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Abstract: Accurate load forecasting plays a crucial role in the effective energy management of
smart cities. However, the smart cities’ residents’ load profile is nonlinear, having high volatility,
uncertainty, and randomness. Forecasting such nonlinear profiles requires accurate and stable
prediction models. On this note, a prediction model has been developed by combining feature
preprocessing, a multilayer perceptron, and a genetic wind-driven optimization algorithm, namely
FPP-MLP-GWDO. The developed hybrid model has three parts: (i) feature preprocessing (FPP), (ii) a
multilayer perceptron (MLP), and (iii) a genetic wind-driven optimization (GWDO) algorithm. The
MLP is the key part of the developed model, which uses a multivariate autoregressive algorithm
and rectified linear unit (ReLU) for network training. The developed hybrid model known as FPP-
MLP-GWDO is evaluated using Dayton Ohio grid load data regarding aspects of accuracy (the mean
absolute percentage error (MAPE), Theil’s inequality coefficient (TIC), and the correlation coefficient
(CC)) and convergence speed (computational time (CT) and convergence rate (CR)). The findings
endorsed the validity and applicability of the developed model compared to other literature models
such as the feature selection–support vector machine–modified enhanced differential evolution (FS-
SVM-mEDE) model, the feature selection–artificial neural network (FS-ANN) model, the support
vector machine–differential evolution algorithm (SVM-DEA) model, and the autoregressive (AR)
model regarding aspects of accuracy and convergence speed. The findings confirm that the developed
FPP-MLP-GWDO model achieved an accuracy of 98.9%, thus surpassing benchmark models such
as the FS-ANN (96.5%), FS-SVM-mEDE (97.9%), SVM-DEA (97.5%), and AR (95.7%). Furthermore,
the FPP-MLP-GWDO significantly reduced the CT (299s) compared to the FS-SVM-mEDE (350s),
SVM-DEA (240s), FS-ANN (159s), and AR (132s) models.

Keywords: electric load forecasting; multilayer perceptron; decision making; energy management;
deep learning; heuristic optimization algorithm; smart power grid

MSC: 68T20

1. Introduction

Accurate load prediction is indispensable for the effective planning, operation, and
energy management of the smart power grid (SPG). It is essential for ensuring the SPG’s
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sustainable, secure, and reliable operation, thus benefiting supply and demand-side stake-
holders [1–3]. On the supply side, precise load prediction enables effective resource alloca-
tion to meet residents’ energy demands and optimize resource utilization [4]. Conversely,
on the demand side, accurate load prediction is imperative for proactive equipment man-
agement, load scheduling, efficient energy utilization, and optimal energy management [5].
However, the accuracy of load forecasting is affected by inherent data uncertainties and
randomness. These uncertainties make the task of consistently improving forecast accuracy
complex and challenging. Consequently, there is a pressing need to develop models that are
capable of enhancing forecast accuracy by effectively addressing the inherent uncertainties
in load patterns.

In recent decades, load forecasting techniques are developed by numerous authors
like the time series methods: exponential smoothing [6,7], Kalman filters [8], regression
methods [9,10], the grey forecasting model (GM) [11], and the autoregressive integrated
moving average (ARIMA), as well as ARMAX methods [12–14]. In [15], the authors
developed the ARIMA-MPSO model for load forecasting. These prediction methods are
capable of forecasting electric load. However, the accuracy improvement is not up to
the mark due to the method’s inherent shortcomings. For instance, linear regressors are
suitable for solving linear problems and have the worst performance while addressing
nonlinear problems. Methods such as ARIMA take historical/current records for prediction
while ignoring other influencing parameters. GM methods can only cater to exponential
growth trends problems. Artificial intelligence (AI) emerged as a smart solution to resolve
the issues of traditional methods. For example, these include expert systems [16], radial
basis fuzzy logic models [17,18], machine learning models [19], neural networks [20–22],
and multilayer perceptron (MLP) models [23]. AI models outperform traditional models
in terms of accuracy. However, these methods also suffer from some limitations. For
instance, expert systems rely on knowledge acquisition and are challenged when handling
uncertainty, radial basis logic models are computationally expensive and have limited
generalization capability, and neural network models become trapped in local optima.
In [24,25], deep learning models were introduced to resolve the drawbacks of existing
models and to improve forecast accuracy. However, these models have high computational
complexity. These deep layer models and hybrid methods are superior to intrinsic methods
in terms of of accuracy. However, they ignore data preprocessing approaches, which
are important for improved accuracy. Considering the limitations of AI methods, hybrid
methods have been developed. For example, in [26–28], a hybrid method combining the
regression neural network (RGNN) and fruitfly optimization (FFO) algorithm is developed
for load forecasting. In [29], an efficient hybrid model using a neural network optimized
with the artificial bee colony optimization algorithm is introduced to address the load
forecasting issue. The paper in [30] cascaded the support vector machine (SVM) with AI for
electric load forecasting in an SPG. Data-driven models have been developed to identify
the services needed for load forecasting in smart cities [31]. The authors developed the
Mc-SVNN model for sunspot number time series, USD-to-euro currency exchange rate
forecasting, daily temperature prediction, and power demand forecasting and wind speed
forecasting in Abu Dhabi [32,33]. The proposed model is compared with the literature
works in Table 1.

