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Abstract: We determine the general natural metrics G on the total space TM of the tangent bundle of
a Riemannian manifold (M, g) such that the Schouten–van Kampen connection ∇ associated to the
Levi-Civita connection of G is (quasi-)statistical. We prove that the base manifold must be a space
form and in particular, when G is a natural diagonal metric, (M, g) must be locally flat. We prove that
there exist one family of natural diagonal metrics and two families of proper general natural metrics
such that (TM,∇, G) is a statistical manifold and one family of proper general natural metrics such
that (TM \ {0},∇, G) is a quasi-statistical manifold.
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1. Introduction

Statistical manifolds, whose points correspond to probability distributions, provide
a natural framework for information geometry, which uses differential geometry in the
study of probability theory and statistics and which was initiated by C. R. Rao in [1],
who was the first to treat a Fisher matrix as a Riemannian metric. The notion of statis-
tical manifold, introduced in 1987 by S. L. Lauritzen in the paper [2] and studied, e.g.,
in [2–32] and the references therein, has various applications in information science, neural
networks, and statistical physics.

According to T. Kurose [14], a statistical manifold is a differentiable manifold endowed
with a symmetric linear connection ∇ and a (pseudo-)Riemannian metric h such that the
covariant derivative ∇h is totally symmetric. A couple (∇, h) with this property is called
a statistical structure or a Codazzi pair, while the metric h and the connection ∇ are said
to be Codazzi-coupled (see [2,9,12,23]). Alternatively, the notion of statistical manifold
was defined by H. Furuhata and I. Hasegawa in [11] as a (pseudo-)Riemannian manifold
endowed with a pair of torsion-free conjugate connections. For the pairs of connections
compatible with a g–structure, we go back in the literature to V. Cruceanu and R. Miron [33].

A classical example of statistical manifold is a (pseudo-)Riemannian manifold (M, h)
endowed with the Levi-Civita connection of the metric h. The statistical manifolds genera-
lize the (pseudo-)Riemannian manifolds by extending the parallelism of the metric h under
the Levi-Civita connection to the Codazzi coupling of the metric with a torsion-free linear
connection. Moreover, relaxing the Codazzi coupling to the case when the linear connection
has nonzero torsion, T. Kurose introduced in [15] the notion of statistical manifold admitting
torsion, also called quasi-statistical manifold (see [17]), which is the subject of quantum
information geometry.

Codazzi couplings of an affine connection with a pseudo-Riemannian metric, a nonde-
generate 2-form, and a tangent bundle isomorphism on smooth manifolds and in particular
on an almost (para-)Hermitian manifold (M, g, L) endowed with the 2-form ω given as
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ω(X, Y) = g(LX, Y), were studied by T. Fei and J. Zhang in [9]. They proved that the Co-
dazzi couplings of∇ with both g and L lead to a (para-)Kähler structure, and subsequently,
they defined Codazzi-(para-)Kähler manifolds as (para-)Kähler statistical manifolds. In [12],
the study was extended to torsion couplings between an affine connection ∇ of nontrivial
torsion and both g and L on an almost (para-)Hermitian manifold. The authors proved that
the pair (∇, L) is torsion-coupled if and only if ∇ is (para-)holomorphic and the almost
(para-)complex structure L is integrable. Statistical structures on almost anti-Hermitian
(or Norden) manifolds were studied in [26,27] by A. Salimov and S. Turanli, who intro-
duced the notion of anti-Kähler–Codazzi manifolds, then by L. Samereh, E. Peyghan, and
I. Mihai in [28], and very recently by A. Gezer and H. Cakicioglu, who provided in [10]
an alternative classification of anti-Kähler manifolds with respect to a torsion-free linear
connection. Codazzi pairs on almost para-Norden manifolds were treated by S. Turanli
and S. Uçan in [29]. F. Etayo et al. proved in [8] that Kähler–Codazzi type manifolds reduce
to Kähler type manifolds in all the four types of (α, ε)-manifolds teated in an unified way
in [34]. In [30], G. E. Vîlcu introduced the notion of para-Kähler-like statistical manifold
and proved that if a manifold of this type has constant curvature in the Kurose’s sense,
then the statistical structure of the manifold is a Hessian structure.

Statistical structures on the tangent bundle of differentiable manifolds were treated in
recent papers, such as [4,13,19,22,24].

