
Citation: Hillen, M.; De Boi, I.; De

Kerf, T.; Sels, S.; Cardenas De La Hoz,

E.; Gladines, J.; Steenackers, G.;

Penne, R.; Vanlanduit, S. Enhanced

Checkerboard Detection Using

Gaussian Processes. Mathematics

2023, 11, 4568. https://doi.org/

10.3390/math11224568

Academic Editor: Snezhana

Gocheva-Ilieva

Received: 6 October 2023

Revised: 24 October 2023

Accepted: 31 October 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Enhanced Checkerboard Detection Using Gaussian Processes
Michaël Hillen * , Ivan De Boi , Thomas De Kerf , Seppe Sels , Edgar Cardenas De La Hoz ,
Jona Gladines , Gunther Steenackers , Rudi Penne and Steve Vanlanduit

InViLab, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium;
ivan.deboi@uantwerpen.be (I.D.B.); thomas.dekerf@uantwerpen.be (T.D.K.); seppe.sels@uantwerpen.be (S.S.);
edgar.cardenas@uantwerpen.be (E.C.D.L.H.); jona.gladines@uantwerpen.be (J.G.);
gunther.steenackers@uantwerpen.be (G.S.); rudi.penne@uantwerpen.be (R.P.);
steve.vanlanduit@uantwerpen.be (S.V.)
* Correspondence: michael.hillen@uantwerpen.be

Abstract: Accurate checkerboard detection is of vital importance for computer vision applications,
and a variety of checkerboard detectors have been developed in the past decades. While some
detectors are able to handle partially occluded checkerboards, they fail when a large occlusion
completely divides the checkerboard. We propose a new checkerboard detection pipeline for occluded
checkerboards that has a robust performance under varying levels of noise, blurring, and distortion,
and for a variety of imaging modalities. This pipeline consists of a checkerboard detector and
checkerboard enhancement with Gaussian processes (GP). By learning a mapping from local board
coordinates to image pixel coordinates via a Gaussian process, we can fill in occluded corners,
expand the board beyond the image borders, allocate detected corners that do not fit an initial grid,
and remove noise on the detected corner locations. We show that our method can improve the
performance of other publicly available state-of-the-art checkerboard detectors, both in terms of
accuracy and the number of corners detected. Our code and datasets are made publicly available.
The checkerboard detector pipeline is contained within our Python checkerboard detection library,
called PyCBD. The pipeline itself is modular and easy to adapt to different use cases.

Keywords: checkerboard detection; Gaussian processes; occlusions

MSC: 60G15; 68T10

1. Introduction

Checkerboard detection is a fundamental tool in computer vision applications such
as camera calibration [1–6], projector-camera systems [7,8], simultaneous localisation and
mapping (SLAM) [9], and robotics in general [10–12]. This topic is of such high importance
that it has received a large amount of attention from the community over the past decades
and a large variety of detection methods have been developed.

Generally, checkerboard detection involves corner detection, corner refinement, and
checkerboard structure recovery [2,3,13]. The locations of the inner corners of a checker-
board pattern (X-type corners) in an image are found with a corner detector. In many cases,
the additional refinement of the found corner locations is necessary to achieve sub-pixel
accurate locations. The structure of the checkerboard is recovered by utilising the locations
and the topology of the detected corners, and the detected corners are mapped to local
checkerboard coordinates.

A wide variety of automatic checkerboard detectors already exist. OpenCV’s [14]
standard checkerboard detector, findChessboardCorners, is based on the work of [15].
An improved version of this detector is proposed in [16], which is better suited for blurred
and distorted images. More recently, a new detector called findChessboardCornersSB was
added to OpenCV [17], which is more robust to all sorts of noise and runs faster on large

Mathematics 2023, 11, 4568. https://doi.org/10.3390/math11224568 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11224568
https://doi.org/10.3390/math11224568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5859-8402
https://orcid.org/0000-0003-3060-262X
https://orcid.org/0000-0002-9368-3060
https://orcid.org/0000-0002-0590-2770
https://orcid.org/0000-0002-5098-3207
https://orcid.org/0000-0002-9306-5078
https://orcid.org/0000-0001-9944-520X
https://orcid.org/0000-0002-0921-1950
https://orcid.org/0000-0002-7975-1338
https://doi.org/10.3390/math11224568
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11224568?type=check_update&version=1

Mathematics 2023, 11, 4568 2 of 13

images compared to findChessboardCorners. The major drawbacks of the previously men-
tioned detectors are that they require the size of the checkerboard, and a thick white edge
around the checkerboard is necessary for optimal performance. A checkerboard detector
that does not require the size of the checkerboard was introduced in [13]. Their structure
recovery algorithm cannot cope with occlusions, which is particularly problematic when an
occlusion occurs near the centre of the checkerboard. OCPAD [18], which is a successor to
ROCHADE [19], and the newer version of OCamCalib [20] are both able to detect occluded
checkerboards. Convolutional neural networks (CNNs) are becoming more ubiquitous
for a large variety of detection tasks, including checkerboard corner detection [2–4,21–23].
Both [21] and [3] have developed CNN-based checkerboard detectors. Chen et al. improved
upon the structure recovery algorithm by Geiger et al. so it can be used to detect occluded
checkerboards. At the time of writing, both OpenCV implementations, OCamCalib, and
the detector by Geiger et al. are publicly available. Zhang et al. share their code and data,
but the trained weights for the CNN are omitted.

