λ)dH(λ),

where Λ is a structure random variable with the probability density given by

dH(λ) =
( b

α )
β
α

Γ( β
α )

λ
β
α−1exp{−( b

α
)λ}dλ.
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Furthermore, by conditioning on Λ = λ, the GPP reduces to the HPP with the rate λ.
Thus, the conditional probability density function of (X1, · · · , Xm|Λ) is

f(X1,··· ,Xm |Λ)((x1, · · · , xm|λ)) =
m

∏
i=1

λexp{−λxi}, 0 < x1, · · · , xm < ∞.

P(X1 ≤ δ, X2 ≤ δ, · · · , Xm−1 ≤ δ, Xm > δ|Λ = λ) = exp{−λδ}[1− exp{(−λδ)}]m−1.

Thus,

P(M = m) =
∫ ∞

0
exp{−λδ}[1− exp{(−λδ)}]m−1 ·

( b
α )

β
α

Γ( β
α )

λ
β
α−1exp{−( b

α
)λ}dλ

=
m−1

∑
i=0

(−1)i( i
m−1)(

1

1 + b(i+1)δ
α

)
β
α .

where the last equality follows from the fact that the binomial expansion and∫ ∞

0
xk−1exp{−cx}dx =

Γ(k)
ck .

(b) The survival function of M is given by

P(M > m) = 1−
m

∑
j=1

j−1

∑
i=0

(−1)i( i
j−1)(

1

1 + b(i+1)δ
α

)
β
α .

(c) The mean of M is given by

EM =
∞

∑
m=0

m(1−
m

∑
j=1

j−1

∑
i=0

(−1)i( i
j−1)(

1

1 + b(i+1)δ
α

)
β
α ).

Next, the remaining reliability indices of the system under the generalized Pólya
process are addressed.

Firstly, the mean lifetime of the system with SM{[GPP(λ(t), α, β)], CD(δ)} is consid-
ered. Let ET be the mean lifetime of the system. Based on ET =

∫ ∞
0 R(t)dt and Equation (7),

the mean lifetime of the system is given by the following theorem.

Theorem 3. The mean lifetime of SM{[GPP(λ(t), α, β)], CD(δ)} is

ET =
∫ ∞

0
exp{−βΛ(t)}(1 +

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

1
(exp{αΛ(t)})m · fm,δ(t))dt. (11)

Corollary 3. The mean lifetime of SM{[NHPP(λ(t), 1)], CD(δ)} is

ET =
∫ ∞

0
exp{−Λ(t)}

∞

∑
m=1

fm,δ(t)dt.

Corollary 4. The mean lifetime of SM{HPP(λ), CD(δ)} is

ET =
1
λ
(eλδ − 1).

Secondly, when studying a system, one often wants to know how likely it is that the
system will fail at some point. Therefore, according to Definition 3 and the established
model, the failure rate of the system is studied as follows.
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Theorem 4. The failure rate of the system lifetime is

r(t) =
∞

∑
m=1

[(mα + β)λ(t)−
f
′
m,δ(t)

fm,δ(t)
]. (12)

The failure rate of the system is derived by Theorem 4. Now, the lifetime distribution
type of the system is investigated.

Theorem 5. Let FT(t) be the distribution function of system lifetime; then,

FT(t) =

{
{IFRA}, w(t) > 0,
{DFRA}, w(t) < 0,

(13)

where w(t) = −βΛ(t) + ln
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m + tr(t).

It should be emphasized that the detailed proofs of Theorem 1, Theorem 2, Theorem 4,
and Theorem 5 are shown in Appendix A, Appendix B, Appendix C, and Appendix D.

4. Optimal Replacement Policy under SM{[GPP(λ(t), α, β)], CD(δ)}
In many practical problems, a repaired system is more likely to fail again than the

original one. For the censored δ shock model, the shock interval for the system to fail again
should be smaller than the threshold δ value of the original system when the repaired
system is subjected to continuous shocks. Therefore, in this section, based on the number of
failures of the system, a replacement strategy N of the generalized Pólya censored δ shock
model is considered. The problem is to choose the optimal replacement policy N∗ such that
the long-run excepted cost per unit time is minimized.

