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Abstract: We introduce a method based on Lipschitz pointwise transformations to define a distance
on a Banach function space from its norm. We show how some specific lattice geometric properties
(p-convexity, p-concavity, p-regularity) or, equivalently, some types of summability conditions (for
example, when the terms of the terms in the sums in the range of the operator are restricted to the
interval [−1, 1]) can be studied by adapting the classical analytical techniques of the summability
of operators on Banach lattices, which recalls the work of Maurey. We show a technique to prove
new integral dominations (equivalently, operator factorizations), which involve non-homogeneous
expressions constructed by pointwise composition with Lipschitz maps. As an example, we prove a
new family of integral bounds for certain operators on Lorentz spaces.

Keywords: banach function space; lipschitz transform; integral inequality; p-convexity; p-concavity;
p-regular operator

MSC: 46E30; 26A16; 46B42

1. Introduction

Lattice geometric properties of Banach function spaces and operators on them (in-
cluding concepts such as p-convexity and p-concavity, as well as p-regularity) serve as a
rich source of results on the structure of such spaces and find numerous applications in
functional analysis. These properties are usually given by vector norm inequalities, which
always contain homogeneous transformations involving finite sets of functions in their
expressions. Then, classical Krivine calculus allows the definition of certain homogeneous
expressions that are given for finite sequences of real numbers as abstracts elements of
Banach lattices, extending in this way geometric theory to the general case of Banach
lattices (see [1,2]). In the case of spaces of (classes of µ-a.e. equal) integrable functions,
the pointwise definition plays the role of this abstract construction. The usual expressions
that are normally taken into account are the ones associated with lattice geometric prop-
erties of Banach lattices (as p-concave or p-convex operators, which involve expressions
as (∑n

i=1 | fi|p)1/p) and also have direct relations with the summability properties of these
operators (p-summing and p, q-mixing operators, for example, see [3,4]). These expressions
have in common that they are positively homogeneous. This fact allows the extension of
some of the geometrical lattice properties of Lp-spaces to other spaces, with applications in
different fields, such as in [5], but hinders the analysis of other transformations that could
also be of interest. Introducing non-homogeneous expressions would allow an analysis of
other kinds of inequalities and properties, such as the summability of operators when the
range of functions in their images is cut by a certain interval.

Thus, the aim of the present paper is to present new tools for the analysis of integral
inequalities and lattice summability properties (equivalently, factorization theorems of
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operators through Lp-spaces) involving non-homogeneous (Lipschitz) maps on R. We will
focus our attention on operators that control the bounds of the functions in the range of
operators preserving some geometric lattice properties, obtaining a general procedure that
presents new integral domination formulas for classical Banach lattices. Nowadays, there
is a growing interest in the summability of Lipschitz operators, as can be seen from the
relevant number of publications on the subject in recent times [6–12]. However, the present
paper is not concerned with this problem, but, as we said, with the composition of functions
with (scalar) Lipschitz maps to open up some well-known factorization theorems to the
use of non-homogeneous expressions in the required geometric inequalities.

The paper is split into four sections. After this introductory section, in Section 2,
we show how the pointwise composition of functions with Lipschitz maps in Lip0(R)
can be used to define new (pseudo)distances on function lattices, and we explain the
relations with the original lattice norms on them. Section 3 is devoted to showing the
separation results that transform vector norm inequalities (that represent geometric lattice
properties) into integral dominations of operators, involving, in our case, non-homogeneous
expressions (and this is the main difference with the classical Maurey-type arguments
[13,14] for factorization through Lp-spaces). All these results can be written in terms of
the factorization of operators, which we also show. Finally, in Section 4, we prove an
integral inequality for operators in which the range of functions is restricted to a certain
interval and we write a new inequality for q-regular operators on Lorentz spaces to show a
concrete example.

Let us introduce now some definitions and recall some known results. If X is a Banach
space, we will write IdX for the identity map in it; we will simply write Id if the space X is
clear in the context. X∗ is the dual of X. Consider a σ-finite measure space (Ω, Σ, µ) and
the space L0(µ) of all (classes of) measurable real functions on Ω, where functions which
are equal, µ-a.e., are identified. The µ-a.e. pointwise order is considered in this space. We
use the definition of a Banach function space given in [2] (p. 28) (Köthe function space).
A Banach function space over µ is a Banach space X(µ) of locally integrable functions in
L0(µ) containing all characteristic functions of measurable sets of finite measure if | f | ≤ |g|
with f ∈ L0(µ) and g ∈ X(µ) then f ∈ X(µ) and ‖ f ‖ ≤ ‖g‖. Since we restrict our attention
to the case of finite measures in this paper, the condition of being locally integrable is simply
to be integrable. The space X(µ) is order-continuous if for every sequence ( fn)n ∈ X(µ)
such that fn ↓ 0 satisfies that ‖ fn‖X(µ) → 0. For the case of σ-finite measures, the set of all
simple functions is dense in any σ-order-continuous Banach function space. In particular,
order continuity is equivalent to the equality X(µ)∗ = X(µ)′, that is, all the functionals
of the dual space can be represented as integrals in which the functions of the dual space
appear. These functions inside the integrals define the so-called Köthe dual space X(µ)′.
All these and related matters that are needed for the understanding of this paper can be
found in [15] (Ch. 2) and [2] (pp. 1–28).

For 0 < p < ∞, the p-th power of X(µ) is defined as the set of functions

X[p] := { f ∈ L0(µ) : | f |1/p ∈ X(µ)}.