Many real world applications that rely on checkerboard detection suffer from low
quality images, drastically impacting the corner detection performance. This could be due
to low resolution, artefacts in the lenses of the camera used such as scratches or faults in
the glass, contamination on the lens itself, heavily warped images from fisheye lenses, etc.
An example where these factors accumulate is provided in Section 4.3. The image was taken
by a camera used in endoscopy. Besides the fisheye warping and the contamination in the
lens, we can also see some corners being missed due to the specular reflection. The result is
a checkerboard that is only partly detected.

In this work, we address the above mentioned problems by proposing a new checker-
board detection pipeline with additional checkerboard enhancement using Gaussian pro-
cesses (GP) [24], which can be performed after standard checkerboard detection. This
machine learning technique is used to learn a mapping from local board coordinates to
pixel coordinates, which can be used to predict the image coordinates for undetected or
occluded corners and to smooth out the checkerboard corner image locations.

All of our code and the used datasets are publicly available on GitHub. The checker-
board detector and enhancement algorithms are contained within our Python checkerboard
detection library, called PyCBD (https://github.com/InViLabUAntwerp/PyCBD, accessed
on 30 October 2023) . This library is modular and easy to adapt to different use cases.

The rest of the paper is structured as follows: Section 2 describes the methodology
implemented in the enhancement using Gaussian processes. Section 3 explains our experi-
mental setup. We provide the results in Section 4 and discuss them in Section 5. Finally, we
formulate our conclusions in Section 6.

2. Methodology

The complete pipeline is summarised in Figure 1. In this section, we will explain the
Gaussian process enhancement.

Enhancement With Gaussian Processes

GP
���������������

����������������������������

Geiger Detector
�������

���������
���������
���������
�������

�������

���������
���������
���������
�������

�������

���������
���������
���������
�������

����������
���
�	��������������

���������������

��������������

��
������������������

Figure 1. The proposed processing pipeline for enhancing a detected checkerboard using GP.

https://github.com/InViLabUAntwerp/PyCBD

Mathematics 2023, 11, 4568 3 of 13

2.1. Gaussian Processes

As a probabilistic machine learning technique, Gaussian processes (GP) can be used
to perform non-linear regression [24]. In our work, GPs are used to learn a function or
mapping from local board coordinates to pixel coordinates on an image.

Let D = {X, y} be a dataset of n observations, where X =
[
x1, x2, ..., xn

]T is an n× d

matrix of n input vectors of dimension d and y =
[
y1, y2, ..., yn

]T is a vector of continuous-
valued scalar outputs. These data points are also called training points. Regression aims to
find a mapping f : Rd → R,

y = f (x) + ε, ε ∼ N (0, σ2
ε), (1)

with ε being identically distributed observation noise. We implement a Gaussian process
to realise this mapping.

By definition, a Gaussian process can be defined as a continuous collection of random
variables, any finite subset of which is normally distributed as a continuous multivariate
distribution. In our work, the data point inputs are the local xy-coordinates of corners
in the checkerboard and the outputs are the uv pixel coordinates of those corners. Those
inputs are jointly Gaussian, which means they are not independent but co-vary. The uv-
coordinates of one corner provide some information about a corner nearby. This amount of
information decreases with distance.

A Gaussian process is fully defined by its mean m(x) and covariance function k(x, x′),
in which x and x′ are inputs. It is denoted as f (x) ∼ GP(m(x), k(x, x′)). We can always
normalise the data to zero mean [24]. The covariance function on the other hand shows
us how much the data points influence each other as a function of their relative distance.
Thus, a GP yields a distribution over functions that have a joint normal distribution,[

f
f∗

]
∼ N

([
mX
mX∗

]
,
[

KX,X KX,X∗
KX∗ ,X KX∗ ,X∗ ,

])
(2)

where X and X∗ are the input vectors of the n observed training points and n∗ the unob-
served test points, respectively. The mean values for X and X∗ are given by mX and mX∗ .
The covariance matrices KX,X , KX∗ ,X∗ , KX∗ ,X , and KX,X∗ are constructed by evaluating k at
their respective pairs of data points. In practice, we do not have access to the latent function
values directly, but are dependent on the noisy observations y.

