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Abstract: Resistance spot welding poses potential challenges for automotive manufacturing enter-
prises with regard to ensuring the real-time and accurate quality detection of each welding spot.
Nowadays, many machine learning and deep learning methods have been proposed to utilize moni-
tored sensor data to solve these challenges. However, poor detection results or process interpretations
are still unaddressed key issues. To bridge the gap, this paper takes the automotive bodies as objects,
and proposes a resistance spot welding quality online detection method with dynamic current and
resistance data based on a combined convolutional neural network (CNN), long short-term mem-
ory network (LSTM), and an attention mechanism. First, an overall online detection framework
using an edge–cloud collaboration was proposed. Second, an online quality detection model was
established. In it, the combined CNN and LSTM network were used to extract local detail features
and temporal correlation features of the data. The attention mechanism was introduced to improve
the interpretability of the model. Moreover, the imbalanced data problem was also solved with a
multiclass imbalance algorithm and weighted cross-entropy loss function. Finally, an experimental
verification and analysis were conducted. The results show that the quality detection accuracy was
98.5%. The proposed method has good detection performance and real-time detection abilities for the
in-site welding processes of automobile bodies.

Keywords: automotive bodies; resistance spot welding; welding quality; online detection; edge–
cloud collaboration

MSC: 90B25

1. Introduction

The automobile industry, as one pillar industry of the national economy, plays an
important role in promoting the development of China’s economy and society. In automo-
bile manufacturing, welding is the main process used to join the weldments to form an
automotive body. Welding quality can greatly affect the quality of the entire automobile.
Resistance spot welding (RSW), as a common welding method, is widely used. Its welding
principle is that under the pressure and heating of the two metal electrodes of the welding
gun, the automobile body weldments are melted to ultimately form a reliable welding
nugget with which to achieve the connection of metal plates. The detailed RSW process
is shown in Figure 1. RSW is widely used in automobile body connections due to its
advantages of energy concentration, low cost, high production efficiency, and the ease with
which it is automated. According to statistics, there are approximately 4000 to 6000 welding
spots from RSW on one automobile body, accounting for over 90% of its connections. In
these spots, even though optimal process parameters are set, in-site welding defects, such
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as overburning and cold welding, can also be generated during the actual production
process. Therefore, dynamically ensuring the quality of RSW is extremely important [1,2].
In this process, quality detection (and also inspection) is foundational. Nowadays, most en-
terprises still use manual offline inspection for RSW, such as total destruction inspection or
manual sampling inspection. These can lead to low detection efficiency, high detection cost,
and an inability to ensure whole detection for each welding spot. Moreover, the traditional
sampling inspection process is susceptible to randomness. Many defects can be ignored
or not identified, which may not fully ensure the quality of the welding. Therefore, it is
urgent to investigate more efficient and convenient methods to fulfill detection capabilities
for ensuring RSW quality [3].
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Fortunately, along with the development of new generation information and artificial
intelligence technology [5], data-driven welding quality online detection methods [6,7] have
attracted the attention of researchers. The data used in this technology involve monitored
dynamic resistance [8–10], electrode displacement [11,12], welding voltage [13,14], dynamic
power [15,16] and welding spot image data [17–21]. Various machine learning and deep
learning models have been developed and applied using these data. Although most of
this research can implement online quality detection for RSW, there are still the following
shortcomings and limitations:

(1) Traditional machine learning methods require manual feature extraction and rely
heavily on expert knowledge and manual experience. Improper features and poor
knowledge can lead to poor detection accuracy.

(2) Deep learning methods can automatically extract features, avoiding the shortcomings
of manual extraction. However, these models are regarded as black boxes, and
their interpretability is relatively poor. Meanwhile, the proposed deep learning
models mainly focus on vision detection and other combined dynamic data are
scarcely considered. This can lead to lower detection accuracy for the inner defects of
welding nuggets.

(3) In resistance spot welding, in-site quality data are extremely imbalanced. Large
amounts of data are normal and defect data, such as cold welding and overburn-
ing, are relatively rare. However, most studies have not considered the impact of
imbalanced data on model detection performance.