This is a Banach function space over µ with the norm ‖ f ‖X(µ)[p]
:= ‖| f |1/p‖p

X(µ)
,

f ∈ X(µ)[p] whenever X(µ) is p-convex with a p-convexity constant equal to 1. (We will
recall later on what p-convexity is.) The p-th power of X(µ) is order-continuous if and
only if X(µ) is so (see [15] (Ch. 2) or the first chapter of [2]). The main references for the
separation arguments used in the proof of the main results of the paper—for the linear
case—are [3,16]. We refer to [17] for issues on Lipschitz operators and to [4,18,19] for general
questions on factorization schemes and summability for linear operators on Banach lattices.

Let us recall now some metric notions. A pseudometric satisfies the same axioms as a
metric but it could happen that d(x, y) = 0 and x 6= y. A Lipschitz operator ϕ : X(µ) →
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(M, d) from a Banach function space X(µ) to a pseudometric space (M, d) is a map such
that for every pair of functions f , g ∈ X(µ)

d
(

ϕ( f ), ϕ(g)
)
≤ K

∥∥ f (w)− g(w)
∥∥

X(µ)

for a certain constant K > 0. The smallest value of constant K is called the Lipschitz norm,
and we write Lip(ϕ) for it. If it is defined between Banach function spaces ϕ : X(µ)→ Y(µ);
this means that for every pair of functions f , g ∈ X(µ),∥∥ϕ( f )(w)− ϕ(g)(w)

∥∥
Y(µ) ≤ K

∥∥ f (w)− g(w)
∥∥

X(µ)
.

We write Lip0(R) for the space of real Lipschitz functions of one real variable that are
zero at 0.

2. Distances on Banach Function Spaces Defined by Pointwise Lipschitz Transformations

Let (Ω, Σ, µ) be a finite measure space. Consider a Banach function space X(µ) over
the measure µ with lattice norm ‖ · ‖X(µ) and µ-a.e. order µ. Now, take a Lipschitz map
ϕ : R → R such that ϕ(0) = 0 and with Lipschitz constant Lip(ϕ). If f : Ω → R is a
function, we consider the (pointwise defined) composition

ϕ ◦ f (w) = ϕ( f (w)), w ∈ Ω,

which we will denote as ϕ( f ) = ϕ ◦ f for simplicity.

Remark 1. A measurable real function of a real variable is a function that is measurable when
considered from the (real) Lebesgue measurable space

(
L(R),R

)
on the (real) Borel measurable

space
(
B(R),R

)
. Therefore, if B ∈ B(R), we have that, if f is measurable and ϕ : R → R is a

Lipschitz map (and so in particular continuous), ϕ−1(B) ∈ B(R), which gives that

(ϕ ◦ f )−1(B) = f−1(ϕ−1(B)
)
∈ L(R).

Therefore, ϕ ◦ f is measurable. When we consider ϕ ◦ f as a member of a Banach function
space, we have to consider it as a class of measurable functions that are equal, µ-a.e. However, if
f = g is µ-a.e. equal, we clearly have that ϕ ◦ f and ϕ ◦ g are too, and so they belong to the same
µ-equivalence class. This means that the (pointwise) composition

iϕ : X(µ)→ L0(µ) given by iϕ( f ) = ϕ ◦ f , f ∈ X(µ),

is a well-defined map.

In the next Proposition 1, we introduce a pseudometric in X(µ) associated with both
the function ϕ and the norm of X(µ).

Proposition 1. For a Banach function space X(µ) and a Lipschitz map ϕ : R→ R, we have that

(i) The operator iϕ given by iϕ( f ) = ϕ ◦ f , f ∈ X(µ) is well defined and Lipschitz as the operator

iϕ : X(µ)→ X(µ).

(ii) The function dϕX(µ) : X(µ)× X(µ)→ R defined by the formula

dϕX(µ)( f , g) :=
∥∥ϕ( f (·))− ϕ(g(·))

∥∥
X(µ)

for f , g ∈ X(µ).

is a pseudometric in X(µ), and it is a distance if ϕ is injective. Thus, iϕ : (X(µ), ‖ · ‖X(µ))→
(X(µ), dϕX(µ)) is continuous (and Lipschitz).
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Proof. (i) By Remark 1, we know that for every f , g ∈ X(µ), ϕ ◦ f and ϕ ◦ g are well-
defined measurable functions, and this formula preserves the classes of functions in L0(µ).
Consequently, ∣∣ϕ ◦ f (w)− ϕ ◦ g(w)

∣∣ ≤ Lip(ϕ)
∣∣ f (w)− g(w)

∣∣ µ− a.e.

Since ‖ · ‖X(µ) is a lattice norm, we then have that∥∥ϕ ◦ f (w)− ϕ ◦ g(w)
∥∥

X(µ)
≤ Lip(ϕ)

∥∥ f (w)− g(w)
∥∥

X(µ)
µ− a.e.

Therefore, iϕ is a well-defined Lipschitz operator.
(ii) Let us show now that dϕX(µ)( f , g) =

∥∥ϕ( f (·))− ϕ(g(·))
∥∥

X(µ)
for f , g ∈ X(µ) is a

pseudo metric. If f , g, h ∈ X(µ), since ‖ · ‖X(µ) is a norm, we have that

dϕX(µ)( f , g) ≤
∥∥ϕ( f (·))− ϕ(h(·))

∥∥
X(µ)

+
∥∥ϕ(h(·))− ϕ(g(·))

∥∥
X(µ)

= dϕX(µ)( f , h) + dϕX(µ)(h, g)

and so dϕX(µ) is a pseudometric. The inequality provided in the proof of (i) shows then that
iϕ is continuous as stated.

Example 1. Let us show two examples of the construction presented above; the second one will be
useful for the application that we present at the end of the paper.