The conditional predictive posterior distribution of the GP can be written as:

f∗|X, X∗, y, θ, σ2
ε ∼ N (E(f∗),V(f∗)) (3)

E(f∗) = mX∗ + KX∗ ,X

[
KX,X + σ2

ε I
]−1

f (4)

V(f∗) = KX∗ ,X∗ − KX∗ ,X

[
KX,X + σ2

ε I
]−1

KX,X∗ . (5)

There exists a large variety of covariance functions, also called kernels [25]. A common
choice is the squared exponential kernel, which we also implement in our work. It is
infinitely differentiable and thus yields smooth functions. This is a reasonable assumption
to make, as our checkerboards do not show discontinuities. It has the form:

kSE(x, x′) = σ2
f exp

(
−|x− x′|2

2l2

)
, (6)

where σ2
f is a height-scale factor and l the length-scale that determines the radius of

influence of the training points. For the squared exponential kernel, the hyperparameters
are σ2

f and l. The values for the hyperparameters, which we combine in the symbol

Mathematics 2023, 11, 4568 4 of 13

θ, are learned by using a gradient based optimisation algorithm to maximise the log
marginal likelihood,

log p(y|θ, X) ∝ −1
2

[
yT
[
KX,X + σ2

ε I
]
y + log |KX,X + σ2

ε I)|
]
, (7)

which is a combination of a data fit term and a complexity penalty and thus automatically
incorporates Occam’s Razor [24]. This guards the GP against overfitting. In our experiments,
we use L-BFGS, a quasi-Newton method.

2.2. Allocation of Detected Corners

Many checkerboard detectors perform checkerboard corner detection followed by a
structure recovery algorithm that allocates these detected corners to positions in a grid,
based on their location and topology. It is possible that not all detected corners are allo-
cated to this grid because they do not fit according to the structure recovery algorithm.
These detected corners could either be false positives, i.e., detected corners that are not
checkerboard corners, or checkerboard corners that are somehow missed by the structure
recovery step. The latter, for instance, could be the result of a large flare across the image,
splitting the checkerboard into two distinct islands of ordered corners. An example of this
is given in Figure 2.

(a) (b)
Figure 2. (a) Visualisation of iteration 4: red are corners for which a local coordinate is found, blue
are the remaining corners without a local coordinate and green are the predicted corner locations.
Notice how the original corner detection also detected corners in the QR code in the upper left corner
of the image. As these corner coordinates do not correspond to any predicted values of the GP, they
are deemed as false positives and filtered out. (b) The entire re-predicted checkerboard is in green.

In this section, we describe an algorithm to expand a partially detected checkerboard
with detected corners that are part of the checkerboard pattern, but were not assigned to the
grid by the structure recovery algorithm. By learning the map from local board coordinates
to pixel coordinates, we can make predictions for missing grid points, which in turn can be
used to add unassigned corners to the grid. This section relates to the last (red) box of our
method in Figure 1. Our Algorithm is given in pseudo-code in Algorithm 1.

Our algorithm takes as input a partially detected checkerboard, which has two sets
of coordinates for each corner: a set of image coordinates (boardUV) and a set of local
grid coordinates (boardXY), and the image coordinates of the unassigned detected corners
(cornersUV), which do not have local grid coordinates. The aim of the algorithm is to find
the corresponding local grid coordinates (xy) for any remaining corners, filter out corners
that are not part of the checkerboard, and find occluded corners. Each of these three sets
could be empty. This is not known at the start.

The central idea behind our algorithm is the mapping from local grid coordinates
(xy) of points on a checkerboard to pixel coordinates (uv) of points in a given image. This
mapping is learned via Gaussian processes. We implemented two distinct GPs in parallel

Mathematics 2023, 11, 4568 5 of 13

to perform regression from xy-coordinates to both the u-coordinates and the v-coordinates
of detected corners. They both take a 2D point as input and each produce a scalar value.
In Algorithm 1, the image coordinates of the corners are called cornerUV. The image and
local coordinates of the corners that are already on a (possibly impartial) checkerboard are
called boardUV and boardXY, respectively.

Algorithm 1 Algorithm to allocate all detected corners.

Require: boardXY, boardUV, cornerUV
maxNrOfIterations = 10
currIteration = 1
while true do

GPs← boardXY, boardUV
Expand local grid of corners with newXY
Predict newUV for given newXY
Match newUV with existing cornerUV
Augment boardXY, boardUV
currIteration++
if cornerUV = boardUV or
currIteration > maxNrOfIterations or
no newUV in image
then

break . leave loop
end if

end while
No more corners to be allocated
return boardUV . possibly augmented

In the second step, for each of the predicted corners, we search for a viable detected
corner. If a corner is found, then it is added to the list of checkerboard corners. Its xy-
coordinates are the input of the GP and its uv-coordinates are the detected values (not the
predicted ones). If no corner can be found within a reasonable distance, which is a fraction
of the distance between the checkerboard corners, then this prediction is dropped. This
fraction is a hyperparameter that can be tuned for the specific application. If the value is too
large, this might result in more false positives being accepted or corners being attributed to
the wrong position in the grid. Naturally, this is less of a problem when there are few or no
false corner detections. If the value is too small, it might result in too few corners being
added to the set of accepted corners. The latter manifests itself more when we are dealing
with heavily warped images.

We repeat these steps, each time with a list of corners that is extended with the newly
found ones. If no new corners can be found, then we expand the local xy-coordinates with
two rows or columns instead of one. This allows us to bridge large gaps.