As previously discussed, neural network models have limitations such as interpretabil-
ity, being trapped into local minima due to limited extrapolation and generalization ability,
and being unable to select abstracted features from datasets due shallow layouts. The MLP
model employs learning principles (the multivariate autoregressive algorithm (MVARA)
and ReLU) and the heuristic optimization algorithm to address these limitations and to
minimize the error metric to forecast accuracy enhancement. With this motivation, in this
work, the FPP-MLP-GWDO model is developed. First of all, the developed model employs
FPP, which uses candidate interaction concepts, redundancy, and relevancy filters to return
suitable features to the MLP forecaster. Secondly, the developed model uses MLP as a
forecaster by utilizing learning principles, i.e., the MVARA and ReLU, to enhance model
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generalization and to facilitate accurate prediction. Finally, the developed model employees
the genetic wind-drive optimization (GWDO) algorithm [34] as the optimizer due to the
powerful search ability for the optimal solution with a faster convergence rate [35]. The
GWDO further improves the prediction accuracy by optimizing filter thresholds (irrele-
vancy and redundancy) weights, as well as biases of the MLP forecaster. This work is
a continuation of the earlier work [36] where the FS-FCRBM-GWDO is developed. It is
compared with existing models with respect to error metrics and the CC for validation. The
novelty and technical contributions are highlighted below:

• A FPP-MLP-GWDO has been developed, where the preprocessing FPP and postpro-
cessing GWDO have been cascaded with the MLP for accuracy improvement.

• Based on existing feature selection techniques [37], FPP has been developed where
the feature interaction concept has been introduced, in addition to filters (irrelevancy,
redundancy) for the selection of key features.

• The GWDO has been applied to the returned predictions from the MLP to further
improve the accuracy by optimizing the filter threshold (irrelevancy and redundancy)
weights and biases.

• The developed hybrid model, FPP-MLP-GWDO, is evaluated using Dayton Ohio
grid load data regarding aspects of accuracy (the mean absolute percentage error
(MAPE), Theil’s inequality coefficient (TIC), and the correlation coefficient (CC))
and convergence speed (the CT and CR). The findings endorsed the validity and
superiority of the developed model compared to the literature models such as the
feature selection–support vector machine–modified enhanced differential evolution
(FS-SVM-mEDE) [38], the feature selection–artificial neural network (FS-ANN) [26],
the support vector machine–differential evolution algorithm (SVM-DEA) [39], and the
autoregressive (AR) model regarding aspects of accuracy and convergence speed.

The remaining sections of this work are organized as follows: Section 2 presents the
FPP-MLP-GWDO proposed model. Section 3 presents simulations and discussions. Finally,
this work’s conclusion is present in Section 4.

Table 1. Recent related works compared with the proposed model.

Refs. Methods Objectives Performance
Metrics Advantages/Disadvantages

Time series
methods
[6–14]

Exponential
smoothing,
Kalman filters,
regression
methods, grey
model, ARIMA,
and ARMAX

Forecast
accuracy
improvement

MAE, MAPE,
RMSE

These prediction methods are capable of forecasting
electric load. However, the accuracy improvement is
not up to the mark due to the method’s inherent
shortcomings. For instance, linear regressors are
suitable for solving linear problems, but they perform
worst while addressing nonlinear problems. Methods
such as the ARIMA take historical/current records for
prediction while ignoring other influencing parameters.
GM methods can only cater to exponential growth
trend problems.

Artificial
intelligence
methods
[16–20]

Expert systems,
radial basis
fuzzy logic
models,
machine
learning models,
and neural
networks

Accuracy
enhancement
and compilation
time
improvement

MAPE,
correlation
coefficient

AI models outperform traditional methods when it
comes to accuracy. Nevertheless, these advanced
techniques have their limitations. For example, expert
systems necessitate extensive knowledge acquisition
and can need help with handling uncertainty. Radial
basis logic models, on the other hand, are
computationally expensive and exhibit limited
generalization capabilities. Neural network models are
powerful. However, they easily get stuck in local
optima.
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Table 1. Cont.

Refs. Methods Objectives Performance
Metrics Advantages/Disadvantages

Deep neural
networks
and hybrid
models
[24–28]

MLP, LSTM,
RBM, etc.

Accuracy
improvement

RMSE, MSE, R,
etc.

Deep learning models have been introduced to address
the limitations of existing forecasting methods and to
enhance prediction accuracy. Nevertheless, these
models come with a notable drawback: their high
computational complexity. While deep-layer models
excel in terms of accuracy compared to intrinsic
methods, they often overlook the significance of data
preprocessing techniques, which are crucial for
achieving improved accuracy.

Integrated
FS-FCRBM-
GWDO
model [36]

AFC-STLF, MI-
mEDE-ANN,
FS-ANN,
Bi-level.

Accuracy
improvement

MAPD,
variance,
correlation, etc.

A hybrid model is introduced to tackle the constraints
associated with current forecasting techniques. The aim
is to enhance the prediction accuracy and convergence
speed. However, the developed model has
comparatively high complexity and a slow
convergence.

This work FPP-MLP-
GWDO

Accuracy,
convergence
rate, and
computational
time
improvement

TIC, CC, CR, CT,
and MAPE

The FPP-MLP-GWDO hybrid model offers several
significant advantages over existing models in load
forecasting. Its notably improved forecast accuracy
stands out, thereby making it a valuable model for
precise predictions. Moreover, its ability to converge
quickly is ideal for real-time applications, while its
adaptability allows it to handle various scenarios and
datasets effectively. The model’s prowess in capturing
nonlinear load patterns ensures accuracy even in
complex situations, and its robustness in the face of
data variability instills confidence in its reliability.
Furthermore, it enhances resource allocation, thus
leading to cost savings, and it is designed for scalability
to meet the evolving demands of expanding smart city
infrastructures. Lastly, the integration of feature
preprocessing simplifies data preparation, thereby
streamlining the forecasting process. Overall, the
FPP-MLP-GWDO model significantly advances load
forecasting, thus offering improved accuracy, efficiency,
and fast convergence speed.