The following assumptions are made for the repairable system under
SM{[GPP(λ(t), α, β)], CD(δ)}:

(1) A new system is installed at time t = 0. The system is repaired immediately upon its
failure. The system is immediately replaced with a new system when the system is
observed to fail for the Nth time.

(2) The system suffers from external shocks. The arrival of the external shocks follows a
generalized Pólya process {N(t), t > 0} with a set of parameters {λ(t), α, β}, α ≥ 0,
β > 0. The system fails when the interval time of successive shocks is larger than
δ. After the nth repair, the system failure threshold decreases as an−1δ, 0 ≤ a ≤ 1.
Denote T1 as the first failure time of the system and let Tn be the operating time of the
system after the (n− 1)th repair to the nth failure, where n = 2, 3, · · · .

(3) Let Yn represent the repair time of the system after the nth failure, where n = 1, 2, · · · .
The repair time sequence {Yn, n = 1, 2, · · · } forms an increasing geometric process;
then, E(Yn) =

µ

yn−1 , n = 1, 2, · · · . In particular, when µ = 0, the maintenance time is
ignored.

(4) The system repair cost per unit time is c1, the operating reward rate per unit time is
c2, the replacement cost is c3, and the replacement time is negligible.

(5) The GPP, Tn, and Yn are independent.

Denote W as a random length of a cycle under the replacement policy N. Then,

W =
N

∑
n=1

Tn +
N−1

∑
n=1

Yn. (14)

According to Theorem 3 and Assumption (3), the expected length of the renewal cycle
is obtained as
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E(W) = E[∑N
n=1 Tn] + E[∑N−1

n=1 Yn]

=
∫ ∞

0 exp{−βΛ(t)}[N + ∑∞
m=1

Γ( β
α +m)

Γ( β
α )(exp{αΛ(t)})m ∑N

n=1 fm,an−1δ(t)]dt + ∑N−1
n=1

µ

yn−1 .
(15)

Under the replacement policy N, according to the renewal reward theorem, the long-
run average cost per unit time C(N) can be computed as

C(N) =
Expected cost incurred in a cycle

Expected length of a cycle

=

c1(

N−1

∑
n=1

µ

yn−1 ) + c3 − c2(
∫ ∞

0
exp{−βΛ(t)}[N +

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )(exp{αΛ(t)})m

N

∑
n=1

fm,an−1δ(t)]dt)

N−1

∑
n=1

µ

yn−1 +
∫ ∞

0
exp{−βΛ(t)}[N +

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )(exp{αΛ(t)})m

N

∑
n=1

fm,an−1δ(t)]dt

.
(16)

5. Case Study

Case studies of customer relationship management (CRM) are developed in this
section to illustrate the theory obtained in Sections 3 and 4. In CRM, the customer lifetime
value (CLV) plays an important role. A customer relationship management tool can be
important for almost any kind of business. In [17], the authors utilized the censored δ
shock model to characterize the lifetime of customers and define the customers’ lifetimes
as the sum of all previous trade times and δ. Based on the CRM background, the failure
mechanism of the censored δ shock model was defined, i.e., the system was said to fail
when the time interval between two successive shocks did not reach the given threshold
value δ. Therefore, the customer’s lifetime in CRM is modeled using the generalized Pólya
censored δ shock. Some research works focusing on the system with Poisson censored δ
shock based on CRM can be found elsewhere [17,22]. The parameter settings are provided
in Table 1, where some parameter values are derived from existing studies and others are
assumed.