We keep iterating these steps until a maximum number of steps have been reached,
no new points are within the image, or no more corners are without corresponding xy-
coordinates (all corners are accounted for). Corners not close to a predicted corner are
deemed false positives or outliers. These are falsely detected corners and are ignored on
the checkerboard.

At the end of the algorithm, all detected corners are either part of the checkerboard or
considered a false positive. A visualisation of a situation after a few iterations is given in
Figure 3.

Mathematics 2023, 11, 4568 6 of 13

(a) (b)
Figure 3. An example of a situation given by the algorithm after four iterations. The red dots
are the locations of detected checkerboard corners on a perfect checkerboard. The green dots are
locations where we predict a value for the u and v coordinates of those corners, in (a,b), respectively.
The values for the coordinates are given by the contour lines. Notice how these contour lines capture
the curvature of the checkerboard in the real world. A flat checkerboard would result in straight lines
for the contour lines. The deviation from this is the result of the bending of the paper checkerboard
as seen in Figure 2.

2.3. Gaussian Process Refinement

After running the algorithm described in Section 2.2, we retrain the GPs one more
time on all found corners. This allows us to exploit the GP in two ways.

First, we make predictions for the local xy-coordinates of corners that are without
corresponding uv-coordinates. These are locations in the image where no corner is detected,
even though the checkerboard tells us there should be one. This enables us to fill in occluded
corners and even corners that are outside the borders of the image. An example can be seen
in Figure 2, where a large flare hides some corners.

Second, we re-predict the uv-coordinates for all detected corners. In this work, we
implemented a squared exponential kernel, which yields smooth functions that are infinitely
many times differentiable [24]. This results in an extra refinement step, which removes
noise from those predicted coordinates. This is due to the fact that the GP utilises the
uv-coordinates of all corners to predict a single one and does not base its prediction only
on the surrounding pixels.

3. Experimental Setup
3.1. Dataset Generation

In this work, two datasets are generated. The first is a synthetic dataset, where checker-
boards are generated artificially and drawn on random background images. The back-
ground images are generated through DALL-E 2 and are made to resemble a typical
laboratory environment. When creating the checkerboards on the background images,
the ground truth points are known. When augmenting the images, these reference points
are transformed in the same way, thus obtaining the actual ground truth for the checker-
board locations. The second dataset, referred to as the “real dataset”, is generated using
two types of cameras, including a thermal infrared (IR) camera (Xenics Ceres) and a snap-
shot multispectral imaging (MSI) camera (Photonfocus MV0-D2048x1088-C01-HS02-G2).
The multispectral and thermal infrared cameras are specifically chosen because they pose
a challenge to current checkerboard detection due to heavy blurring or limited contrast
between checkers.

When using a synthetic dataset, the exact sub-pixel location of the corners can be
easily determined with high accuracy. This level of precision is difficult to obtain when
working with real datasets. Several different types of distortions are used to create real-

Mathematics 2023, 11, 4568 7 of 13

istic environmental conditions [26]. These techniques include Gaussian blur, shot noise,
optical distortions—such as pincushion, moustache, and barrel distortion—perspective
transformations, and rotational transformations, as is common in the literature [21]. For the
Gaussian blur, multiplicative noise, and projective distortions, different levels of augmenta-
tions are used, from slightly distorted to heavily distorted. For each category and level of
augmentation, 100 images are generated and evaluated.

3.2. Evaluation Methods

For the synthetic dataset, two metrics are used to evaluate the different methods: the
amount of fully detected checkerboards and the pixel error of the corner locations. A fully
detected checkerboard refers to cases where all the checkerboard corners are correctly
detected by the algorithm. A checkerboard corner is considered to be correctly detected if
its predicted location is within a Euclidean distance of two pixels from the true location. The
pixel error is computed as the average Euclidean distance between the predicted and true
locations of all the checkerboard corners in the image. The lower the value of this metric,
the better the accuracy of the algorithm in predicting the location of the checkerboard
corners. The subsequent processing of the image will yield better results.

4. Results

The results of both datasets, simulated and real, are discussed separately below. Four
different methods were compared to each other: the method as proposed by Geiger with
and without Gaussian enhancement (Geiger, Geiger + GP) and the industry standards
OpenCV (OpenCV) and OpenCV Sector Based approach (OpenCV SB) [17]. The Geiger
detector we used is a lightly modified version of the implementation in the libcbdetect
library [27]. It should be noted that the simulated images are tailored for use with OpenCV:
there are clear white and black edges, a thick white border around the checkerboard and
the checkerboard are always completely in the image; not doing so would result in a lower
detection rate.

4.1. Simulated Data Results

The results of the synthetic images, with varying degrees of blur, shot noise, and
perspective transformations, are displayed in Figure 4a–c. Each of these figures is composed
of two graphs. The left graph displays the number of fully detected checkerboards as a
percentage of the total. The right graph shows the average error for each method. To obtain
a fair comparison between the methods, the average of a single checkerboard is only taken
into account when four or more methods find all the points of the respective checkerboard.