2. Developed Hybrid FPP-MLP-GWDO Model

The developed FPP-MLP-GWDO is a hybrid model with three parts: FPP, an MLP
forecaster, and a GWDO optimizer, which is depicted in Figure 1. The developed model
goal is to enhance the accuracy and convergence speed simultaneously. The first part,
FPP, uses filters (redundancy and irrelevancy) and interaction operations. The FPP takes
load data and other influencing parameters such as the dew point, wind speed, humidity,
and temperature as input. Through FPP, the received data is first normalized and then
fed to filters (redundancy and irrelevancy) and interaction operations. The FPP goal is to
return key features and to clean the data (maximum relevancy and feature interactions
and minimum redundancy) for the MLP forecaster. The MLP forecaster is trained on the
received data to learn future load patterns (forecast) for the Dayton Ohio electric grid.
The predicted load pattern returned from the MLP forecaster is fed to the optimizer part
based on a GWDO to further improve the accuracy by reducing the error amount. The
comprehensive explanation is as follows.
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FPP

Feature pre-processing

MLP forecaster

GWDO optimizer

Output: Load forecast

Input: Historical data

Figure 1. Developed FPP-MLP-GWDO framework for electric load forecasting in SPG.

2.1. Feature Preprocessing

The historical load and exogenous parameters are fed into the FPP part. First, the
cleansing operation recovers missing values with earlier day average. Then, the cleaned
data are passed through the normalization step to make them within the activation function
bounds as follows.

Norm =
X− µ(X)

std(X),
(1)

where X represents input data, std indicates the standard deviation, and Norm shows the
normalized data. X is the input data, which includes the load demand data denoted by
P(hr, d), the temperature illustrated by T(hr, d), the dew point indicated by D(hr, d), and
the humidity parameter, which is denoted by (H(hr, d)). The (hr, d) indicates the hour
and specific day, respectively. The wind speed, dew point, humidity, and temperature
are influencing parameters, which are also known as exogenous parameters. The FPP
part includes filters (redundancy and irrelevancy) and feature interaction operations. The
FPP aims to discard redundant, irrelevant, and nonconstructive features from the dataset,
because redundant information causes execution overhead during the training, and irrele-
vant features act as outliers. A comprehensive explanation of the FPP filters and feature
interaction operations is give below.

2.1.1. Relevant Feature Selection: Relevancy Filter

The relevancy filter in FPP plays a significant role in selecting key features. The rel-
evancy filter selects key features by correlating input features with the target. Relevancy
measurements have been made by many techniques [40]. This work uses mutual informa-
tion (MI) to measure feature relevancy, i.e., how closely a and y are correlated in the data.
The MI observes the y under a. The MI for a and y is computed via individual p(a)andp(y)
probability distributions (PDs) and the joint PD p(a, y), and it is indicated by I(a; y).

S = {a1, a2, . . . , aM}, (2)

where S is the set having the input variables (a1, . . . , aM) and the target variable y. The
computation involves checking the information that is common between the input ai and
the target y to determine their degree of association. When the common information
between the two variables exceeds a certain threshold, it indicates a strong relationship.
Moreover, the determination of the significance of the input ai concerning the target y is
computed through the following approach.

D(ai) =

{
keep I(ai; y) > σ
Discard I(ai; y) ≤ σ

(3)
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D(ai) represents the measure of relevance between the input and the target variables.

2.1.2. Redundant Feature Elimination: Redundancy Filter

The redundant feature elimination has significant importance with respect to im-
proving the convergence speed. On the other hand, redundant features slow down the
convergence speed. On this note, the FPP employed a redundancy filter to find redundant
features from the input features set using the MI mechanism. The aim is to rectify the input
feature set by discarding redundant features and keeping relevant features. According to
the research conducted in [40], it was observed that closely correlated input variables have
a negative impact on features selection. The explanation is that two input variables share a
significant amount of common information regarding the target variable, but they share
very little redundant information. As a result, an input with limited redundant information
related to the target variable might be mistakenly considered redundant and excluded,
even though it could provide essential abstract features for the proposed model. To address
these challenges, a redundancy measure called interaction gain (Ig) was introduced in [41],
which is defined in Equation (4).

RM(ai, as) = Intg(ai; as; y)
= I[(ai, as); y]− I(ai; as)− I(as; y),

(4)

The redundancy measure, denoted as RM(ai, as), represents the degree of redundancy
between the potential inputs ai and as, while y denotes the target variable. The mathematical
modeling of the information gain Ig can be expressed in relation to the joint and individual
entropy as follows:

Intg(ai; as; y) = H(ai, as) + H(ai, y) + H(as, y)− H(ai)− H(as)− H(y)− H(ai, as, y) (5)

The individual entropy values of ai, as, and y are represented by H(ai), H(as), and
H(y), respectively. In contrast, the joint entropy values are denoted by H(ai, as), H(ai, y),
H(as, y), and H(ai, as, y).