In addition, automobile production is a typical large-scale flowline production mode,
which can generate a large amount of production data at the same time. For example,
a typical welding workshop can have more than 150 welding robots fulfilling welding
operations simultaneously. A higher concurrency of tasks and a large volume of sensor
data can be generated. In these cases, the traditional cloud-based centralized processing
methods with huge data storage, high task calculations and high transmission latency
can make it difficult to implement the timely detection of each welding spot. Thus, it
is necessary to explore novel detection methods to meet the real-time requirements for
resistance spot welding processes [22].
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In response to the above shortcomings, this paper proposes a combined CNN-LSTM
and attention-mechanism-based RSW quality online detection method for automotive
bodies under an edge–cloud collaboration framework. It aims to develop a novel method
to improve detection efficiency and detection accuracy compared with traditional manual
inspection and machine learning methods. Moreover, different to conventional visual
detections with deep learning, this paper attempts to utilize dynamic current and resistance
data to improve detection ability for inner nuggets, and not surface images. Meanwhile, the
interpretability and data problems are also integrated to enhance detection performance.
The main innovations and contributions of the method include:

(1) The constructed edge–cloud collaboration framework enables real-time, fast, and
accurate detection in RSW processes. On basis of the “cloud-based model training,
edge-based online detection” mode, cloud pressure and transmission delay can be
reduced. Meanwhile, the deployed edge detection model can directly input the
monitored dynamic time-series welding current data and resistance data for the
timely identification of quality defects.

(2) The CNN and LSTM models are combined and applied from the integrated dynamic
current and resistance data, and not by using static process parameters or vision
image data. The CNN is applied to automatically extract the local detail features of
the input data. The LSTM is integrated to learn the time-series correlation features
of the data. This combination not only avoids improper manual extraction, it also
considers the time-series characteristics from welding processes. Moreover, unlike
traditional vision detection methods, inner defects can also be avoided.

(3) The interpretability of the model and imbalance problems from the data are all
considered and integrated within the method. In our paper, the attention mechanism
is introduced to improve the interpretability of the model. The synthetic minority
oversampling technique for multiclass imbalance (SMOM) algorithm and weighted
cross-entropy loss function are also applied to solve the problem of imbalanced data.

(4) The proposed model and method are verified with a real in-site welding production
process, and exhibited higher detection accuracy, better detection performance and
real-time detection abilities.

The remainder of the paper is organized as follows: Section 2 reviews the related
works and Section 3 presents the online quality detection operation framework for RSW.
In Section 4, the proposed online quality detection model for RSW is presented. The
experimental validation and discussion are presented in Section 5. Finally, Section 6
presents the conclusion of this study.

2. Related Research

In resistance spot welding, the formation process of the welding nugget (as shown in
Figure 1) is fast and invisible. In order to detect welding quality, it is necessary to reveal
the real-time correlation between the welding condition data/result images and welding
quality. In recent years, most researchers have found that the dynamic welding current,
dynamic resistance, electrode displacement, welding voltage, dynamic power, welding
sound and welding spot image data can greatly influence or reveal the quality results.
Some related machine learning and deep learning methods have also been developed [23]:

(1) In machine learning, Xing et al. [8] used dynamic resistance data as an input to
classify the quality of RSW using random forests and evaluated the importance of
features in the data. Zhao et al. [9] extracted 20 features from dynamic welding
resistance, and thus built a multiple linear regression model to predict welding joint
strength with errors of less than 10%. Zhang et al. [11,12] utilized the electrode
displacement condition to implement a detection process based on a genetic k-means
algorithm, probabilistic neural network, and Chernoff faces. Wan et al. [13] analyzed
the correlation between voltage changes and the formation process of welding nuggets
and manually extracted the critical factors to implement the quality classification with
a generalized regression neural network. Wang [24] combined data from the dynamic
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welding current, welding voltage and electrode pressure to develop a hidden Markov
model to determine welding quality. Zhou et al. [25] applied logistic regression,
support vector machine, and a recurrent neural network to detect the splashing
quality problem with dynamic resistance data. From the above research, it can be seen
that most scholars focus on one or multiple monitored datasets to ensure the quality
of detection processes. However, manual feature extraction is also critical [26,27] for
machine models. In these models, a huge amount of real in-site welding data and
knowledge are lacking, which leads to difficulties in determining the most effective
features. Therefore, detection results and precision can be poor. In response to
the above shortages, novel deep learning methods have been gradually applied to
RWS processes.