The Geiger detector, and by extension the proposed Geiger + GP method, fails to
detect corners under a lower degree of blurring and shot noise compared to the OpenCV
detectors, as can be seen in the left graphs in Figure 4a,b. The right graphs in Figure 4a,b
show that the GP corner refinement is able to reduce the corner position error when blur
and shot noise is introduced into the images. The Geiger method is able to detect more
corners under higher degrees of perspective transformation compared to the OpenCV
methods, and the GP enhancement is able to improve this further for higher degrees of
perspective scaling. The OpenCV SB method performs notably worse for all degrees of
perspective transformation. This is shown in the left graph of Figure 4c.

When different types of optical distortion are applied, all checkerboard detection
methods are able to detect most if not all checkerboards, except for OpenCV SB, as shown
in Table 1. The mean pixel error is similar for all methods but worst for the Geiger detector.
The GP corner refinement is able to slightly improve this result, but not enough for it to be
better than the OpenCV methods, as shown in Table 1.

Mathematics 2023, 11, 4568 8 of 13

1 6 11 16 21 26

Blur kernel size

0

20

40

60

80

100

Fu
lly

de
te

ct
ed

ch
ec

ke
rb

oa
rd

s
in

(%
)

1 6 11 16 21 26

Blur kernel size

10−2

10−1

100

D
et

ec
tio

n
er

ro
r (

pi
xe

ls
)

Geiger + GP
Geiger

OpenCV SB
OpenCV

(a)

0 1 2 3 4 5

Multiplier size

0

20

40

60

80

100

Fu
lly

de
te

ct
ed

ch
ec

ke
rb

oa
rd

s
(in

%
)

0 1 2 3 4 5

Multiplier size

10−1

100

D
et

ec
tio

n
er

ro
r (

pi
xe

ls
)

(b)

0.10 0.15 0.20

Scaling factor

60

70

80

90

100

Fu
lly

de
te

ct
ed

ch
ec

ke
rb

oa
rd

s
(in

%
)

0.10 0.15 0.20

Scaling factor

10−1

6 × 10−2

2 × 10−1

3 × 10−1

D
et

ec
tio

n
er

ro
r (

pi
xe

ls
)

����

(c)
Figure 4. Results of testing different methods for their performance on (a) checkerboard blur, (b) shot
noise, and (c) perspective distortion.

Mathematics 2023, 11, 4568 9 of 13

Table 1. Results for different types of distortion.

Fully Detected Checkerboards (%)

Type of
Distortion Geiger Geiger + GP OpenCV OpenCV SB

Barrel 100 100 100 65
Mustache 100 100 100 49

Pincushion 85 100 100 85

Average Corner Error (Pixels)

Type of
Distortion Geiger Geiger + GP OpenCV OpenCV SB

Barrel 0.078 0.069 0.051 0.032
Sunglints 0.085 0.066 0.063 0.048

Pincushion 0.179 0.178 0.170 0.140

When there are occlusions added to the images, we see that, using the GP enhancement
step, it is still possible to obtain fully detected checkerboards. The average pixel error for
the occluded pixels is still in the sub-pixel range, as can be seen in Table 2.

Table 2. Results for increasing amounts of occluded corners introduced into the dataset. Only the
results for the Geiger + GP method are shown here. The OpenCV methods are not included as they
are unable to cope with occlusions. The reported pixel error is only for specific occluded pixels.

Number of Missing Corners Average Corner Error (Pixels)

1 0.0226
3 0.0589
5 0.1023

4.2. Real Data Results

When reviewing the results in Table 3, it becomes evident that significant variations ex-
ist among the different datasets. However, the Geiger method with the proposed Gaussian
process enhancement consistently demonstrates the best overall performance. The checker-
boards in the IR dataset originally have white checkers and dark borders; in other words,
the checkerboards in the images look like the inverse of regular checkerboard targets.
Therefore, we performed two tests on the IR dataset—with the original images and with
images whose grayscale was inverted so the checkerboards look like regular checkerboards.
We noticed a substantial disparity between the IR and IR-inverted datasets, indicating that
the performance of both OpenCV methods is adversely affected when the images are not
preprocessed beforehand. Upon inverting the infrared images, we observed improvements
across all methods, with the most significant enhancement occurring in the case of the
OpenCV method, resulting in an eightfold increase in the amount of detected corners.
Furthermore, a noteworthy observation can be made when analysing the results of the MSI
on the large dataset. Surprisingly, the Geiger method outperforms the others, even though
the simulated dataset results indicated that it struggled with increasing augmentations com-
pared to the alternative methods. The application of Gaussian process enhancement further
bolsters the detection of checkerboards, particularly in the case of large checkerboards
(14 × 9). This substantial increase can be attributed to the higher chances of missing a
corner in larger checkerboards. While a similar trend is observed with small checkerboards,
the OpenCV method performs relatively better but still falls short of the performance
achieved by the Geiger method with the proposed Gaussian process enhancement.

Mathematics 2023, 11, 4568 10 of 13

Table 3. Results for the different checkerboard detection methods for both the infrared (IR) images
and the multispectral images (MSI). For the IR images, one set of results is without inverting the
images and one with inverting the images. For the MSI images, a large and a small checkerboard are
evaluated. The values in bold represent the highest scores.