2.1.3. Feature Interaction

The authors in [37] introduced the concept of filters (irrelevancy and redundancy)
with the aim of eliminating redundant/irrelevant features while retaining the relevant
ones for subsequent steps. However, a drawback of filter-based methods is that they may
discard features that were initially deemed irrelevant, even though such features may be
relevant when considered in combination with other features in the set. Building upon this
observation, the FPP introduces the notion of interaction, in addition to a filters (irrelevancy
and redundancy) approach. If two variables from the input set, ai and as, possess redundant
features with respect to the target variable y, the joint MI estimate between ai and y will
be lower than the their combined individual MI estimates. Consequently, this leads to a
negative value, as indicated by Equation (4), which signifies the presence of redundant
features ai and as for the model. By taking the absolute of the result from Equation (4),
we obtain a measure that quantifies the extent of redundancy. In contrast, when the input
variables ai and as interact with y (the target variable), their combined MI values with y
exceed the sum of their individual MIs. Therefore, a positive value in Equation (4) indicates
the presence of interacting features, and its positive/absolute magnitude reflects the extent
of the interaction. Therefore, to account for redundancy and interaction, Equation (4) may
be expressed with reference to the concept of the interaction gain Ig:

RM(ai, as) =

{ {
Intg(ai; as; y), if Intg(ai; as; y) < 0,

0 otherwise
(6)

In(ai, as) =

{
Intg(ai; as; y), if Intg(ai; as; y) > 0,
0 otherwise

(7)
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The equation labeled as Equation (6) is derived by making adjustments to Equation (4)
to measure redundancy. Equation (7) calculates the interaction measure. The computation
of the interaction measure IM(ai) for each potential feature is computed below.

IM(ai) = Maximize
aj∈S−{ai}

{
In(ai, aj)

}
(8)

2.1.4. FPP Stepwise Procedure

The objective of this adapted technique for feature selection is to optimize the relevance
and interaction measures while minimizing the redundancy using a filters-based approach.
Unlike existing techniques such as those proposed by [37,41,42], our FPP technique takes
into account the interaction between candidates in addition to relevance and redundancy
filters. Figure 2 illustrates an FPP technique flow chart [36]. The comprehensive explanation,
along with a stepwise explanation, are listed below.

Step 1—Potential inputs: The technique takes the input set consisting of a potential
inputs set and the target value y.

Step 2—Prefiltering: The prefiltering part of the FPP is illustrated as below:

• The enclosed blocks within the dashed box represent the prefiltering part, during
which the relevancy/interaction are computed. The potential inputs are then ranked
according to these computed estimates/measures.

• We assess the individual and the gained information to measure the information
content. This is done using an adapted form of Equation (4), which is illustrated in the
flowchart presented in Figure 2. The function f (, ) used in the equation monotonically
increases, while the weight factor α balances the relevancy and interaction measures.
Depending on the specific forecasting problem, this factor can be adjusted and finely
tuned.

• The potential inputs identified in the prefiltering step (Sp) are organized in a descend-
ing sequence as per their information value.

Step 3—Filtering stage: The filtering stage [36] of the FPP is illustrated in Figure 3 and
presented as follows:

• The prefiltering stage output serves as the input for the filtering stage, where the
preselected features are divided into selected (Ss) and nonselected (Sn) features, as
illustrated in Figure 2. Redundancy measure is computed using Equation (9), which is
modeled below:

R(
p
ai) = Minimize

p
ai∈

p
S

{
RM(

p
ai,

p
aj)

}
, (9)

Here, R(
p
ai) represents the measure of redundancy for every potential input

p
ai belong-

ing to the set
p
S.

• The assessment of the informational significance of the potential features comprises
three metrics: redundancy, relevancy, and interaction. In mathematical terms, this
evaluation can be expressed as follows:

V(
p
ai) = g

{
D(

p
ai), IM(

p
ai), R(

p
ai)

}
= D(

p
ai) + α× IM(

p
ai) + β× R(

p
ai),

(10)

Here, α, β > 0, V(
p
ai) represents the information content, g(, ; ) denotes a monotonically

increasing linear function, and β corresponds to a tuneable parameter.
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• The determination of the information content is made using the following decision
process:

If V(
p
ai) ≥ Rth →

S
S =

S
S+{

p
ai}

If V(
p
ai) ≤ Rth →

n
S =

n
S+{

p
ai},

(11)

In this process, information content is compared to the redundancy threshold, which
is denoted as Rth. If the information value is equal to or greater than the relevancy

threshold, it is added to the list of selected features (
s
S). Otherwise, it is included in the

list of (
n
S), which includes nonselected features.

• Features, both selected and nonselected, are arranged in descending order based on
their information content. Then, a union operator is applied to create a unified set.
Subsequently, the postfiltering phase takes both of the sets and their combinations as
input [36] as presented in Figure 4.

Figure 2. Overall FPP flow chart, including prefiltering, filtering, and postfiltering.
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Figure 3. Filtering part flow chart.

Step 4—Postfiltering: In this phase, adjustments are made to both the selected (
s
S)

and nonselected inputs, thus resulting in updates to the V(.) information value. These
updated information contents are then reassessed via Equation (11) to determine whether
the potential inputs should be included in the selected or nonselected features.

The FPP stops when the nonselected features set
n
S is empty, and no entry remains.

During each iteration, the potential input set undergoes prefiltering, filtering, and postfil-
tering. This ensures that the process avoids becoming stuck in an infinite loop and that it
successfully returns the selected features set. Eventually, the selected features are passed
into the MLP forecaster.
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Figure 4. Postfiltering stage of FPP.