(a) Take the function ϕ0 ∈ Lip0(R) given by ϕ0(r) := |r|
|r|+1 for all r ∈ R. Take X(µ) = Lp[0, 1]

for any 1 ≤ p < ∞. Then, we have that

iϕ0( f (v)) =
(

ϕ0 ◦ f
)
(v) = ϕ0

(
f (v)

)
=

| f (v)|
| f (v)|+ 1

, f ∈ X(µ), vs. ∈ [0, 1] µ− a.e.

For every f , g ∈ X(µ) and v ∈ [0, 1],

∣∣ϕ0( f (v))− ϕ0(g(v))
∣∣ = ∣∣∣ 1

| f (v)|+ 1
− 1
|g(v)|+ 1

∣∣∣ = ∣∣∣ |g(v)| − | f (v)|
(| f (v)|+ 1)(|g(v)|+ 1)

∣∣∣
≤

∣∣g(v)− f (v)
∣∣

(| f (v)|+ 1)(|g(v)|+ 1)
≤
∣∣g(v)− f (v)

∣∣,
and so

dϕ0Lp(µ)( f , g) =
∥∥ϕ0( f (v))− ϕ0(g(v))

∥∥
Lp(µ)

=

(∫
[0,1]

∣∣∣ (|g(v)| − | f (v)|)
(| f (v)|+ 1)(|g(v)|+ 1)

∣∣∣p dv
)1/p

≤
(∫

[0,1]

∣∣g(v)− f (v)
∣∣p dv

)1/p
=
∥∥ f (v)− g(v)

∥∥
Lp(µ)

.

Thus, we have that the constant appearing in the Lipschitz-type inequality for the pointwise
evaluation equals Lip(ϕ0) = 1, and this is also the Lipschitz constant of the operator iϕ0 .

(b) Consider the function ϕ1 : R→ R given by

ϕ1(r) =


r if − 1 ≤ r ≤ 1
1 if 1 < r
−1 if r < −1

r ∈ R.

Some direct computations show that ϕ1 is a Lipschitz map with a Lipschitz constant equal
to 1. When we compose it with a measurable function, we get the same function but “range-
shortened”, that is, with the range restricted to the interval [−1, 1]. For every Banach function
space X(µ), we get the pointwise inequality

∣∣ϕ1( f (w))− ϕ1(g(w))
∣∣ ≤ ∣∣g(w)− f (w)

∣∣ for
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each pair of measurable functions f and g. For example, if both functions are non-negative, we
get
∣∣min{1, f (w)} −min{1, g(w)}

∣∣ ≤ ∣∣g(w)− f (w)
∣∣ and the distance inequality

dϕ1X(µ)( f , g) =
∥∥∥min{1, f (w)} −min{1, g(w)}

∥∥∥
X(µ)
≤
∥∥ f (w)− g(w)

∥∥
X(µ)

.

In general, ϕ1 ◦ f (w) = sign{ f (w)} ·min{1, | f (w)|}, where sign{ f (w)} is the sign of the
real number f (w), and so

dϕ1X(µ)( f , g) =
∥∥∥sign{ f (w)} ·min{1, | f w)|} − sign{g(w)} ·min{1, |g(w)|}}

∥∥∥
X(µ)

.

Remark 2. Let ϕ, φ ∈ Lip0(R), with Lipschitz constants equal to one, and consider two Banach
function spaces X(µ) and Y(ν). A linear (continuous) operator T : X(µ) → Y(ν) satisfies the
inequality

dφY(ν)
(
T( f ), T(g)

)
= ‖φ(T( f ))− φ(T(g))‖Y(ν) ≤ Q‖ϕ( f )− ϕ(g)‖X(µ) = Q dϕX(µ)( f , g),

for f , g ∈ X(µ) if and only if the following factorization scheme commutes and all the maps involved
in it are well defined and continuous,

X(µ)
T //

iϕ

��

Y(ν)

iφ
��(

X(µ), dϕX(µ)

) T̂ //
(
Y(ν), dφY(ν)

)
.

This is the basic factorization provided by the composition with Lipschitz functions. In the
next section, it will be refined by adding new lattice geometric properties to obtain a generalization
of the Maurey–Rosenthal factorization for non-homogeneous functions, which opens a wide horizon
of suitable applications in the geometry of Banach functions lattices. Note that in particular
the inequality gives that the equivalence classes provided by the distances dϕX(µ) and dφY(ν) are
preserved through the factorization diagram.

3. Separation Arguments for Lipschitz Pointwise Transformations of Operators

Let us first introduce some adaptations of the definition of p-convex and p-concave
Banach lattices and operators. Mimicking the case of the classical definitions for Banach
function spaces, we say that an operator T : X(µ) → Y(ν) is (pφ, qϕ)-convex if there is a
constant K > 0 such that for f1, . . . , fn, g1, . . . , gn ∈ X(µ),∥∥∥∥∥∥

(
n

∑
i=1
|φ(T( fi))− φ(T(gi))|p

)1/p
∥∥∥∥∥∥

Y(ν)

≤ K

(
n

∑
i=1
‖ϕ( fi)− ϕ(gi)‖

q
X(µ)

)1/q

and (pφ, qϕ)-concave if there is a constant Q > 0 such that for f1, . . . , fn, g1, . . . , gn ∈ X(µ),(
n

∑
i=1
‖φ(T( fi))− φ(T(gi))‖

p
Y(ν)

)1/p

≤ Q

∥∥∥∥∥∥
(

n

∑
i=1
|ϕ( fi)− ϕ(gi)|q

)1/q
∥∥∥∥∥∥

X(µ)

.