We first consider CRM to illustrate the established model. The customer operates in a
random environment with customs arriving as the generalized Pólya process. Assume that
the intensity function of the generalized Pólya process is λ(t) = λ(2 + sin(t)). Then, the
mean function of the generalized Pólya process becomes Λ(t) = λ(2t− cos(t) + 1), and
the distribution law of N(t) when the parameters α and β are constant is

P(N(t) = m) =
Γ( β

α + m)

Γ( β
α )m!

(1− exp{−α(λ(2t− cos(t) + 1))})m(exp{−α(λ(2t− cos(t) + 1))})
β
α .

However, for the convenience of simulation, we assume that the generalized Pólya
process with the intensity function of λ(t) = λ. Under this assumption, some numerical
examples are developed to illustrate the theoretical results obtained in Sections 3 and 4.

Under SM{[GPP(λ(t), α, β)], CD(δ)}, based on Equation (7), the reliability curves of
the system under different parameter settings of λ and δ are plotted in Figures 2 and 3.
When the values of the parameter λ are fixed as λ = 4, λ = 6, λ = 8, and λ = 10,
respectively, the variation curves of the reliability of δ with different values, i.e., δ = 0.1,
δ = 0.2, δ = 0.3, and δ = 0.5, are shown in Figure 2. From Figure 2, one can see that
the failure parameter δ has a significant influence on the system reliability R(t). In each
subgraph of Figure 2, when the value of λ is fixed, the larger the failure threshold δ and
the quicker the increase in the system’s reliability. This result indicates that a small shock
arrival threshold δ ensures a better reliability performance. That is, the larger the value of δ,
the less likely the system is to fail.

In addition, the shock failure rate λ also has a great influence on system reliability.
When the values of the failure threshold δ are fixed as δ = 0.1, δ = 0.2, δ = 0.3, and δ = 0.5,
respectively, the variation curves of the reliability of λ with different values, i.e., λ = 4,
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λ = 6, λ = 8, and λ = 10, are shown in Figure 3. From Figure 3, one can observe that
with the increase in the failure rate λ, the system’s reliability decreases under shock. The
result is reasonable. This result indicates that a small shock arrival rate λ ensures a better
reliability performance.
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Figure 2. Reliability curves for varying δ.

For the replacement model discussed in Section 4, in Table 2, we compute the values of
C(N) when the parameters are c1 = 2, c2 = 0.9, c3 = 6, µ = 3, α = 6, β = 10, a = 0.85, and
δ = 2. From the results of the numerical simulation, part of the resulting data is selected
and made into Table 1. From Table 2, C(29) = −0.9944 is the minimum value of the average
cost of long-term operation. That is, the optimal policy is N∗ = 29.

Table 2. The values of average cost C(N).

N C(N) N C(N) N C(N) N C(N) N C(N)

1 6.4018 13 −0.6339 30 −0.9784 54 −0.6105 78 0.1974
2 3.8268 14 −0.6934 32 −0.9177 56 −0.5928 80 0.3798
3 2.8776 15 −0.7361 34 −0.9116 58 −0.5528 82 0.5038
4 1.5522 16 −0.7389 36 −0.9084 60 −0.4911 84 0.5941
5 0.8744 17 −0.8150 38 −0.9037 62 −0.4835 86 0.7549
6 0.5780 18 −0.8916 40 −0.8987 64 −0.4393 88 1.2810
7 −0.0879 20 −0.8941 42 −0.8903 66 −0.3072 90 1.3709
8 −0.1897 22 −0.9169 44 −0.8399 68 −0.2944 92 1.6431
9 −0.3182 24 −0.9381 46 −0.7177 70 0.1368 94 2.0699

10 −0.4235 26 −0.9506 48 −0.6968 72 0.1567 96 2.4149
11 −0.5089 28 −0.9779 50 −0.6855 74 0.1693 98 2.5950
12 −0.5476 29 −0.9944 52 −0.6224 76 0.1859 100 3.0909
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The plot of C(N) as a function of N is plotted in Figure 4. It can be seen from Figure 4
that C(N) first decreases as N increases, and when N = 29, C(29) = −0.9944 is the
minimum; when N > 29, C(N) increases again as N increases. Thus, C(29) = −0.9944
is the minimum of the long-run average cost. That is, the optimal policy is N∗ = 29, and
moreover, it can be seen from Figure 4 that the optimal policy uniquely exists.
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Figure 3. Reliability curves for varying λ.
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Figure 4. Average cost C(N) curve with respect to maintenance policy N.