Detected Checkers (%)

Method IR IR Inverted MSI Large CB MSI Small CB

OpenCV 12.65 96.15 14.23 58.4
OpenCV SB 6.44 46.15 24.21 25.6

Geiger 67.25 84.61 22.54 13.43
Geiger + GP 95.77 96.15 77.64 88.8

4.3. Use Case: Endoscopic Camera Calibration

As a final demonstration of our method, we describe the use case of working with
images of calibration patterns taken to calibrate a Pillcam COLON2 double endoscope
camera capsule. Several difficulties arise when calibrating this device. The resolution is low
(320 × 320), the warping of the image is significant (172° field of view), and even the most
minute artefacts in the glass casing are visible in the image. Detecting a checkerboard with
the Geiger method fails, as not every corner is detected. This results in a significant portion
of the corners not being used in the checkerboard. The current workaround is to add
them manually, which is labour-intensive. Our method can infer the missing corners. We
demonstrate this on images from the work of [28], taken from their accompanying online
GitHub repository. An example can be seen in Figure 5. This image of a checkerboard
is of very low quality, which resulted in several occlusions. The upper right part can no
longer be fitted in a checkerboard by the Geiger method. Our Gaussian process method
expands the initially-found checkerboard to include other corners, and predicts corner
uv-coordinates for occluded corners as well. Moreover, the entire checkerboard is refined.

(a) (b)
Figure 5. An example of a low quality image of a checkerboard detected by (a) Geiger and (b) Geiger
plus the Gaussian process enhancement.

5. Discussion

In this research, we are working with the mean of the posterior distribution of the Gaus-
sian processes (the predicted uv-coordinates in an image for a given local xy-coordinate on
a checkerboard); this tends to smooth out the results [24]. A squared exponential kernel is
implemented, resulting in infinitely differentiable, and thus smooth, functions. The overall
result is a checkerboard that has been smoothed out. This can be seen as removing noise or
jitter on the found corners. We exploit this feature as an extra final step of corner refinement.
However, caution is advised when working with heavily warped checkerboards. When

Mathematics 2023, 11, 4568 11 of 13

working with GPs, one could overly smooth out the corners in cases of heavily warped
checkerboards or images from fisheye lenses. This could be addressed with more complex
kernels or even deep Gaussian processes that will be investigated in future work.

Another way to look at this is through the insight that a GP will adjust the coordinates
for a single corner based on the coordinates of all other corners. In a GP, all data points—
in our case corners—are assumed to be jointly Gaussian [24]. This means they are not
independent of each other—they co-vary. Other refinement methods are only based the
values of neighbouring pixels, not the whole (possibly warped) grid. The justification for
this is the fact that the underlying truth is a regularly spaced rectangular pattern.

The GP enhancement method can be used to interpolate and extrapolate point locations
in between the corners and even outside the checkerboard, assuming the curvature pattern
can be described by the points in the board. This allows us to unwarp and frontalise
the image. We simply predict the corresponding pixel uv-coordinate for a dense grid of
xy-coordinates. A demonstration can be seen in Figure 6.

(a) (b)

(c) (d)

Figure 6. (a) A Gaussian process predicted the (green) corners of a checkerboard. Notice how the
occlusions from the lighting are also filled in. (b) This model can be used to dewarp and frontalise an
image. (c) A checkerboard with points beyond the image borders. (d) The dewarped and frontalised
result, leaving pixels outside the original image black.

In future research, we will explore the possibility of working with fiducial markers [29]
to assert the orientation of the board. As our current method is able to predict corners
and, in fact, rows and columns that are not even on the image, the addition of fiducials
becomes necessary to decide to expand the board in the image to the left, right, up, or
downward directions.

Even though Gaussian processes can perform well in low data regimes [24], some
numerical instabilities and oddities might occur. For instance, when working with a slightly
warped 3 × 3 checkerboard, there is not much information upon which to build a solid
statistical model. The danger is that, from a Bayesian point of view, the corners could
be explained by considering their coordinates as pure noise [30]. This results in patterns
for the predicted checkerboard corners that simply do not make sense. In this case, our
software (version 1.2.2) allows for end-users to incorporate prior knowledge in the model
by adjusting some of the options and hyperparameters in the software. In the code itself,

Mathematics 2023, 11, 4568 12 of 13

we provide a lot of comments to guide the end-user. We suggest two things to try: First,
put a lower limit on the length scales. This will automatically force the model to consider
configurations in which the points are on a smooth grid, which in fact they are. Second,
consider an upper level on the noise. This will force the model to stay close to the values of
the detected corners. All of this is included in comments in the code.

6. Conclusions

In this paper, we designed a new checkerboard detection pipeline, consisting of a
checkerboard detector and a checkerboard enhancement with Gaussian processes. This
research has shown that our Gaussian process enhancement is able to improve checkerboard
detection results. By learning a mapping from local board coordinates to image pixel
coordinates via a Gaussian process, we can fill in occluded corners, expand the board
beyond the image borders, allocate detected corners that do not fit an initial grid, and
remove noise on the detected corner’s locations. We explained the role Gaussian processes
play in enhancing the results. Lastly, we provide all our code as open source, in the form of
a modular and easy-to-use Python checkerboard detection library called PyCBD.