2.2. MLP Forecaster

This part of the proposed model is the MLP forecaster that can be trained to accurately
predict future load patterns. The literature review concludes that all the currently available
models have the ability to forecast non-linear electrical load. Hence, an MLP has been
selected as the preferred intelligent forecaster because it predicts nonlinear load patterns
with a satisfactory level of accuracy with earlier converging capability, it possesses a scalable
nature, and it exhibits enhanced performance as it scales. The MLP is a variant of ANN
comprising multiple layers of interconnected nodes referred to as neurons. Each neuron in
one layer is connected to the neurons in the adjacent layers, thus forming a feed-forward
architecture. The MLP has the ability to acquire intricate patterns and relationships within
load data through a training process, where the weights and biases of neurons are adjusted
using input–output pairs. The MLP forecaster employs an MVARA and utilizes ReLU as the
learning rule to predict load patterns. The MVARA and ReLU are selected as the learning
rules for the MLP forecaster. These rules are chosen because their earlier converging
capability ensures a low CT and fast CR, as well as addresses common network challenges
such as overfitting and a vanishing gradient. This allows the MLP to make accurate load
predictions. The MLP forecaster has a layered architecture comprising the input, hidden,
and output layers. Each layer is composed of artificial neurons. The MLP constitutes a
feed-forward network comprised of fully connected layers. In this layout, each neuron in
a layer is connected to the neurons in the subsequent layer through synaptic weights, as
illustrated in Figure 5.

The MLP selects potential inputs from a given dataset and maps the input vector x(t)
to the output vector Ft. The MLP’s output is represented as follows:

F =
n

∑
i=1

Wi f (yi) +
m

∑
j=1

β jaj, (12)
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In Equation (12), the f (yi is ReLU, which is modeled in Equation (13).

f (yi) = mx(0, yi)

f (yi)
{

1 if yi ≥ 0
zero else.

(13)

The output vector Ft shows the day-ahead forecast results, and it is obtained through
a combination of factors. These factors include the weight factor Wi, the linear weight β j
between the input/output nodes, the input elements aj, and the input to the hidden nodes
yi. The training of the MLP involves utilizing the MVARA and the ReLU transfer functions.
The calculation for yi is expressed in Equation (15).

yi =
3

∑
j=1

wijaj + bi, (14)

In Equation (15), wij represents the weight between the neurons in the input and
hidden layers, and bi denotes the bias for the hidden layer.

Figure 5. The MLP forecaster with MVARA and ReLU.

The learning process persists until one of the following conditions is satisfied: the
iteration maximum limit is reached, the stopping criterion is fulfilled, or the error function
is minimized. The error function is modeled below in Equation (15).

E =
1
N

N

∑
t=1

(Rt − Ft)
2, (15)

In the Equation (15), the actual output of the network pattern is denoted by Rt, while
the forecast output is represented by Ft. Additionally, N corresponds to the number of
training samples used in the process.

By incorporating ReLU, the MLP forecaster is able to capture nonlinearities and
interactions. In the literature, various algorithms have been used to update the weight and
bias vectors during the training process, including the Levenberg Marquardt algorithm [41],
the MVARA [43], the back-propagation, and the gradient descent [44]. Out of the available
training/learning algorithms, the choice of utilizing the MVARA for network training was
made because of its ability to converge rapidly and deliver enhanced performance. The
selected features from the FPP stage, denoted as S1, S2, . . . Sn, are inputted into the MLP
forecaster stage. In this stage, the network training utilizes data samples from the first three
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years, while the testing phase employs data samples from the last year. The ultimate goal is
to train the MLP forecaster through this process to accurately predict load patterns. The
MLP forecaster generates an error signal, along with weights and biases, that are adjusted
using the MVARA [45]. The MAPE serves as the objective function for the optimizer, which
aims to enhance the accuracy by adjusting error signal.

2.3. GWDO Optimizer

The MLP forecaster produces a load pattern with a certain level of the MAPE, which
is minimized as per the capabilities of the MLP, MVARA, and ReLU. To further reduce the
MAPE in the predicted load, the MLP forecaster output is fed into our proposed GWDO
optimizer. The GWDO optimizer aims to further decrease the error in the predicted load
pattern. Therefore, the optimizer treats the minimization of the error as objective, which is
mathematically represented in Equation (16).

Minimize
Ith , Rth , Ci

MAPE (a) ∀ a ∈ {h, d}, (16)

In Equation (16), Ith, Rth, and Ci represent the redundancy threshold, irrelevancy
threshold, and potential input interaction, respectively. The GWDO optimizer tunes/adjusts
these parameters and provides feedback to the FPP. In the FPP stage, the feature selection
approach utilizes the optimized Ith, Ci, and Rth as potential input interactions for the key
features selection.

Integrating the GWDO optimizer with the MLP forecaster improves accuracy, albeit
at the expense of a degraded convergence rate. Usually, this integration of the optimizer
with the forecaster is implemented in applications, where the main emphasis focuses on
the accuracy rather than the speed of convergence.

To optimize the forecaster hyperparameters, numerous techniques have been sug-
gested by researchers. These techniques encompass heuristic approaches, as well as
quadratic, convex, linear, and nonlinear programming. In this study, linear programming
was not utilized because of the nonlinear nature of the problem. Nonlinear programming
was excluded because of the extended execution time they entail. Convex optimization
was rejected because these processes converge slowly.