6. Conclusions

In this paper, a repairable system with the generalized Pólya censored δ shock model
was studied. We have not only given some reliability indices of the system, such as the
corresponding reliability function, the upper bound of the reliability function, and the
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mean lifetime, but also the failure rate. The lifetime distribution class of the system was also
proved. The replacement policy for the system using a geometric process and determining
the optimal replacement policy by objective function minimization was also considered.
Finally, a numerical example was presented to verify the plausibility of the model using
a Monte Carlo simulation in Matlab2016. Since the generalized Pólya process contains
the homogeneous Poisson process, the non-homogeneous Poisson, and the Pólya process,
compared with the existing censored δ shock model, the generalized Pólya censored δ
shock model proposed in this paper is an extension of the censored δ shock model.
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Abbreviations

Notations
T Life of the system
N(t) Total shocks number occurred by time t
λ(t) Stochastic intensity of the generalized Pólya process
Λ(t) Intensity function, Λ(t) =

∫ t
0 λ(u)du

α, β Parameters of the generalized Pólya process
Ti The arrival of external shocks
M The number of shocks until the system fails
Xi The inter-arrival time between the ith and the (i− 1)th shocks
δ The failure threshold of the censored δ shock model
r(t) The failure rate of the system
f (t) The density function of system lifetime T
F(t) The distribution function of system lifetime T
R(t) The reliability function of system lifetime T
ET The mean lifetime of the system
J The Jacobian determinant
fT1,··· ,Tm (τ1, · · · , τm) The conditional density function of T1, · · · , Tm
Yn The repair time of the system after the nth failure, n = 1, 2, · · ·
c1 System repair cost per unit time
c2 Operating reward rate per unit time
c3 Replacement cost
N Replacement policy
W Random length of a cycle under the replacement policy N
EW Expected length of the renewal cycle
C(N) Long-run average cost per time
m The real value of N(t)
α, β Parameters of the generalized Pólya process
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Acronym
CRM Customer relationship management
CLV Customer lifetime value
GPP Generalized Pólya process
HPP Homogeneous Poisson process
NHPP Non-homogeneous Poisson process
IFRA Increasing failure rate average
DFRA Decreasing failure rate average
CD(δ) Censored δ shock model
SM{GPP[λ(t), α, β], CD(δ)} Generalized Pólya censored δ shock model
SM{HPP[λ], CD(δ)} Homogeneous Poisson censored δ shock model
SM{NHPP[λ(t), 1], CD(δ)} Non-homogeneous Poisson censored δ shock model

Appendix A. Proof of Theorem 1

Proof. With the definition of the system, obviously, ∀t ≤ δ, R(t) = P(T > t) = 1 holds.
Next, we need to consider the case of t > δ.

R(t) = P(T > t, N(t) = 0) +
∞

∑
m=1

P(T > t, N(t) = m)

= P(T > t|N(t) = 0)P(N(t) = 0) +
∞

∑
m=1

P(T > t|N(t) = m)P(N(t) = m).
(A1)

When t > δ, m = 0, it is easy to verify that

P(T > t|N(t) = 0) = 1; P(N(t) = 0) = exp{−βΛ(t)}. (A2)

When t > δ, m ≥ 1, the condition probability can be derived as

P(T > t|N(t) = m) =P(X1 ≤ δ, X2 ≤ δ, · · · , Xm ≤ δ, t− Tm ≤ δ|N(t) = m)