A Banach function space is (pφ, qϕ)-convex if the identity map in it is, and the same
for pϕ-concavity. For when ϕ = φ is the identity in R, and p = q, we get the classical
definitions of p-convexity and p-concavity.
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For a linear operator T : X(µ)→ Y(ν), we say that it is (pφ, qϕ)-regular if there exists
a constant R such that for f1, . . . , fn, g1, . . . , gn ∈ X(µ),∥∥∥∥∥∥

(
n

∑
i=1
|φ(T( fi))− φ(T(gi))|p

)1/p
∥∥∥∥∥∥

Y(ν)

≤ R

∥∥∥∥∥∥
(

n

∑
i=1
|ϕ( fi)− ϕ(gi)|q

)1/q
∥∥∥∥∥∥

X(µ)

.

For ϕ = φ = IdR, we get the definition of a (p, q)-regular operator [20,21]; the case
p = q is the most relevant from the point of view of the classical theory [2].

3.1. Direct Adaptation for Lipschitz Pointwise Transformations of the Classical
Maurey–Rosenthal Factorizations

Let us start with the natural extension to the considered case of a factorization through
an Lp-space. In the case that ϕ = φ and it is the identity map in R, we have a well-known
result: the factorization of every p-concave operator from an order-continuous p-convex
space through an Lp-space (see, for example, [3]).

Theorem 1. Let 1 ≤ p < ∞. Let X(µ) be an order-continuous p-convex Banach function space
and Y(ν) be a Banach function space. Let T : X(µ)→ Y(ν) be a linear (continuous) operator. The
following statements are equivalent.

(i) T is (pφ, pϕ)-concave.
(ii) There is a function h ∈ B(X(µ)[p])

∗ such that

∥∥φ(T( f ))− φ(T(g))‖Y(ν) ≤ R
(∫

Ω

∣∣ϕ( f )− ϕ(g)
∣∣phdµ

)1/p
for all f , g ∈ X(µ).

Proof. Now, let us present the standard proof, which will serve as the basis for the more
advanced versions that we will introduce later. (For similar proofs, see [3,10,16].) (ii)⇒ (i)
is just a direct computation, so let us see (i)⇒ (ii). We can assume without loss of generality
that the p-convexity constant of X(µ) is equal to one. (Otherwise, we renorm the space
with an equivalent norm with a p-convexity constant equal to 1.) Then, we have that its
p-th power X(µ)[p] is a Banach function space with the norm ‖ f ‖X(µ)[p]

= ‖| f |1/p‖p
X(µ)

,
f ∈ X(µ)[p] (see [15] (Ch. 2)). X(µ) is order-continuous, then its q-th power is so (see [15]
(Ch. 2)), from which we have that

(
X(µ)[p]

)∗ is defined by integrable functions, that is,
the dual space coincides with the Köthe dual (see [2] (p. 28)), and the duality is given by
the integral of the product.

For each finite family f1, . . . , fn, g1, . . . , gn ∈ X(µ) and positive real numbers α1, . . . , αn
such that ∑n

i=1 αi = 1, we define the function

Φ( f1, . . . , fn, g1, . . . , gn, α1, . . . , αn) : B(X(µ)[p])
∗ → R

h 7→
n

∑
i=1

αi‖φ(T( fi))− φ(T(gi))‖
p
Y(ν) −Q

n

∑
i=1

αi

∫
Ω
|ϕ( fi)− ϕ(gi)|phdµ.

Now, fix Φ( f1, . . . , fn, g1, . . . , gn, α1, . . . , αn) as a function as before. We claim that
there is an element h for which ( f1, . . . , fn, g1, . . . , gn, α1, . . . , αn)(h) ≤ 0. Since we have the
inequalities for single finite sets of functions and coefficients equal to one on the (pφ, pϕ)-
concavity of T, we need to use an easy approximation trick for real numbers using rational
numbers to show that

n

∑
i=1

αi‖φ(T( fi))− φ(T(gi))‖
p
Y(ν) ≤ Qq

∥∥∥∥∥ n

∑
i=1

αi|ϕ( fi)− ϕ(gi)|p
∥∥∥∥∥

X(µ)[p]

. (1)

(Although it is not explicitly proven in [10], there is a reference in this paper to this
trick.) Take a convex combination as the one above, and find an approximation of each αi
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by rational numbers up to an ε > 0 as as small as we want. Note that by the definition of
(pφ, pϕ)-concave operators, we have that we can repeat as many terms as we want. We
can find rational numbers ri for each i = 1, . . . , n such that the denominator s is the same
for all of them, and |ri − αi| < ε. Thus, we only need to repeat each term ri · s times in the
inequality and divide the whole inequality by s to obtain an approximation of the inequality
with the coefficients αi that are controlled by ε. Since ε is arbitrary, we obtain the inequality
that we need. Therefore, the functional h0 that attains the norm in the right part of the the
definition of Φ satisfies Φ( f1, . . . , fn, g1, . . . , gn, α1, . . . , αn)(h0) ≤ 0, as a consequence of the
(new) (pφ, pϕ)-concavity condition.

A Ky Fan lemma argument (see [4]) applies: each of these functions is convex and
continuous with respect to the weak* topology and is defined in the ball of the dual space(

X(µ)[p]
)∗ (weak* compact and convex), and the family of these functions is closed under con-

vex combinations, so it forms a concave family of functions. Thus, there exists h ∈ B(X(µ)[p])
∗

such that Φ(h) ≤ 0 for all the functions Φ defined in the argument above. Considering
single functions f , g and α = 1, we obtain the desired integral inequality in (ii).

Note also that, due to the duality in X(µ)[p] and the property that the function h
indices a norm one (and so continuous) map, we have(∫

Ω

∣∣ϕ( f )− ϕ(g)
∣∣p h dµ

)1/p
≤
∥∥ϕ( f )− ϕ(g)

∥∥
X(µ)

for all f , g ∈ X(µ).