The findings will be of interest to people working on camera calibration, camera
localisation, SLAM, stereoscopic vision, depth sensing, and many others.

Author Contributions: Conceptualization, I.D.B.; software, I.D.B., M.H., S.S. and E.C.D.L.H.; valida-
tion, M.H. and J.G.; formal analysis, T.D.K.; investigation, I.D.B., M.H. and T.D.K.; resources, G.S.,
S.V. and R.P.; data curation, T.D.K.; writing—original draft preparation, I.D.B., M.H. and T.D.K.;
writing—review and editing, S.S., S.V. and R.P.; visualization, J.G.; Project administration, M.H.;
supervision, G.S., S.V. and R.P.; funding acquisition, G.S., S.V. and R.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by ETF Fund—PhairywinD project by Belgium SPF Economy and
the University of Antwerp BOF [FFB200259, 42339, 39928].

Data Availability Statement: The code and datasets used in this article will be made available on a
public GitHub repository (https://github.com/InViLabUAntwerp/PyCBD, accessed on 30 October
2023) and distributed through a PyPi package under the name PyCBD.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous Localisation and Mapping
CNN Convolutional Neural Network
GP Gaussian Process
MSI Multispectral Imaging
IR Infrared

References
1. Lochman, Y.; Liepieshov, K.; Chen, J.; Perdoch, M.; Zach, C.; Pritts, J. BabelCalib: A Universal Approach to Calibrating Central

Cameras. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17
October 2021; pp. 15253–15262.

2. Chen, B.; Liu, Y.; Xiong, C. Automatic checkerboard detection for robust camera calibration. In Proceedings of the 2021 IEEE
International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6.

3. Zhang, Y.; Zhao, X.; Qian, D. Learning-Based Distortion Correction and Feature Detection for High Precision and Robust Camera
Calibration. IEEE Robot. Autom. Lett. 2022, 7, 10470–10477. [CrossRef]

4. Kang, J.; Yoon, H.; Lee, S.; Lee, S. Sparse Checkerboard Corner Detection from Global Perspective. In Proceedings of the 2021
IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala, Terengganu, 13–15 September 2021;
pp. 12–17. [CrossRef]

5. Sels, S.; Ribbens, B.; Vanlanduit, S.; Penne, R. Camera Calibration Using Gray Code. Sensors 2019, 19, 246. [CrossRef]
6. Albarelli, A.; Rodolà, E.; Torsello, A. Robust Camera Calibration using Inaccurate Targets. In Proceedings of the British Machine

Vision Conference, Aberystwyth, UK, 30 August–2 September 2010; BMVA Press: Durham, UK, 2010; pp. 16.1–16.10. . [CrossRef]

https://github.com/InViLabUAntwerp/PyCBD
http://doi.org/10.1109/LRA.2022.3192610
http://dx.doi.org/10.1109/ICSIPA52582.2021.9576808
http://dx.doi.org/10.3390/s19020246
.
http://dx.doi.org/10.5244/C.24.16

Mathematics 2023, 11, 4568 13 of 13

7. Sun, W.; Yang, X.; Xiao, S.; Hu, W. Robust Checkerboard Recognition for Efficient Nonplanar Geometry Registration in Projector-
Camera Systems. In Proceedings of the 5th ACM/IEEE International Workshop on Projector Camera Systems, Marina del Rey,
CA, USA, 10 August 2008; Association for Computing Machinery: New York, NY, USA, 2008; PROCAMS ’08, pp. 1–7. [CrossRef]

8. Juarez-Salazar, R.; Diaz-Ramirez, V.H. Flexible camera-projector calibration using superposed color checkerboards. Opt. Lasers
Eng. 2019, 120, 59–65. [CrossRef]

9. Ito, A.; Li, J.; Maeda, Y. SLAM-Integrated Kinematic Calibration Using Checkerboard Patterns. In Proceedings of the 2020
IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 551–556.

10. Enebuse, I.; Foo, M.; Ibrahim, B.S.K.K.; Ahmed, H.; Supmak, F.; Eyobu, O.S. A Comparative Review of Hand-Eye Calibration
Techniques for Vision Guided Robots. IEEE Access 2021, 9, 113143–113155. [CrossRef]

11. Gui, Y.; Wu, Y.; Wang, Y.; Yao, C. Visual Image Processing of Humanoid Go Game Robot Based on OPENCV. In Proceedings of
the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 3713–3716. [CrossRef]

12. Vaníček, O.; Chaluš, M.; Liška, J. 3D Vision Based Calibration Approach for Robotic Laser Surfacing Applications. In Proceedings
of the 2022 20th International Conference on Mechatronics-Mechatronika (ME), Pilsen, Czech Republic, 7–9 December 2022;
pp. 1–6.