=P(T1 ≤ δ, T2 − T1 ≤ δ, · · · , Tm − Tm−1 ≤ δ, t− Tm ≤ δ|N(t) = m).
(A3)

Conditioning on the shock arrival times T1 = τ1, · · · , Tm = τm and using Lemma 1(2),
one has

P(T > t|N(t) = m) =
∫ t

0∨(t−δ)

∫ τm

0∨(τm−δ)
· · ·

∫ τ2

0∨(τ2−δ)
m!

m

∏
i=1

(
αλ(τi)exp{αΛ(τi)}

exp{αΛ(t)} − 1
)

· I{0≤τ1≤δ}dτ1 · · ·dτm−1dτm (A4)

=
m!

(exp{αΛ(t)} − 1)m

∫ t

0∨(t−δ)

∫ τm

0∨(τm−δ)
· · ·

∫ τ2

0∨(τ2−δ)

m

∏
i=1

(αλ(τi)

exp{αΛ(τi)}) · I{0≤τ1≤δ}dτ1 · · ·dτm−1dτm.

Taking Equations (5), (A2), and (A4) into Equation (A1), one has

R(t) = exp{−βΛ(t)}+
∞

∑
m=1

m!
(exp{αΛ(t)} − 1)m

∫ t

0∨(t−δ)

∫ τm

0∨(τm−δ)
· · ·

∫ τ2

0∨(τ2−δ)

m

∏
i=1

(αλ(τi)exp{αΛ(τi)}) · I{0≤τ1≤δ}dτ1 · · ·dτm−1dτm ·
Γ( β

α + m)

Γ( β
α )m!

(1− exp{−αΛ(t)})m(exp{−αΛ(t)})
β
α (A5)

= exp{−βΛ(t)}+
∞

∑
m=1

exp{−βΛ(t)}
Γ( β

α + m)

Γ( β
α )

1
(exp{αΛ(t)})m · fm,δ(t)

= exp{−βΛ(t)}(1 +
∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

1
(exp{αΛ(t)})m · fm,δ(t)).
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Thus, the theorem follows.

Appendix B. Proof of Theorem 2

Proof. Obviously, P(T > t|N(t) < b t−δ
δ c) = 0. Then,

R(t) = P(T > t) =
∞

∑
m=b t−δ

δ c+1

P(T > t, N(t) = m)

=
∞

∑
m=b t−δ

δ c+1

P(X∗ ≤ δ, t− Tm ≤ δ, N(t) = m)

=
∞

∑
m=b t

δ c
P(X∗ ≤ δ, t− Tm ≤ δ|N(t) = m)P(N(t) = m) (A6)

≤
∞

∑
m=b t

δ c
P(X∗ ≤ δ|N(t) = m)P(N(t) = m),

where X∗ = max
1≤i≤m

Xi.

P(X∗ ≤ δ|N(t) = m) =
∫ δ

0
· · ·

∫ δ

0
fX1,··· ,Xm(x1, · · · , xm|N(t) = m)dx1 · · ·dxm, (A7)

where fX1,··· ,Xm(x1, · · · , xm|N(t) = m) is the condition density of X1, · · · , Xm.
By a linear transformation and the density transformation formula, one has

f(X1,··· ,Xm)(x1, · · · , xm|N(t) = m) = f(T1,··· ,Tm)(τ1, · · · , τm|N(t) = m)|J|
= f(T1,··· ,Tm)(τ1, · · · , τm|N(t) = m).

(A8)

From Equations (6) and (A8), one has

f(X1,··· ,Xm)(x1, · · · , xm|N(t) = m) = m!
m

∏
i=1

αλ(xi)exp{αΛ(xi)}
exp{αΛ(t)} − 1

, (A9)

where J is the Jacobian determinant and f(T1,··· ,Tm)(τ1, · · · , τm|N(t) = m) is the conditional
density function of T1, · · · , Tm.