Theorem 1 can be written again as a factorization result using the general diagram
provided by Remark 2. Indeed, we have that T can be factored as

X(µ)
T //

iϕ

��

Y(ν) Id // Y(ν)

iφ
��(

X(µ), dϕX(µ)

) ipϕ //
(

Lp
0 (hdµ), dϕLp(hdµ)

) T̂ //
(
Y(ν), dφY(ν)

)
where

(
Lp

0 (hdµ), dϕLp(hdµ)

)
is a (metric) subspace of

(
Lp(hdµ), dϕLp(hdµ)

)
(defined as the

closure of the range of ipϕ) and T̂ is a continuous map (the inequality in part (ii) of the
theorem clearly implies this) defined from T to obtain a commutative diagram. It can be
seen that it is well defined and continuous because of the domination obtained in (ii).

Corollary 1. If X(µ) is p-convex and order-continuous, and ϕ ∈ Lip0(R), there is a function
h ∈ B(X(µ)[p])

∗ such that the spaces (X(µ), dϕX(µ)) and (Lp
0 (hdµ), dϕLp(hdµ)) can be metrically

identified (that is, the equivalence classes defined by the corresponding pseudometrics can be identified).

Proof. This is just a consequence of Theorem 1. Indeed, in this case, we get the factorization

X(µ)
Id //

iϕ

��

X(µ)
Id // X(µ)

iϕ

��(
X(µ), dϕX(µ)

) ipϕ //
(

Lp
0 (hdµ), dϕLp(hdµ)

) Îd //
(
X(µ), dϕX(µ)

)
where Îd is a Lipschitz map that identifies the equivalence classes in both the spaces involved.

3.2. Non-Homogeneous Expressions and Factorization for the Metric Extensions of Linear Operators

We have shown in the previous section how the pointwise composition with Lipschitz
maps provides new cases and opens the door to possible applications. However, the main
purpose of introducing this type of transformation has not yet been revealed. As we
announced in the Introduction, this technique allows one to work with such kinds of metric
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factorization involving non-homogeneous transformations. Note that, although ϕ and φ
do not in general give a homogeneous transformation, the “outer” part of the inequalities
(i.e., the action of the norm and the operation

(
| · |p

)1/p) are positively homogeneous.
From a technical point of view, this is why the same arguments used in the classical
Maurey–Rosenthal theory are still applicable here.

We will work now with a different non-homogeneous vector norm inequality involving
different powers. We will say that a linear operator T : X(µ) → Y(ν) is (pφ, qϕ)-Lip-
concave if for f1, . . . , fn, g1, . . . , gn ∈ X(µ), the following condition is satisfied:

n

∑
i=1

∥∥φ(T( fi))− φ(T(gi))
∥∥p

Y(µ) ≤ R

∥∥∥∥∥∥
(

n

∑
i=1
|ϕ( fi)− ϕ(gi)|q

)1/q
∥∥∥∥∥∥

q

X(µ)

.

An example—in fact, our main reference—of such a kind of operator is the identity
map in X(µ) when ϕ = ϕ1 in Example 1(b), which “cuts” the functions in the range. Let
us write ϕk with 0 < k for the general version of the function ϕ1, which we define as
ϕk(r) = sign{r} ·min{k, |r|}, r ∈ R. For simplicity, we consider the case k = 1/2, which
has the property that the maximal variation in the corresponding function ϕ1/2 equals 1.

Take now 1 ≤ q ≤ p < ∞. Then, for every couple of functions f , g ∈ X(µ) and w ∈ Ω,∣∣ϕ1/2( f (w))− ϕ1/2(g(w))
∣∣p

=
∣∣sign{ f (w)} ·min{1/2, | f (w)|} − sign{ f (w)} ·min{1/2, | f (w)|}

∣∣p
≤
∣∣sign{ f (w)} ·min{1/2, | f (w)|} − sign{ f (w)} ·min{1/2, | f (w)|}

∣∣q
=
∣∣ϕ1/2( f (w))− ϕ1/2(g(w))

∣∣q ≤ ∣∣ f (w)− g(w)
∣∣q.

The relevant part of this example is that the order of the indices p and q can be opposite
to the usual order for which this factorization holds. Due to the ordering of the Lp norms of
probability measure spaces, the inequalities for the norms are exactly the other way round;
if 1 ≤ q ≤ p, then ‖ · ‖Lq ≤ ‖ · ‖Lp . This is why we are interested in considering such a type
of Lipschitz function, which could be used to obtain different kinds of results.

Theorem 2. Let 1 ≤ p, q < ∞. Let X(µ) be an order continuous q-convex Banach function space
and Y(ν) be a Banach function space. Let T : X(µ)→ Y(ν) be a linear (continuous) operator. The
following statements are equivalent.

(i) T is (pφ, qϕ)-Lip-concave, that is, for f1, . . . , fn, g1, . . . , gn ∈ X(µ), we have

n

∑
i=1

∥∥φ(T( fi))− φ(T(gi))
∥∥p

Y(µ) ≤ R

∥∥∥∥∥∥
(

n

∑
i=1
|ϕ( fi)− ϕ(gi)|q

)1/q
∥∥∥∥∥∥

q

X(µ)

.

(ii) There is a function h ∈ B(X(µ)[q])
∗ such that for all f , g ∈ X(µ), we have that

∥∥φ(T( f ))− φ(T(g))
∥∥p

Y(ν) ≤ R
∫

Ω

∣∣ϕ( f )− ϕ(g)
∣∣qhdµ.