Heuristic algorithms such as DE [46], EDE [47], and mEDE [38] were rejected because
of challenges such as inadequate precision, sluggish convergence, and the inclination to get
stuck in local optima [48]. To overcome the constraints inherent in the current approaches,
the GWDO was suggested as a means to effectively optimize the hyperparameters, thereby
exhibiting rapid convergence speed. The GWDO is a hybrid approach that combines the
key merits of the WDO [35] and the GA [49]. This hybridization proves to be advantageous,
as it leverages the fast convergence speed of the WDO while benefiting from the diversity
of population provided by the GA.

3. Results and Discussions

To assess effectiveness of the FPP-MLP-GWDO model, MATLAB simulations were
performed on a laptop featuring a Core i3, a CPU Intel(R) @2.4GHz, and 8GB of RAM. The
performance of the FPP-MLP-GWDO framework was evaluated by comparing it with the
literature models: the FS-SVM-mEDE [38], FS-ANN [26], SVM-DEA [39], and AR model.
These benchmark frameworks were selected because they share architectural similarities
with the developed FPP-MLP-GWDO model.

The FPP-MLP-GWDO model was evaluated using load data from the Dayton Ohio
grid. This dataset was obtained from the PJM electricity market, which is publicly available
and openly accessible [50] and was also used in a previous study [37]. Figure 6 illustrates
the four years of load data from the Dayton Ohio grid, which span from 2014 to 2017. The
MLP forecaster uses eighty percent data for training and allocates the remaining twenty
percent for testing purposes.
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Figure 6. Dayton Ohio grid electricity consumption from 2014 to 2017.

The learning curve assesses the effectiveness of a model by comparing its performance
on training and testing data samples over multiple epochs. The objective is to determine
whether a model is genuinely learning from the data or merely memorizing it. A poor
learning curve is indicative of high variance and bias in the model, thereby suggesting that
it is more focused on memorizing the training data than on extracting meaningful patterns.
Such a model, characterized by both high variance and bias, typically shows decreased
accuracy and a limited ability to generalize effectively. The MLP forecaster learning curve
exhibited favorable characteristics for two key reasons. Firstly, there was minimal bias
and variance, as evidenced by the small difference between the errors observed during
training and testing. Secondly, both the training/testing errors declined as the epochs grew.
The MLP forecaster learning curve is illustrated in Figure 7. Initially, when the number
of epochs was zero, the MAPE was high, thus indicating that the model was not yet well
trained. However, as the number of epochs increased, the MAPE gradually decreased, thus
eventually converging to a minimum acceptable value. This point of convergence, known
as the saturation point, signifies that the model was effectively trained and had achieved
satisfactory performance.

Figure 7. Developed model learning curve on testing and training sets with respect to the MAPE.

During the simulations, we utilized the control parameters listed in Table 2, and their
rationale is documented in the literature [36]. These control parameters remained consistent
for the FPP-MLP-GWDO and comparative models, thereby ensuring a fair comparative
analysis.
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The evaluation of the developed model focused on two performance metrics: the
accuracy (MAPE, TIC, and CC) and the convergence speed (CT and CR). Modeling of the
MAPE and TIC is presented in Equations (17) and (18), respectively.

MAPE =

(
1
N

N

∑
t=1

|Rt − Ft|
|Rt|

)
× 100, (17)

TIC =

√
1/N

N
∑

t=1
(Rt − Ft)

2

√
1/N

N
∑

t=1
(Rt)

2 +

√
1/N

N
∑

t=1
(Ft)

2

(18)

The CC metric is defined in (18).

CC =
E[(Rt − µa)× (Ft − µF)]√(

∑ (Rt − µa)
2
)
×
(

∑ (Ft − µF)
2
) (19)

In Equation (17), Rt and Ft denote the actual and predicted load values, respectively,
while µa and µF correspond to the mean values of the actual and predicted load, respectively.

The accuracy is computed from the error using Equation (20).

A = 100−MAPE(x). (20)

where A represents the accuracy. The convergence speed is computed using the CT and
CR, which are comprehensively presented below:

• The convergence speed encompasses two aspects: the CT and CR. The CT refers
to the time it takes for the forecaster to return the predicted load pattern. On the
other hand, the CR represents the rate at which the model converges to an iteration
returning an optimal result, where the error no longer decreases significantly with
increasing iterations. Forecasts with lower CT and CR values (requiring fewer epochs
to converge) are considered faster, while higher CT and CR values indicate slower
convergence. In this study, the CT is expressed in seconds, while the CR is in aspects
of iterations.

Table 2. Forecaster implementation parameters.

Forecaster Parameters Values

Number of epochs 110
Output layer 1
Number of output neurons 1
Hidden layer 2
Neurons in hidden layer 10
Learning rate 0.0019
Momentum 0.6
Initial weight 0.1
Initial bias 0
Max 0.9
Min 0.1
Feature selection threshold 0.5
Decision variables 2
Number of objectives 0
Population size 24
Delay of weight 0.002
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A comprehensive analysis of the performance metrics for the FPP-MLP-GWDO model
and existing models is presented below.

3.1. Accuracy Evaluation

The proposed model accuracy was evaluated for both the day- and week-ahead load
forecasting below.

3.1.1. Day-Ahead Load Prediction

Figure 8 illustrates the comparison of the day-ahead load predictions for the Dayton
Ohio grid between our proposed FPP-MLP-GWDO model and the existing models (the AR,
FS-ANN, SVM-DEA, and FS-SVM-mEDE). The results clearly demonstrate the forecasting
capability of the proposed model in accurately predicting the day-ahead load for the
Dayton Ohio grid. It is evident that all the forecasters, including both the developed and
comparative models, have the capability to capture the nonlinear historical load trends. The
nonlinear trends capturing the capability of forecasters are due to the activation functions
(ReLU, sigmoidal, Tanh, etc.) and learning algorithms (Levenberg Marquardt algorithm,
MVARA, back-propagation, gradient descent, etc.).