(2) Using deep learning, Dai et al. [18] proposed a small object detection network model
based on YOLOv3 (You Only Look Once) and achieved the resistance spot welding
vision inspection of an automobile body. Yang et al. [28] combined GoogleNet, trans-
fer learning, and a multi-layer perceptron network to automatically extract welding
image features to implement quality classification. Xiao et al. [20,21] proposed a
convolutional neural network AcmNet and RswNet with automotive welding images
and introduced a dual-scale attention mechanism to improve the model’s perfor-
mance. Ding et al. [19] proposed an in situ weld surface defect recognition method
based on an improved lightweight MobileNetV2 algorithm where the image feature
information was refined automatically with a convolutional block attention module.
Dai et al. [10] focused on the dynamic resistance signals of automotive production
lines and integrated welding process stability with a one-dimensional convolutional
neural network model to predict welding quality. Bogaerts et al. [29] combined au-
toencoder deep learning and Gaussian process regress methods to predict resistance
spot welding quality with a dynamic resistance curve. Zhou et al. [30] considered
the vibration excitation response signals of welded joints and constructed the real
spatial–temporal attention denoising network, a deep learning model. Compared
with traditional machine learning methods, deep learning can obtain better detection
results. Vision detection is widely used in these processes.

Overall, deep learning methods have become the main research trend in welding
processes with real-time monitoring data. However, it can be seen that most of this research
mainly focuses on vision detection from image signals [18–21,28]. Real-time data, such
as welding current, dynamic resistance, and dynamic power, researched in the machine
learning processes, have been considered less frequently in deep learning up to now.
Even though the image signals are greatly useful, they can only be applied to identify
surface defect problems; critical inner defects cannot be detected. Meanwhile, the lower
interpretability for deep learning [10,20,30] and imbalanced data for RSW processes [7] are
gradually drawing more and more attention from researchers. However, research on these
processes are still scarce. In sum, considering the above shortcomings, this paper focuses
on dynamic current and resistance data, and proposes a novel combined CNN-LSTM
and attention mechanism-based resistance spot welding quality online detection method.
This method also integrates interpretability and imbalanced data problems. Meanwhile,
the edge–cloud collaboration framework of the model application and the time-series
correlation characteristics of monitoring data are also considered.

3. Operation Framework under Edge–Cloud Collaboration

In order to address the shortcomings of traditional cloud-based centralized data
processing methods, edge computing has been introduced into real-time online detection
processes. Edge computing can not only reduce the pressure of the cloud center, but
also improve the real-time performance of the system by transferring the storage and
calculation of some data to edge equipment. The edge–cloud collaboration can fully
utilize the characteristics of the low latency of edge and the strong computing ability of
cloud [31,32], and thus to enable online quality detection for RSW. Therefore, based on the
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edge–cloud collaboration, an operation framework of online quality detection for RSW is
proposed, as shown in Figure 2.

Figure 2. Operation framework of online quality detection method for RSW under edge–cloud
collaboration.

In the above framework, the core idea is “cloud-based deep learning model training
and edge-based online quality detection”. Concretely, in terms of model training, edge
computing equipment collects real-time welding data and saves the data in edge databases.
The edge databases periodically upload the welding sample data to the corresponding cloud
database to update the data used for model training. When the data upload is completed,
the RSW quality detection model is trained through the cloud’s powerful computing ability,
and is then updated and saved to the cloud model. In terms of online quality detection, the
model in the cloud model library can be downloaded and deployed to the edge computing
equipment. In this case, once the cloud model is updated, the deployed edge model can be
synchronized. During the production welding stage, the real-time welding data collected
by the edge computing equipment are input into the corresponding edge model for online
detection. Furthermore, if defects are identified, the resulting data are uploaded to the
cloud database for the next model training and updating process.

4. Online Quality Detection Model for RSW

This Section proposes an online quality detection model for RSW by combining the
CNN-LSTM network and attention mechanism, as shown in Figure 3. The model first
uses the CNN-LSTM network to automatically extract local detail features and time-series
correlation features of the welding data, and then uses the attention mechanism to focus on
the critical main features that are most useful for the output results, improving the model’s
effectiveness and endowing the model with interpretability [33,34]. The proposed model
consists of five parts: an input layer, convolutional neural network (CNN) layer, long
short-term memory network (LSTM) layer, attention mechanism layer and output layer.
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4.1. Input Layer

The inputs of the online quality detection model are two time-series datasets: welding
current data and welding resistance data. These reveal the different welding characteristics
and welding defects at different stages. For example, at the initial stage, the current can
generate fluctuations. If the fluctuation is abnormal, the potential defects can be identified.
Meanwhile, at the middle stage, the current is more stable and abnormal variations in the
resistance can occur. Therefore, it is necessary to fuse the two datasets to reveal the entire
welding characteristics, and thus improve the detection abilities. Detailed data descriptions
are given in Section 5.1.