Proof. The proof follows the same steps as the one of Theorem 1. Assume (i). Since X(µ)
is q-concave (with constant equal to 1), we have that X(µ)[q] is an order-continuous Banach
function space, and so its dual space is composed of integrals. The inequality then appears
to be
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n

∑
i=1

∥∥φ(T( fi))− φ(T(gi))
∥∥p

Y(µ) ≤ R

∥∥∥∥∥ n

∑
i=1
|ϕ( fi)− ϕ(gi)|q

∥∥∥∥∥
X(µ)[q]

= R · sup
h∈B(X[q] )

∗

(
n

∑
i=1

∫
Ω
|ϕ( fi)− ϕ(gi)|q hdµ

)
.

The functions Φ can be defined as in Theorem 1, and the argument in it for proving
that the convex combinations also belong to the same class of functions can also be used
here. The Ky Fan lemma applies again to give (ii). The converse if given by a direct
calculation.

Inspired by the inequality

∥∥φ(T( f ))− φ(T(g))
∥∥

Y(ν) ≤ R1/p

((∫
Ω

∣∣ϕ( f )− ϕ(g)
∣∣q hdµ

)1/q
)q/p

that is equivalent to the one obtained in (ii), let us define a new type of (pseudo)metric
associated with the (pseudo)distances dϕX(µ). Suppose that q ≤ p, which is a relevant
case since it is the opposite one to the natural inequalities for the Lp norms. Note that
q/p = t ≤ 1, and then the right hand side of this inequality gives dt

ϕLq(hdµ)
, which is again

a pseudometric. The inequality above can be then read as

dφY(ν)(T( f ), T(g)) ≤ R1/p dt
ϕLq(hdµ)( f , g), f , g ∈ X(µ),

which evidences the commutativity of the following diagram and the Lipschitz condition
of all the arrows in it. Indeed, for t = q/p, and taking into account that by the (pφ, qϕ)-Lip-
concavity of T we have

∥∥φ(T( f ))− φ(T(g))
∥∥

Y(µ) ≤ R1/p
∥∥∥ϕ( f )− ϕ(g)

∥∥∥t

X(µ)

we get the factorization scheme

(
X(µ), dt

ϕX(µ)

) T //

ipϕ

��

(
Y(ν), dφY(ν)

)
(

Lp
0 (hdµ), dt

ϕLp(hdµ)

) T̂ //
(
Y(ν), dφY(ν)

)
.

Id

OO

Let us show an example of a (pφ, qϕ)-Lip-concave operator.

Example 2. Let X(µ), Y(ν) be Banach function spaces over probability measures µ and ν, and
T : X(µ)→ Y(ν) be a linear and continuous operator.

(a) Consider the hyperbolic tangent function φh(r) = tanh(r) = ex−e−x

ex+e−x that is Lipschitz with a
constant equal to 1. Take 1 ≤ q ≤ p < ∞. For every function T( f ) ∈ Y(µ), we have that for
f1, . . . , fn, g1, . . . , gn ∈ X(µ),

n

∑
i=1

∣∣φh(T( fi))− φh(T(gi))
∣∣p = 2p

n

∑
i=1

∣∣∣∣12 φh(T( fi))−
1
2

φh(T(gi))

∣∣∣∣p ≤ 2p
n

∑
i=1

∣∣∣∣12 φh(T( fi))−
1
2

φh(T(gi))

∣∣∣∣q
≤ 2p−q

n

∑
i=1

∣∣φh(T( fi))− φh(T(gi))
∣∣q ≤ 2p−q

n

∑
i=1

∣∣T( fi)− T(gi)
∣∣q.
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If we consider the case X(µ) = Lq(µ) and Y(µ) = Lp(µ), with µ being a probability measure,
φ = φh and ϕ = IdR. Assume also that T is a q-regular operator T : Lp(µ) → Lq(ν) with
q-regularity constant 1. Then, just by integrating the expression above, we get

n

∑
i=1

∥∥φh(T( fi))− φh(T(gi))
∥∥p

Lq(µ)
≤

n

∑
i=1

∥∥φh(T( fi))− φh(T(gi))
∥∥p

Lp(µ)

≤
n

∑
i=1

∫
Γ

∣∣φh(T( fi))− φh(T(gi))
∣∣p dν ≤ 2p−q

∫
Γ

n

∑
i=1

∣∣T( fi)− T(gi)
∣∣q dν

= 2p−q

∥∥∥∥∥∥
(

n

∑
i=1
|T( fi)− T(gi)|q

)1/q
∥∥∥∥∥∥

q

Lq(ν)

≤ 2p−q

∥∥∥∥∥∥
(

n

∑
i=1
| fi − gi|q

)1/q
∥∥∥∥∥∥

q

Lp(µ)

.

Therefore, T is a (pφh, qIdR)-Lip-concave operator.
(b) Consider now the exponential function φα(r) = exp(−α|r|), and T : Lp(µ) → Lq(µ) is a

q-regular operator with constant 1, we obtain a similar result:

n

∑
i=1
‖φe(T( fi))− φe(T(gi))‖

p
Lq(µ)

≤ αq

∥∥∥∥∥∥
(

n

∑
i=1
| fi − gi|q

)1/q
∥∥∥∥∥∥

q

Lp(µ)

,

for f1, . . . , fn, g1, . . . , gn ∈ Lq(µ). Thus, T is a (pφe, qIdR)-Lip-concave operator with
constant αq.

4. Application: Pointwise Restrictions in the Range of Linear Operators between
Banach Function Spaces

Maurey’s classical factorization of linear operators between spaces of integrable func-
tions allows the reduction of the study of general Banach function lattices to the case of
operators between Lp-spaces. Under adequate lattice-type geometric requirements, such
as p-convexity, p-concavity or p-regularity, we finally reduce the general operators to sim-
ple integral inequalities. The aim of this section is to show how we can apply the general
staff of the lattice geometry of function spaces to obtain such kinds of simplifications of
general operators when we apply Lipschitz transformations to the functions involved.
Although the same technique can be used for other transformations (as we have shown
in the previous sections), we will focus our attention on restrictions in the range of the
functions that are in the image of linear operators.