Taking Equation (A9) into Equation (A7), one has

P{X∗ ≤ δ|N(t) = m} =
∫ δ

0
· · ·

∫ δ

0
m!

m

∏
i=1

αλ(xi)exp{αΛ(xi)}
exp{αΛ(t)} − 1

dx1 · · ·dxm

=
m!

(exp{αΛ(t)} − 1)m

∫ δ

0
d(exp{αΛ(xm)}) · · ·

∫ δ

0
d(exp{αΛ(x1)})

=
m!

(exp{αΛ(t)} − 1)m · (exp{αΛ(δ)} − 1)m. (A10)
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Substituting Equations (5) and (A10) into Equation (A6), it can be seen that

R(t) ≤
∞

∑
m=[ t

δ ]

m! · (exp{αΛ(δ)} − 1)m

(exp{αΛ(t)} − 1)m ·
Γ( β

α + m)

Γ( β
α )m!

(1− exp{−αΛ(t)})m(exp{−αΛ(t)})
β
α

= (exp{−αΛ(t)})
β
α

∞

∑
m=[ t

δ ]

(1− exp{−αΛ(t)})m

(exp{αΛ(t)} − 1)m · (exp{αΛ(δ)} − 1)m ·
Γ( β

α + m)

Γ( β
α )

= (exp{−αΛ(t)})
β
α

∞

∑
m=[ t

δ ]

(exp{αΛ(δ)} − 1)m

(exp{αΛ(t)})m ·
Γ( β

α + m)

Γ( β
α )

(A11)

= (exp{−αΛ(t)})
β
α

∞

∑
m=[ t

δ ]

(
exp{αΛ(δ)} − 1

exp{αΛ(t)} )m (
β
α + m)(

β
α + m− 1) · · · ( β

α + 1)Γ( β
α )

Γ( β
α )

= (exp{−αΛ(t)})
β
α

∞

∑
m=[ t

δ ]

(
exp{αΛ(δ)} − 1

exp{αΛ(t)} )m ·
m

∏
j=1

(
β

α
+ j).

This completes the proof.

Appendix C. Proof of Theorem 4

Proof. Due to P(T ≤ δ) = 0, we only consider the case of t > δ.
When t > δ, the probability density function of the system lifetime is

fT(t) = (FT(t))
′
= (1− R(t))

′
= −R

′
(t). (A12)

From the result of Theorem 1, the derivative of the reliability function of the system is
obtained as

R
′
(t) =

(
exp{−βΛ(t)}

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

1
(exp{αΛ(t)})m fm,δ(t)

)′
=
( ∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

)′
=

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

[(
exp{−βΛ(t)}
(exp{αΛ(t)})m )

′
fm,δ(t) +

exp{−βΛ(t)}
(exp{αΛ(t)})m f

′
m,δ(t)] (A13)

=
∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

[
(exp{−βΛ(t)})′(exp{αΛ(t)})m − exp{−βΛ(t)}((exp{αΛ(t)})m)

′

(exp{αΛ(t)})2m

· fm,δ(t) +
exp{−βΛ(t)}
(exp{αΛ(t)})m f

′
m,δ(t)].

According to Definition 3, substituting Equations (7) and (A13), the failure rate of the
system is formulated as

r(t) =
fT(t)
F̄(t)

=
−R

′
(t)

R(t)

=

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

[
−(mα+β)λ(t)exp{−βΛ(t)}

(exp{αΛ(t)})m fm,δ(t) +
exp{−βΛ(t)}
(exp{αΛ(t)})m f

′
m,δ(t)]

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

=
∞

∑
m=1

(mα + β)λ(t)−

∞
∑

m=1
f
′
m,δ(t)

∞
∑

m=1
fm,δ(t)

.

(A14)
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That completes the proof.

Appendix D. Proof of Theorem 5

Proof. According to Definition 4, let l(t) = − 1
t lnR(t). From Theorem 1, when t ≤ δ,

l(t) = 0; when t > δ, one has

l(t) = −1
t

lnR(t)

= −1
t

ln[
∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)].