In this work, the developed FPP-MLP-GWDO model leveraged the MVARA and ReLU
to capture nonlinear load trends. In contrast, the comparative models—the FS-ANN, SVM-
DEA, and FS-SVM-mEDE—utilized the Levenberg Marquardt algorithm and sigmoidal
function to capture nonlinear load trends. The selection of the MVARA and ReLU activation
function is based on their advantages, including fast convergence and the ability to address
challenges such as overfitting, vanishing gradients, etc. Figure 8 clearly demonstrates
that the developed FPP-MLP-GWDO model closely followed the actual pattern, thereby
outperforming the benchmark models (the AR, FS-ANN, SVM-DEA, and FS-SVM-mEDE)
in terms of load prediction accuracy. The MAPE for the FPP-MLP-GWDO model was
recorded at 1.10%, while SVM-DEA achieved 2.5%, the FS-SVM-mEDE achieved 2.1%, the
FS-ANN achieved 3.5%, and the AR achieved 4.3%. This comparison is clearly illustrated
in Figure 8, thereby affirming the superior accuracy of the FPP-MLP-GWDO model.

Figure 8. The day-ahead load forecasting of the developed model using Dayton Ohio grid data.

3.1.2. Week-Ahead Load Prediction

Figure 9 displays the week-ahead load forecasting with the hour resolution for the
proposed FPP-MLP-GWDO model and the existing benchmark frameworks (the AR, FS-
ANN, SVM-DEA, and FS-SVM-mEDE) on the Dayton Ohio grid. The FPP-MLP-GWDO
model stood out with its accurate, fast, and stable load prediction, thus surpassing the
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performance outcomes of the comparative models. Notably, the FPP-MLP-GWDO returned
load profile closely aligned with the target load, as clearly depicted in Figure 9.

The proposed hybrid model, FPP-MLP-GWDO, achieved an impressive MAPE accu-
racy of 1.12%. In contrast, the comparative models such as the AR, FS-ANN, FS-SVM-mEDE,
and SVM-DEA exhibited MAPE values of 4.6%, 3.5%, 2.1%, and 2.5%, respectively. The
superior performance of the FPP-MLP-GWDO model can be attributed to its unique combi-
nation of the MLP with the MVARA, ReLU, and GWDO optimizer. The load forecasting
curve generated by the proposed model closely aligned with the target curve, thus further
confirming its superior performance compared to the benchmark models.

Figure 9. The week-ahead load forecasting of the developed model using Dayton Ohio grid data.

The developed FPP-MLP-GWDO and the comparative models: FS-ANN, SVM-DEA,
and FS-SVM-mEDE were evaluated regarding the commutative distribution function (CDF)
of errors, as shown in Figure 10.

The findings reveal that the FPP-MLP-GWDO was superior to the comparative models
in terms of the CDF. The utilization of the MLP, with its deep layers designed to capture
essential features, enabled reliable prediction, even in highly uncertain situations. Therefore,
the proposed model presents an optimal choice for distribution system operators aiming to
enhance the efficiency of the SPG.

The statistical evaluation of the accuracy is presented in Figure 11. The MAPE serves
as a metric for quantifying the variance between the predicted and the real values. A lower
MAPE indicates higher accuracy, while a larger MAPE indicates poorer accuracy. The
accuracy analysis, in terms of the MAPE, is depicted in Figure 11. The MAPE values for the
proposed model, FS-ANN, SVM-DEA, FS-SVM-mEDE, were 1.10%, 3.5%, 2.5%, and 2.1%,
respectively.

The performance evaluations and discussions presented above conclude that the
SVM-DEA is superior to the FS-ANN in terms of the MAPE. The improved accuracy
of the SVM-DEA model can be attributed to the integration of the DEA optimizer with
the SVM forecaster. These modifications devised in the developed model contributed to
enhanced accuracy. Additionally, the developed FPP-MLP-GWDO model exhibited better
performance in terms of the accuracy than the comparative models (the AR, FS-ANN,
SVM-DEA, and FS-SVM-mEDE) illustrated in Figure 11. However, it is noteworthy that
the integration of the DEA optimizer led to an increase in the CT.
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Figure 10. Evaluation of FPP-MLP-GWDO and comparative models in terms of the CDF using the
MAPE.

Figure 11. Proposed model evaluation in terms of the MAPE using Dayton Ohio grid data.

3.2. Convergence Speed Evaluation

The developed model and the comparative models’ convergence speed is evaluated
using two aspects: the CT and CR, which are comprehensively discussed in the subsequent
section.