Recall the definition of the the functions ϕk given at the beginning of Section 3.2.
For every k ∈ R+, we define ϕk(r) = sign{r} ·min{k, |r|}, r ∈ R. When applied to any
measurable function f , we have that ϕk ◦ f (w) is a measurable function that coincides with
f (w) if −k ≤ f (w) ≤ k, and equals k or −k if f (w) > k or f (w) < −k, respectively.

Lemma 1. Let k > 0, 1 ≤ q ≤ p < ∞ and consider the function ϕk defined above. Then, for ev-
ery measurable function f , g and w ∈ Ω, we have

∣∣ϕk( f (w))− ϕk(g(w))
∣∣p ≤ (2k)p−q

∣∣ f (w)−
g(w)

∣∣q.

Proof. This is a consequence of the following straightforward calculations.

∣∣ϕk( f (w))− ϕk(g(w))
∣∣p = (2k)p

∣∣∣ sign{ f (w)} ·min{k, | f (w)|}
2k

− sign{ f (w)} ·min{k, | f (w)|}
2k

∣∣∣p
≤ (2k)p

∣∣∣ sign{ f (w)} ·min{k, | f (w)|}
2k

− sign{ f (w)} ·min{k, | f (w)|}
2k

∣∣∣q
= (2k)p−q ∣∣ϕk( f (w))− ϕk(g(w))

∣∣q ≤ (2k)p−q ∣∣ f (w)− g(w)
∣∣q.



Mathematics 2023, 11, 4599 11 of 13

Theorem 3. Let 1 ≤ q ≤ p < ∞. Let X(µ) be an order-continuous q-convex Banach function
space with constant 1 and Y(ν) be a p-convex Banach function space with constant 1. Suppose for
simplicity that the inclusion Y(ν)[q] ⊆ Y(ν)[p] has norm one. Let T : X(µ) → Y(ν) be a linear
q-regular operator with constant R, that is, for f1, . . . , fn ∈ X(µ), we have∥∥∥∥∥∥

(
n

∑
i=1
|T( fi)|q

)1/q
∥∥∥∥∥∥

Y(µ)

≤ R

∥∥∥∥∥∥
(

n

∑
i=1
| fi|q

)1/q
∥∥∥∥∥∥

X(µ)

.

Then, there is a function h ∈ B(X(µ)[q])
∗ such that for all f , g ∈ X(µ),

∥∥ϕk(T( f ))− ϕk(T(g))
∥∥p

Y(ν) ≤ (2k)p−q Rq
∫

Ω

∣∣ f − g
∣∣q h dµ.

Proof. First, note that the inequality defining the q-regularity can also be written for
difference of vectors fi − gi instead of single functions, due to the fact that T is linear. Recall
that, since the measure ν is finite, we have that Y(ν)[q] ⊆ Y(ν)[p] (see [15] (Lem. 2.21)),
and so we have that ‖ · ‖Y(ν)[p] ≤ N‖ · ‖Y(ν)[q] for a certain N that we assume to be 1 without
loss of generality for the aim of simplicity. Furthermore, observe that if a Banach lattice
is p-convex for 1 ≤ q ≤ p, then it is also q-convex (see [2] (Sec. 1.d)). Taking into account
that T is q-regular, Lemma 1 and the definition of the p-th and q-th powers of the spaces
involved (Y(ν) and X(µ)), we get for f1, . . . , fn, g1, . . . , gn ∈ X(µ)∥∥∥∥∥ n

∑
i=1

∣∣ϕk(T( fi))− ϕk(T(gi))
∣∣p∥∥∥∥∥

Y(ν)[p]

≤ (2k)p−q

∥∥∥∥∥ n

∑
i=1

∣∣T( fi))− T(gi)
∣∣q∥∥∥∥∥

Y(ν)[p]

≤ (2k)p−q

∥∥∥∥∥ n

∑
i=1

∣∣T( fi))− T(gi)
∣∣q∥∥∥∥∥

Y(ν)[q]

= (2k)p−q

∥∥∥∥∥∥
(

n

∑
i=1

∣∣T( fi))− T(gi)
∣∣q)1/q

∥∥∥∥∥∥
q

Y(ν)

≤ (2k)p−qRq

∥∥∥∥∥∥
(

n

∑
i=1

∣∣ fi(w)− gi(w)
∣∣q)1/q

∥∥∥∥∥∥
q

X(µ)

.

On the other hand, since Y(ν) is p-convex with constant 1, we get

n

∑
i=1
‖ϕk(T( fi))− ϕk(T(gi))‖

p
Y(ν) ≤

∥∥∥∥∥∥
(

n

∑
i=1

∣∣ϕk(T( fi))− ϕk(T(gi))
∣∣p)1/p

∥∥∥∥∥∥
p

Y(ν)

=

∥∥∥∥∥ n

∑
i=1

∣∣ϕk(T( fi))− ϕk(T(gi))
∣∣p∥∥∥∥∥

Y(ν)[p]

.