(A15)

Now, for the derivative of l(t) with respect to t, we have

l′(t) = [−1
t

ln[
∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)]]′ (A16)

=
1
t2 ln[

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)]−

1
t
[ln[

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)]]′

=
1
t2 [−βΛ(t) + ln

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m ]− 1

t

[
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)]′

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

.

Now, the fraction of the second part of the third equation in Equation (A16) is calcu-
lated as

Am =

[
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)]′

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

=

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

[
exp{−βΛ(t)}
(exp{αΛ(t)})m ]

′ fm,δ(t) +
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m f

′
m,δ(t)

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

=

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

[
exp{−βΛ(t)}
(exp{αΛ(t)})m ]

′ fm,δ(t) +
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m f

′
m,δ(t)

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

.

(A17)

Then, the derivative of the first part of the molecule of the third equation in
Equation (A17) is obtained as

Bm = [
exp{−βΛ(t)}
(exp{αΛ(t)})m ]′

=
(exp{−βΛ(t)})′ · (exp{αΛ(t)})m − (exp{−βΛ(t)}) · [(exp{αΛ(t)})m]

′

(exp{αΛ(t)})2m

=
exp{−βΛ(t)}(−βλ(t))(exp{αΛ(t)})m − (exp{−βΛ(t)})m(exp{αΛ(t)})m−1

(exp{αΛ(t)})2m

· αλ(t)exp{αΛ(t)} (A18)

=
exp{−βΛ(t)}(−βλ(t))− (exp{−βΛ(t)})mαλ(t)

(exp{αΛ(t)})m

=
exp{−βΛ(t)}(−β−mα)λ(t)

(exp{αΛ(t)})m .



Mathematics 2023, 11, 4560 18 of 19

On using Bm in Am, one has

Am =

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

[
exp{−βΛ(t)}(−β−mα)λ(t)

(exp{αΛ(t)})m ] fm,δ(t) +
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m f

′

m,δ(t)

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

=

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

[
exp{−βΛ(t)}(−β−mα)λ(t)

(exp{αΛ(t)})m ] fm,δ(t)

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

+

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m f

′

m,δ(t)

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

exp{−βΛ(t)}
(exp{αΛ(t)})m fm,δ(t)

(A19)

=
∞

∑
m=1

(−(mα + β))λ(t) +

∞
∑

m=1
f
′

m,δ(t)

∞
∑

m=1
fm,δ(t)

.

On using Equation (A19) in Equation (A16), one obtains

l′(t) =
1
t2 [−βΛ(t) + ln

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m ]− 1

t
(

∞

∑
m=1

(−(mα + β))λ(t)

+

∞
∑

m=1
f
′

m,δ(t)

∞
∑

m=1
fm,δ(t)

)

=
1
t2 [−βΛ(t) + ln

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m ] +

1
t
(

∞

∑
m=1

(mα + β)λ(t) (A20)

+

∞
∑

m=1
f
′

m,δ(t)

∞
∑

m=1
fm,δ(t)

)

=
1
t2 [−βΛ(t) + ln

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m ] +

1
t

r(t)

=
1
t2 [−βΛ(t) + ln

∞

∑
m=1

Γ( β
α + m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m + tr(t)].

Let w(t) = −βΛ(t) + ln
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m + tr(t). Then, one derives

(1) When w(t) > 0, i.e., ln
∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m + tr(t) > βΛ(t), l(t) is increasing,

such that F(t) ∈ {IFRA};
(2) When w(t) < 0, i.e., ln

∞
∑

m=1

Γ( β
α +m)

Γ( β
α )

fm,δ(t)
(exp{αΛ(t)})m + tr(t) < βΛ(t), l(t) is decreasing,

such that F(t) ∈ {DFRA}.
The proof is completed.
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