To achieve the fusion of the two types of data, the input layer splices and fuses the
one-dimensional current data C = (c1, c2, ..., cn), resistance data R = (r1, r2, ..., rn) where the ci
and ri are the instantaneous values at the sampling time ti, and n is number of samplings for
each welding spot under the frequency of 1 KHz. This fusion generates two-dimensional
time-series data X = (C; R) = [x1, x2, ..., xn] (xi = (ci, ri)) as the subsequent input for the
model to identify the quality results.

4.2. CNN Layer

The second part is the CNN layer. CNN is one of the most commonly used networks
in deep learning and is widely used in fields such as image recognition and fault diagnosis.
CNN has the characteristics of sparse connections and weight-sharing and has superior
capabilities in extracting local features for the original data [21]. The typical CNN includes
convolutional layers, pooling layers, and a full connection layer.

In our model, the proposed CNN layer takes 2D time-series data X (2 × 240 × 1, as
shown in Figure 3) as an input to automatically extract local detail features, reduce data
dimensions and retain main features, and finally forms the optimal sequence feature matrix
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(1× 58× 24, as shown in Figure 3). In this process, the CNN concatenates two convolutional
layers (Conv1 and Conv2) and two maximum pooling layers (Pool1 and Pool2) with the
structure of Conv1-Pool1-Conv2-Pool2. The convolutional layer utilizes the data X and
convolutional kernel to fulfill the convolutional operations, and then implements the
feature extractions with the activation function. The pooling layers combine the extracted
feature to realize the feature compression and information filtering, and to finally retain
most of the main features. The detail layer relations and feature extractions are displayed
in Figure 3.

Note that in the convolutional process, the sigmoid and tanh activation function are
replaced as leaky ReLU. This not only avoids the problems of gradient disappearance and
gradient explosion caused by sigmoid and tanh, but also avoids the problem of neuron
death in the negative half-axis of the traditional ReLU function. The detailed leaky ReLU is
formulated as:

f (x) =

{
αx x ≤ 0
x x > 0

(1)

where α is the leaky ReLU negative axis slope.
In addition, to inhibit overfitting of the model, the dropout layers are added after

each pooling layer in the training process, improving the generalization of the model by
randomly deleting neurons under the given probability.

4.3. LSTM Layer

The third part is the LSTM layer. Since RSW data are time-series data, and the CNN
has poor ability in processing time-series information, in order to better extract the time
correlation characteristics of the data, the LSTM network is introduced to further learn
the time correlations of features. The LSTM network is an improvement of the recurrent
neural network RNN, which can effectively avoid the problem of gradient vanishing and
exploding by selectively adding and forgetting previous information through three gate
control units: an input gate, forgetting gate, and output gate. Details of the LSTM methods
can be referenced in the related research [35,36].

In our paper, the input of LSTM is the extracted feature matrix (1 × 58 × 24) from
CNN, while the output is denoted as H = [h1, h2, ..., hr] where r is set as 58. The ht of step t
is calculated as follows [33]:

it = σ(Wiht−1 + Ui pt + bi)

ft = σ(W f pt + U f ht−1 + b f )
∼
c t = tanh(Wc pt + Ucht−1 + bc)

ct = ft ⊗ ct−1 + it ⊗
∼
c t

ot = σ(Wo pt + Uoht−1 + bo)

ht = ot ⊗ tanh(ct)

(2)

where σ is the sigmoid activation function; pt (1 × 24) is the input of LSTM cell of step t; it,
ft, and ot represent the input gate, forget gate, and output gate; W*, U*, and b* (*∈i, f, c, o)
denote the LSTM network parameters to be learned; and

∼
c t is the long-term state obtained

by the nonlinear function.

4.4. Attention Mechanism Layer

The fourth part is the attention mechanism layer. The attention mechanism can enable
the model to focus its attention on information that is more useful for the output results,
suppressing useless interference information, improving the detection accuracy of the
model, and endowing the model with interpretability [37,38]. The structure of the attention
mechanism module in our model is shown in Figure 4.
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Figure 4. Structure of the attention mechanism module.