Summing up this information, we get

n

∑
i=1
‖ϕk(T( fi))− ϕk(T(gi))‖

p
Y(ν) ≤ (2k)p−q Rq

∥∥∥∥∥∥
(

n

∑
i=1

∣∣ fi(w)− gi(w)
∣∣q)1/q

∥∥∥∥∥∥
q

X(µ)

,

that is, T is (pϕk, qId)-Lip-concave. By Theorem 2, there is a function h ∈ B(X(µ)[q)
∗ such

that for all f , g ∈ X(µ),

‖ϕk(T( f ))− ϕk(T(g))‖p
Y(ν) ≤ (2k)p−q Rq

∫
Ω

∣∣ f − g
∣∣qhdµ.
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Remark 3. There are a lot of examples of p-regular operators between Banach function spaces.
In fact, every positive operator is p-regular for every 1 ≤ p < ∞ ([2] (Prop. 1.d.9)), and by
Grothendieck’s inequality, all operators are two-regular (see [2] (Thm. 1.f.14)). The numbers
1 ≤ p ≤ ∞ for which a Banach function space is p-convex are also known for a lot of classical
Banach function lattices, such as Orlicz and Lorentz spaces.

Example 3. Another relevant example of a Banach function space that is p−convex for 1 ≤ p
is the space Lp(m) of p-integrable functions with respect to a vector measure m defined on a
measurable space (Ω, Σ), which are Banach function spaces for every Rybakov finite (scalar positive)
measure for m (see [15] (p. 128)). It is known that every order-continuous p-convex Banach
lattice with weak order units can be written as such a space ([15] (Proposition 3.30)), so this
class is strictly bigger than the one of the Lp-spaces of finite scalar measures. If 1 ≤ q ≤ p,
Lp(m) ⊆ Lq(m) and the norm of the inclusion equals 1. As in the case of the standard Lp-spaces,
Lp/q(m) = (Lp(m))[q] ⊂ (Lp(m))[p] = L1(m) with norm one ([15] (Lemma 2.21(iv))). Take
p = 4, q = 2, X(µ) = L2(m), and Y(µ) = L4(m), and consider any operator S : L2(m)→ L4(m)
with a two-regularity constant equal to 1. Then, by Theorem 3, there is a function h ∈ BL2(m)∗ such
that for every f , g ∈ L2,

‖ϕk(S( f ))− ϕk(S(g))‖4
L4(m) ≤ 4k2

∫
Ω
| f − g|2hdµ,

where µ is a Rybakov measure for m.

Let us finish the paper by showing some concrete examples of a relevant class of
Banach function spaces: the so-called Lorentz function spaces. As we said, nowadays there
is a lot of work in the literature about the convexity of Lorentz and related spaces (see, for
example, [22–24]). However, for the aim of this paper, we just need the results in [25]. Let
us briefly introduce these spaces.

Let 1 < p < ∞ and 1 ≤ q < ∞. Given a finite measure space (Ω, Σ, µ), the Lorentz
space Lp,q(µ) is defined as the space of real (classes of µ-a.e. equal) measurable functions
that satisfy that the functional

‖ f ‖∗p,q =

(
q
p

∫ ∞

0

(
t1/p f ∗(t)

)q dt
t

)1/q

is finite, where f ∗(t) is the non-increasing rearrangement of f onto (0, ∞). This is defined as
f ∗(t) = inf{s > 0 : µ({w ∈ Ω : | f (w)| > s}) ≤ t}. For q > p, this has to be renormed to be
a norm, but we are interested in the case when q < p. The main result on the q-convexity of
the Lorentz space that we need can be found in Proposition 3.3 in [25]: Lp,q(µ) is q-convex
for 1 ≤ q < p. (A simple, direct argument using p-th powers can also be found in [3] to
obtain the same result.) We assume that the q-convexity constant equals 1; otherwise, we
consider the canonical renorming of the space satisfying such a property.

In view of Theorem 3, we can obtain the following integral domination for pointwise
restrictions in the range of linear operators on Lorentz spaces. To prove it, just take into
account that for 1 ≤ q < p < ∞, the Lorentz space Lp,q(µ) is order-continuous.

Corollary 2. Let 1 ≤ q1 < p1 < ∞ and 1 ≤ q2 < p2 < ∞. Suppose that 1 ≤ q1 ≤ q2 < ∞ and
let T : Lp1,q1(µ) → Lp2,q2(ν) be a q1-regular operator with constant R, under the requirements
of Theorem 3. Then, for every k > 0, there is a function h ∈ B(Lp1,q1 (µ)[q1 ]

)∗ such that for all
f , g ∈ Lp1,q1(µ),∥∥ϕk(T( f ))− ϕk(T(g))

∥∥q2
Lp2,q2 (ν)

≤ (2k)q2−q1 Rq1

∫
Ω

∣∣ f − g
∣∣q1 h dµ.
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Note that, if the requirement for the inclusion Y(ν)[q] ⊆ Y(ν)[p] to be norm one does
not hold, the constant appearing in the domination has to be recomputed according to the
value of the norm N.

Author Contributions: Both the authors contributed equally to the present work. R.A. contributed to
the elaboration of the theory and the final revision of the paper, and E.A.S.-P. wrote the first version
after obtaining the results together with R.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This publication is part of the R&D&I project/grant PID2022-138342NB-I00 funded by
MCIN/ AEI/10.13039/501100011033/ (Spain). R. Arnau was supported by a contract of the Programa
de Ayudas de Investigación y Desarrollo (PAID-01-21), Universitat Politècnica de València.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that there are no conflicts of interest in relation to this re-
search.

References
1. Krivine, J.L. Théorèmes de Factorisation dans les Espaces Réticulés; Séminaire Maurey-Schwartz: Paris, France, 1973; pp. 22–23.
2. Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces II: Function Spaces; Springer: Berlin/Heidelberg, Germany, 1979.
3. Defant, A. Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 2001, 5, 153–175. [CrossRef]
4. Diestel, J.; Jarchow, H.; Tonge, A. Absolutely Summing Operators; Cambridge University Press: Cambridge, UK, 1995. [CrossRef]
5. Agrawal, V.; Som, T. Lp-approximation using fractal functions on the Sierpiński gasket. Results Math. 2022, 77, 74. [CrossRef]
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