3.2.1. Convergence Speed in terms of the CT

First, the convergence speed evaluation in terms of the CT is presented in Figure 12.
The findings reveal that the FPP-MLP-GWDO had a CT of 299 s. In contrast, the AR,
FS-ANN, SVM-DEA, and FS-SVM-mEDE had CT times of 132 s, 159 s, 240 s, and 350 s,
respectively. The results demonstrate that the CT increased from 159 s to 240 s when
the optimizer was integrated. The intrinsic forecaster models without an optimizer and
feature selector had low CT times and vice versa. Thus, adding a preprocessing/feature
selector technique or optimizer with an intelligent forecaster increases the CT. The proposed
model had a low CT compared to similar nature hybrid forecasting model (where both
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the FS and mEDE optimizer were integrated with the forecaster). On the other hand, the
AR, FS-ANN, and SVM-DEA models had 132 s, 159 s and 240 s CT times, respectively,
which were lower than the proposed model, because, with an ANN, only the feature
selector is integrated, and no optimizer is included; with the SVM, only the DEA op-
timizer is added, and the feature selector is integrated. The findings are illustrated in
Figure 12. The proposed FPP-MLP-GWDO model reduced the CT compared to the com-
parative models for several reasons: the use of the fast-converging GWDO optimizer [34]
instead of the EDE or mEDE optimizer [38,46,47], the utilization of the MVARA and ReLU
in lieu of the sigmoid function, the adoption of the MLP, which is superior to the ANN, and
the introduction of a novel concept for the feature interaction in the FPP for feature selection
in addition to filters (irrelevancy and redundancy). In contrast, the comparative models
only employ the MI filters approach (irrelevancy and redundancy) or the DE optimizer,
which are computationally expensive. It noteworthy that the developed model needs more
CT than the FS-ANN. This notable difference in results is due to the absence of an optimizer
in the FS-ANN model (see Figure 12). Thus, the discussion concludes that a tradeoff exists
between the accuracy and the convergence speed.

Figure 12. Developed model evaluation in comparison with existing models in terms of computa-
tional time using Dayton Ohio grid data.

3.2.2. Convergence Speed in Terms of the CR

The performance analysis regarding the convergence speed in terms of the CR for
100 iterations is presented in Figure 13. The figure demonstrates the fast convergence and
effective search capability of the FPP-MLP-GWDO compared to the FS-ANN, SVM-DEA,
and FS-SVM-mEDE models. Figure 13 illustrates the MAPE of the FPP-MLP-GWDO model
and the comparative models (AR, FS-ANN, SVM-DEA, and FS-SVM-mEDE) over more
than 110 iterations. The MAPE decreased as the number of iterations increased, which was
observed for both the FPP-MLP-GWDO model and the comparative models. Nevertheless,
it is noteworthy that the proposed model demonstrated its rapid convergence and effective
search capability by reaching convergence approximately by the 18th iteration. On the other
hand, the comparative models such as the AR, FS-ANN, SVM-DEA, and FS-SVM-mEDE
converged around the 55th, 39th, 35th, and 31th iterations, respectively. This analysis
demonstrates that the GWDO is more suitable as an optimizer in hybrid models.
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Figure 13. Proposed model evaluation in comparison with existing models’ convergence speed
values in terns of the CR.

An overall evaluation of the FPP-MLP-GWDO, AR, FS-ANN, SVM-DEA, and FS-SVM-
mEDE models is summarized in Table 3. This evaluation encompasses various aspects,
including the computational complexity, CT, CR, and accuracy.

The simulations, performance analysis, and discussions mentioned above conclude
that the hybrid model FPP-MLP-GWDO demonstrates superior performance compared to
benchmark models such as the FS-SVM-mEDE, SVM-DEA, and FS-ANN in aspects of the
accuracy, CR, CT, complexity, etc.

Table 3. Evaluating the complexity, CT, CR, and accuracy of the suggested model and existing models
such as AR, FS-ANN, SVM-DEA, and FS-SVM-mEDE.

Metrics
Load Forecasters

AR FS-ANN SVM-DEA FS-SVM-mEDE FPP-MLP-GWDO

Complexity (level) Low Low Moderate High Moderate
CR (epochs) 55th 39th 35th 31th 18th

CT (s) 132 159 240 350 299
Accuracy (%) 95.7 96.5 97.5 97.9 98.999

4. Conclusions

Load forecasting is imperative for decision-making processes in the SPG, thus enabling
the efficient utilization of available generation, operational planning, load scheduling, and
the assessment of contracts. To address these needs, a novel model called FPP-MLP-GWDO
was introduced, where FPP, the MLP forecaster, and the GWDO optimizer cascaded with
the aim to achieve accurate load prediction while maintaining an affordable convergence
speed. In the FPP-MLP-GWDO model, an innovative approach to feature interaction, in
addition to filters (irrelevancy and redundancy), were used in the FPP to find favorable
features for the MLP forecaster. Considering the nonlinear and intricate nature of the
problem at hand, the GWDO was used as the optimizer to optimize the forecasting results
obtained from the MLP forecaster, thereby enhancing accuracy while ensuring reasonable
convergence. To asses the developed model performance, experiments were conducted
using the Dayton Ohio grid dataset, therein employing metrics such as accuracy (MAPE,
TIC, CC) and convergence speed (CT and CR). The findings confirm that the developed FPP-
MLP-GWDO model achieved an accuracy of 98.9%, thus surpassing benchmark models
such as the AR (95.7%), FS-ANN (96.5%), FS-SVM-mEDE (97.9%), and SVM-DEA (97.5%).
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Furthermore, the FPP-MLP-GWDO model significantly reduced the CT (299s) compared
to the FS-SVM-mEDE (350s), SVM-DEA (240s), FS-ANN (159s), and AR (132s) models.
The findings concluded that the FPP-MLP-GWDO model outperformed the comparative
models for load forecasting in aspects of accuracy and convergence speed. In future
endeavors, there is potential to expand this research for DSM applications in smart cities
using the IoTs with data analytics. Additionally, the next promising direction for future
research involves incorporating sensors into intelligent models to enhance data analytic
applications for energy optimization.
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