First, the time-series data H = [h1, h2, ..., hr] are inputted to a full connection layer to
obtain the attention weight matrix E = [e1, e2, ..., er]. The weight value et is calculated with
the attention-scoring function, as shown in Equation (3). Second, the obtained attention
weight matrix is normalized through the softmax layer to obtain the normalized weight
αt of each input feature ht. Third, the input features and their weights are multiplied
and summed to obtain the final output yatt of the attention mechanism. The calculation
formula is:

et = V tanh(Wht + b)
αt = so f t max(et) =

exp(et)
r

∑
t=1

exp(et)

yatt =
r

∑
t=1

αtht

(3)

where V and W are the weight coefficients, and b denotes the bias coefficient.
Finally, the output yatt obtained by the attention layer is used to realize the final

classification of RSW quality through the following softmax activation function in the
output layer.

5. Experimental Validation and Analysis

To evaluate the effectiveness and accuracy of the proposed method, this paper takes
the RSW process of a real automobile manufacturing enterprise as the case and obtains
actual welding production data to conduct the experimental validation. The experimental
algorithm programming is based on Python 3.7 and TensorFlow version 2.1.0, with the
hardware configuration of Intel Core i5-10400F (2.9 GHz) CPU and 16 GB RAM.

5.1. Description of RSW Data

The enterprise workshop uses welding robots for welding, with current and voltage
sensors integrated inside the welding gun. The real-time current and voltage data of the
welding process can be obtained at a frequency of 1 KHz, and the dynamic resistance data
can be calculated by the formula Rt = Ut/It. The obtained data will be saved to the welding
controller. The real-time data of the welding process can finally be obtained by parsing the
data from the welding controller. The data collection devices are shown in Figure 5.
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Figure 5. Data collection devices of RSW.

In the RSW process, the quality defects of welding spots mainly include normal,
cracking, splashing, stomata, cold welding, overburning, deep indentation, and welding
slag. Among these, the most common defect is splashing, which accounts for about 40% of
total welding defects. However, most splashing defects do not affect the connection strength
of automotive bodies. In fact, the defects that have the greatest impacts on strength only
account for about 0.5% of total welding spots. Therefore, the defects data of the welding
spots are extremely imbalanced. Among these defects, cold welding and overburning (as
shown in Figure 6) are the main defects, accounting for about 85% of defective welding
spots. Therefore, this paper intends to identify three welding quality categories, namely
normal, overburning, and cold welding from real-time welding data. To detect the above
quality detects, data from three in-site monitored operations are shown in Figure 7.
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From Figure 7, it can be seen that, compared with normal data, the data from
overburning welding spots mainly present two different states. The first state is that
the initial dynamic resistance is relatively high. It will undergo a significant increase or
decrease as the welding proceeds. At the same time, the current will have significant
fluctuations. The reason for this is that the initial contact resistance is relatively high due
to the low electrode pressure during welding, and the local input of the welding heat is
too fast. This can lead to overheating during the welding process, causing perforation
of the welding plates and resulting in a sudden increase in dynamic resistance and
significant fluctuations in the current. The second state is that the initial resistance is
relatively small, and the dynamic resistance gradually decreases as the welding proceeds,
resulting in a smaller final resistance value. The reason for this is that excessive heat is
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generated, which leads to excessive melting of the welding plate, generating a lower
final resistance. The current data for cold welding spots are smaller than that of normal
welding spots. At the same time, the dynamic resistance of cold welding spots decreases
less during the welding process, which is due to the fact that the welding plate has not
melted or only partially melted. Through the analysis, it can be concluded that welding
current data and dynamic resistance data can be fused as inputs for feature extraction in
deep learning models, and thus reveal whole welding characteristics, and improve the
detection abilities for RSW.
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5.2. Dataset Construction

The data collected from welding workshop for the three quality categories of nor-
mal, overburning, and cold welding were 2000, 100, and 100, respectively. The dataset
is seriously imbalanced. To prevent the imbalanced dataset from causing poor detection
performance, this paper uses an oversampling method to expand the defect data at the
data level. Meanwhile, to avoid incorrect sampling at the corresponding class, the im-
proved weighted cross-entropy loss function was also used to increase the cost of data
misclassification. A detailed description is shown in Section 5.3.