13. Geiger, A.; Moosmann, F.; Car, O.; Schuster, B. Automatic camera and range sensor calibration using a single shot. In Proceedings
of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 3936–3943.
[CrossRef]

14. Kaehler, A. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library; O’Reilly Media: Sebastopol, CA, USA, 2016.
15. Vezhnevets, V. OpenCV Calibration Object Detection. 2005. Available online: https://www.graphicon.ru/oldgr/en/research/

calibration/opencv.html (accessed on 3 March 2023).
16. Rufli, M.; Scaramuzza, D.; Siegwart, R. Automatic detection of checkerboards on blurred and distorted images. In Proceedings of

the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Nice, France, 22–26 September 2008; pp.
3121–3126. [CrossRef]

17. Duda, A.; Frese, U. Accurate Detection and Localization of Checkerboard Corners for Calibration. In Proceedings of the British
Machine Vision Conference, Newcastle upon Tyne, UK, 3–6 September 2018; pp. 1–10.

18. Fuersattel, P.; Dotenco, S.; Placht, S.; Balda, M.; Maier, A.; Riess, C. OCPAD—Occluded checkerboard pattern detector. In
Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10
March 2016; pp. 1–9. [CrossRef]

19. Placht, S.; Fürsattel, P.; Mengue, E.A.; Hofmann, H.; Schaller, C.; Balda, M.; Angelopoulou, E. ROCHADE: Robust Checkerboard
Advanced Detection for Camera Calibration. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12
September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Spring: Cham, Switzerland, 2014; pp. 766–779.

20. Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Toolbox for Easily Calibrating Omnidirectional Cameras. In Proceedings of the
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 5695–5701.
[CrossRef]

21. Chen, B.; Xiong, C.; Zhang, Q. CCDN: Checkerboard Corner Detection Network for Robust Camera Calibration. In Proceedings
of the Intelligent Robotics and Applications, Newcastle, NSW, Australia, 9–11 August 2018; Proceedings, Part I; Chen, Z., Mendes,
A., Yan, Y., Chen, S., Eds.; Spring: Cham, Switzerland, 2018; pp. 324–334.

22. Wang, G.; Zheng, H.; Zhang, X. A Robust Checkerboard Corner Detection Method for Camera Calibration Based on Improved
YOLOX. Front. Phys. 2022, 9, 819019. [CrossRef]

23. Wu, H.; Wan, Y. A highly accurate and robust deep checkerboard corner detector. Electron. Lett. 2021, 57, 317–320. [CrossRef]
24. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006.
25. Duvenaud, D.K.; College, P. Automatic Model Construction with Gaussian Processes. Ph.D. Thesis, University of Cambridge,

Cambridge, UK, 2014.
26. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image

Augmentations. Information 2020, 11, 125. [CrossRef]
27. ftdlyc. Libcbdetect: A Library for Chessboard Detection. Available online: https://github.com/ftdlyc/libcbdetect (accessed on 2

March 2023).
28. Ozyoruk, K.B.; Gokceler, G.I.; Bobrow, T.L.; Coskun, G.; Incetan, K.; Almalioglu, Y.; Mahmood, F.; Curto, E.; Perdigoto, L.;

Oliveira, M.; et al. EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for
endoscopic videos. Med. Image Anal. 2021, 71, 102058. [CrossRef] [PubMed]

29. Kalaitzakis, M.; Cain, B.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Fiducial markers for pose estimation: Overview,
applications and experimental comparison of the artag, apriltag, aruco and stag markers. J. Intell. Robot. Syst. 2021, 101, 71.
[CrossRef]

30. Lázaro-Gredilla, M. Bayesian warped Gaussian processes. In Proceedings of the 25th International Conference on Neural
Information Processing Systems—Volume 1, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1619–1627.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1394622.1394625
http://dx.doi.org/10.1016/j.optlaseng.2019.02.016
http://dx.doi.org/10.1109/ACCESS.2021.3104514
http://dx.doi.org/10.1109/CCDC49329.2020.9164541
http://dx.doi.org/10.1109/ICRA.2012.6224570
https://www.graphicon.ru/oldgr/en/research/calibration/opencv.html
https://www.graphicon.ru/oldgr/en/research/calibration/opencv.html
http://dx.doi.org/10.1109/IROS.2008.4650703
http://dx.doi.org/10.1109/WACV.2016.7477565
http://dx.doi.org/10.1109/IROS.2006.282372
http://dx.doi.org/10.3389/fphy.2021.819019
http://dx.doi.org/10.1049/ell2.12056
http://dx.doi.org/10.3390/info11020125
https://github.com/ftdlyc/libcbdetect
http://dx.doi.org/10.1016/j.media.2021.102058
http://www.ncbi.nlm.nih.gov/pubmed/33930829
http://dx.doi.org/10.1007/s10846-020-01307-9

	Introduction
	Methodology
	Gaussian Processes
	Allocation of Detected Corners
	Gaussian Process Refinement

	Experimental Setup
	Dataset Generation
	Evaluation Methods

	Results
	Simulated Data Results
	Real Data Results
	Use Case: Endoscopic Camera Calibration

	Discussion
	Conclusions
	References