The synthetic minority oversampling technique for the multiclass imbalance algo-
rithm [39] is an oversampling method based on k-nearest neighbors. Different to traditional
oversampling methods based on k-nearest neighbors (the synthetic instances are generated
randomly in the direction of k-nearest neighbors), SMOM gives a corresponding selection
weight for each nearest neighbor direction, indicating the probability that it is used as the
direction for synthetic instance generating. The selection weight for the nearest neighbor
direction mainly considers the problem that the generation of synthetic instances along the
nearest neighbor direction may have a negative impact on other classes (especially minority
classes) and thus lead to overgeneralization. A smaller selection weight will be given to the
neighboring directions with severe overgeneralization, so that the SMOM can establish a
mechanism to avoid overgeneralization. The flowchart of the SMOM algorithm is shown
in Figure 8.



Mathematics 2023, 11, 4570 11 of 19Mathematics 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 8. Sampling process for RSW defect data based on SMOM algorithm. 

On the basis of the above SMOM algorithm, the original defect data are expanded at 
a ratio of 1:5. The results are shown in Figure 9. Finally, the 2000, 500 and 500 sample 
profiles of normal, overburning, and cold welding are obtained to complete the construc-
tion of the RSW dataset. These data are divided into a training set, verification set and test 
set at a ratio of 3:1:1. 

 
Figure 9. Expansion results of defect data based on SMOM for (a) overburning welding and (b) cold 
welding where the different colored lines represent the different samples. 

5.3. Model Training Process 
To train the classification model, the most commonly used loss function is the cross-

entropy loss function, which is calculated as follows: 

1 1

1( ) log( ( ))
m k

ic w i
i c

J w y h
m = =

=  X  (4)

Figure 8. Sampling process for RSW defect data based on SMOM algorithm.

On the basis of the above SMOM algorithm, the original defect data are expanded at a
ratio of 1:5. The results are shown in Figure 9. Finally, the 2000, 500 and 500 sample profiles
of normal, overburning, and cold welding are obtained to complete the construction of the
RSW dataset. These data are divided into a training set, verification set and test set at a
ratio of 3:1:1.
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5.3. Model Training Process

To train the classification model, the most commonly used loss function is the cross-
entropy loss function, which is calculated as follows:

J(w) =
1
m

m

∑
i=1

k

∑
c=1

yic log(hw(Xi)) (4)

where m is the number of sample welding spots in the training set; k is the number of
classification categories; yic indicates the quality label; Xi denotes the time-series input data
vector of welding spot I; and hw represents the model function.

Considering the imbalance between normal data and defective data, the traditional
cross-entropy loss function can lead to low classification accuracy for the defective data.
Therefore, on the basis of the idea of cost-sensitive learning, this paper introduces the
weighted cross-entropy loss function as Equation (5) to enhance the misclassification cost
of defective data so as to lower the overgeneralization of oversampling data and improve
the classification accuracy of defective data:

J(w) =
1
m

m

∑
i=1

k

∑
c=1

wcyic log(hw(Xi)) (5)

where wc is the weight of category c. Equation (5) shows that the loss of the category with
the larger weight contributes more to the overall loss. Therefore, when the above loss
function is used for the model training, it will lead to an increase in the detection accuracy
of the model for defective data.

Combined with the loss function, the Adam optimization algorithm is applied in our
paper to minimize the loss costs. Meanwhile, in the proposed model, the main parameters
are shown in Table 1.

Table 1. Model parameters.

Hyper Parameters Value Hyper Parameters Value

Conv1 kernel size 2 × 3 × 12 Loss function weights 1:6:2
Pool1 kernel size 1 × 2 × 12 Dropout probability 0.5
Conv2 kernel size 1 × 3 × 24 Neurons number of LSTM 10
Pool2 kernel size 1 × 2 × 24 Optimization function Adam

Activation function Leaky ReLU Max epoch 2000
Leaky ReLU negative axis slope 0.2 Initial Learning rate 0.0006

5.4. Result Analysis and Validation
5.4.1. Result Analysis

In order to quantitatively evaluate the effectiveness of the proposed model, the results
of the model are evaluated in terms of accuracy Acc, precision P, and recall R, which are
calculated as follows:

Acc = TP+TN
TP+TN+FP+FN

P = TP
TP+FP

R = TP
TP+FN

(6)

where the TP, TN, FP, FN are the number of true positives, true negatives, false positives,
and false negatives. The TP and TN indicate that the model correctly predicts the positive
class or negative class as a positive class or negative class. The FP and FN indicate that the
model incorrectly predicts negative class or positive class as a positive class or negative
class [10].

Combined with the training processes and evaluation indicators, the loss and accuracy
of the training set and verification set are shown in Figure 10. The final training accuracy
reaches 97.6%, which indicates that the training results are good.
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To further verify the effectiveness of the model, the trained model was tested with
the test set. The confusion matrix of the results is shown in Figure 11, and the evaluation
indicators are shown in Table 2.
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Table 2. Evaluation Indicators of Test Set.

Items Acc P R

Overall data 98.5% / /
Normal / 98.7% 99%

Overburning / 95.9% 95%
Cold welding / 100% 100%

From the results, it can be seen that the overall accuracy of the test set reaches 98.5%,
which is basically equivalent to the training set. At the same time, the accuracy and recall
for three different categories are all above 95%. This indicates that the model proposed in
this paper can still achieve good results in the face of an imbalanced dataset.

5.4.2. Analysis of Interpretability

The attention mechanism can focus attention on features that are more useful for
the output results of the model and suppress the interference of useless information.
The distribution of attention weights demonstrates the interpretability of the model. To
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investigate the impact, the input data of three quality categories were weighted according
to the attention weight in the model and the visual representations are shown in Figure 12.
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Figure 12. Visualization of attention-weighted welding data for (a) normal welding, (b) overburning
welding and (c) cold welding.

Attention weights are assigned based on the time period of the welding data. Therefore,
the values of the attention weights are determined by the combined characteristics of the
dynamic resistance and current in that time. From Figure 12, it can be seen that the model
has high attention weights at the positions of the initial maximum resistance value and the
final resistance value for three quality categories. This indicates that these two features are
important factors in evaluating the quality of resistance spot welding. It is worth noting that
the initial high attention weight period is not only located at the initial maximum dynamic
resistance period but is also located at the period when the welding current reaches its
maximum value. This characteristic is greatly important for determining defects in RSW. In
addition, for overburning data, there are some high attention weights in the period when
the resistance value is at a minimum and rises during the middle stage. Meanwhile, for cold
welding data, there are high attention weights during the period when the dynamic resistance
is at a maximum in the middle stage. The results indicate that the model assigns different
attention weights to the different time periods and the different categories. The visualization
of attention weights can help us to understand the final determination. Therefore, the attention
mechanism endows the model with certain interpretability.

5.4.3. Analysis of Imbalanced Datasets

In the training phase, based on the cost-sensitive idea, this paper uses the weighted
cross-entropy loss function as the model training evaluation metric to improve the detection
performance for the imbalanced dataset. In order to analyze the effect of the loss function,
this paper compared the results that either used the weighted cross-entropy loss function
with the model or did not. The results are shown in Table 3. It can be seen that, while using
the weighted cross-entropy loss function, the recall rates for overburning and cold welding
have increased by 11% and 1%, respectively. The accuracy of the overall data has also been
improved from 97% to 98.5%. This reveals that the weighted cross-entropy loss function
can improve the detection performance for minority and imbalanced data.

Table 3. Comparison of the models.

Items
No Weighted Cross-Entropy

Loss Function
Using Weighted Cross-Entropy

Loss Function

Acc P R Acc P R

Overall data 97% / / 98.5% / /
normal / 96% 99.3% / 98.7% 99%

overburning / 97.6% 84% / 95.9% 95%
cold welding / 100% 99% / 100% 100%
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5.4.4. Comparisons and Analysis

To further verify the superiority of the proposed method, the quality detection results
of the proposed model were compared with the manual sampling method, and the CNN,
LSTM and CNN-LSTM models, which are shown in Table 4.

Table 4. Comparisons of the quality detection results of different methods.

Model Acc
Normal Overburning Cold Welding

Time (ms)
P R P R P R

Manual 91.0% - - - - - - >1000
CNN 92.7% 95.0% 95.0% 82.6% 81.0% 91.0% 93.0% 13.6
LSTM 95.1% 96.6% 94.8% 81.4% 92.0% 100% 95.0% 14

CNN-LSTM 98.0% 98.0% 99.0% 95.8% 92.0% 100% 100% 15.8
Proposed 98.5% 98.7% 99.0% 95.9% 95.0% 100% 100% 7.3

From Table 4, it can be seen that the model proposed in this paper has the highest
detection accuracy, 98.5%, which is 13.3%, 6%, 3.5%, and 1.5% higher than the manual,
CNN, LSTM, and CNN-LSTM models, respectively. Note that manual inspection is a partial
sampling method. In it, the Acc of the sampled data is 100%. However, the other data are
not detected, and are all predicted as the normal quality. Therefore, the final Acc from all the
tested data in this method is susceptible to randomness, which relies on the ratio of sampling
and system stability. Moreover, the average detection time for test samples from the proposed
model is obviously shorter, with 7.3 ms, which considers the network data transmission and
model deployment. The manual method is not detected automatically, which spends much
time. The other models are deployed in cloud, while the proposed model is deployed in edge.
This reveals that the edge–cloud collaboration is useful for improving detection efficiency. In
addition, in terms of defect data, the proposed model has recall rates of 95% and 100% for
overburning and cold welding, respectively. The recall rate for overburning is 14%, 3%, and
3% higher than the CNN, LSTM, and CNN-LSTM models, respectively. The recall rate for cold
welding is 7% and 5% higher than the CNN and LSTM models, respectively. Meanwhile, the
cold welding is more inclined to be identified than overburning welding using our method.

5.4.5. Case Application and Validation

According to the operation framework showed in Figure 1, the online quality detection
model for RSW is deployed to the edge computing equipment to verify the detection
effect after model training is completed. The real-time online sample detection results are
displayed in the management system, as shown in Figure 13. It involves the real-time
online detection results and quality statistics results.

To verify the detection performance, the historical welding experiments data, including
20 normal, 10 overburning, and 10 cold welding experiments, were obtained and analyzed.
Figure 14 shows the detection results and real in-site results for the three quality categories.
On the basis of the detection model and interface exhibition, all the overburning and cold
welding experiments were correctly identified. Nineteen out of the 20 normal welding
models were correctly identified, and one was identified as overburning. The overall
detection accuracy was 97.5%, and the average detection time was 7.32 ms.

From the above results, it can be seen that in the actual industrial production with our
proposed method, the quality detection accuracy is higher and the efficiency is faster. Once
one welding spot is fulfilled, the real-time quality detection result can be classed from the
proposed model and given in the system interface. Compared with the manual sampling
detection method, it greatly avoids randomness and implements the total detections for
each welding spot without the use of destruction operations. This enhances detection
efficiency, reduces detection costs, and improves detection accuracy.
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Figure 13. Online quality detection result from the management system.
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In sum, to realize the model integration and practical application on in-site man-
ufacturing systems, some strategies and suggestions are provided: (1) The edge–cloud
collaboration network environment should be configured in the actual production field,
which is the basis on which to implement the model application; (2) On the basis of the
environment, the proposed model should be trained in cloud and deployed in edge. The
model also needsto be updated regularly to ensure its adaptations for in-site welding
processes; (3) The management system that integrates the detection model needs to be
developed and deployed. It should clearly display the detect results, operation data, statis-
tical results and alert information; (4) The detected quality defects and alert information
should be considered to further implement the corresponding controls, such as modifying
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the welding process parameter, replacing electrode caps and adjusting robot postures, thus
improving the manufacturing stability.

6. Conclusions

In response to the problem of poor detection performance using traditional manual
methods and conventional data-driven methods, this paper proposed an RSW quality
online detection method for automotive bodies based on CNN-LSTM and an attention
mechanism under edge–cloud collaboration. The main contributions are given:

(1) An online welding quality detection framework for RSW is proposed under edge–
cloud collaboration. It contributes to improve the detection efficiency and real-time
ability to solve the higher concurrency and huger data problem for multiple weld-
ing spots;

(2) A novel online quality detection model for RSW is established. The model extracts
local features and time-series related features of RSW data by CNN-LSTM network.
The attention mechanism is introduced to make the model focus on more useful
features, improving the interpretability and detection performance. Moreover, the
integrated SMOM oversampling algorithm and weighted cross-entropy loss function
improve the detection ability of the model on imbalanced data;

(3) The case validation was conducted with actual data from the welding production
process and the results were compared with other methods. The results indicate that
the overall detection accuracy of the proposed method can reach 98.5%, and the recall
and accuracy for defective welding spots are both above 95%. Meanwhile, the recall
rate of the model proposed for overburning is 14%, 2%, and 2% higher than that
of models using CNN, LSTM, and CNN-LSTM. The recall rate for cold welding is
6% and 5% higher than that of models using CNN and LSTM. Moreover, the overall
detection accuracy can be improved by 5.9%, 3.4%, and 0.5%, respectively.

In sum, the proposed method has good detection performance and can meet the
real-time detection requirements for RSW. Subsequent work will further analyze parameter
sensitivity, and verify and apply the model in actual production processes. Meanwhile, the
dynamic quality controlling strategies and methods, with the detection results, could also
be studied.
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