The background of the present work is the total space TM of the tangent bundle of a
Riemannian manifold (M, g), endowed with a metric G introduced by V. Oproiu in [35] as
a general natural lift of the metric from the base manifold, by using Kowalski–Sekizawa’s
classification from [36] and the results in [37]. This metric, called a general natural metric,
depends on six coefficients which are smooth real functions of the energy density t of a
tangent vector y. We study the conditions under which the (pseudo-)Riemannian manifold
(TM, G) endowed with the Schouten–van Kampen connection ∇ associated to the Levi-
Civita connection of G is a statistical manifold admitting torsion (SMAT). A necessary
condition for (TM,∇, G) to be a SMAT is that the base manifold is a space form. We
prove that (TM \ {0},∇, G) is a SMAT if and only if (M, g) has negative constant sectional
curvature and the metric G depends on the energy density t, the constant sectional curvature
of (M, g), an arbitrary nonzero real constant κ2 and an arbitray smooth real function of t
which is not − κ2

2t2 . On the other hand, (TM,∇, G) is a statistical manifold (without torsion)
if and only if the base manifold is locally flat and the metric G is of natural diagonal type
(depending on two arbitrary nonzero smooth real functions of the energy density t and on
an arbitrary nonzero real constant, satisfying the nondegeneracy conditions of the metric) or
a proper general natural metric with two possible expressions. In one case, the expression
of G depends on an arbitrary smooth real function c3 of t different from const√

t
for every

const ∈ R, t > 0, such that c3(0) 6= 0, and on two arbitrary nonzero real constants whose
product is different from 1. In the other case, the metric G depends only on two arbitrary
smooth real functions c2, c3 of the energy density, such that c2(0)c3(0) 6= 0, c3(t) 6= const√

t
for every const ∈ R, t > 0. If c2(t) 6= κ(c3(t))2 for every κ ∈ R, t ≥ 0, then the Levi-Civita
connection of G is different from its associated Schouten–van Kampen connection, and
hence (TM,∇, G) is a nontrivial statistical manifold.

The results obtained in this work lead to new examples of (quasi-)statistical structures
on the tangent bundle of a Riemann manifold. Unlike the majority of previous studies (see,
e.g., [4,13,19,22,24]), which produce new examples of statistical structures on the tangent
bundle by lifting a given statistical structure on the base space, the present article does
not assume the a priori existence of a statistical structure on the base manifold. The new
structures are, thus, uncorrelated with the ones from the base, therefore constituting a more
convenient geometric setting to investigate the statistical behavior in depth. Thus, new
opportunities are opened for applications in information theory, machine learning, neural
networks, statistical mechanics and geometry of Ricci solitons, for which we cite [38–41]
and the references therein.
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We mention that in the present paper the manifolds, tensor fields, and other geometric
objects are considered to be smooth and the Einstein summation convention is used, the
range of the indices always being {1, . . . , n}.

2. The Schouten–van Kampen Connection of a General Natural Metric on
T M Revisited

In this section, we recall some results from our previous paper [42] concerning the
Schouten–van Kampen connection associated to the Levi-Civita connection of a general
natural metric on the total space TM of the tangent bundle of a Riemannian manifold. For
the geometry of the tangent bundle we cite the monograph [43].

Let (M, g) be a Riemannian manifold of dimension n and let (xi)n
i=1 and (xi, yj)n

i,j=1 be

the local coordinates on an open subset U of M and on τ−1(U) ⊂ TM, respectively, where
τ : TM→ M is the tangent bundle of M.

Denoting, by a slight abuse, the set of all vector fields tangent to TM by TTM, we
have its direct sum decomposition, that is:

TTM = VTM⊕ HTM, (1)

into the vertical distribution VTM = ker τ∗ and the horizontal distribution HTM, lo-
cally generated, respectively, by { ∂

∂yi }n
i=1 and { δ

δxj
}n

j=1, the horizontal generators being
δ

δxj =
∂

∂xj − ylΓh
lj

∂
∂yh , where Γh

lj are the Christoffel symbols of the metric g. Then, the local

frame field adapted to the direct sum decomposition (1) is { ∂
∂yi ,

δ
δxj }n

i,j=1, denoted also by

{∂i, δj}n
i,j=1. Its Lie brackets satisfy the identities:

[∂i, ∂j] = 0, [∂i, δj] = −Γh
ij∂h, [δi, δj] = −Rh

lijy
l∂h, (2)

where Rh
lij are components of the curvature tensor field of (M, g) in a local chart (U, xi)n

i=1.

The horizontal and vertical lifts of a vector field X = Xi ∂
∂xi from M to TM are denoted

by XH and XV and with respect to the adapted local frame field, they have the expressions

XH = Xi δ

δxi , XV = Xi ∂

∂yi .

The kinetic energy or energy density of any tangent vector y ∈ τ−1(U) with respect to
the Riemannian metric g is given as:

t =
1
2
‖y‖2 =

1
2

gτ(y)(y, y) =
1
2

gik(x)yiyk ≥ 0. (3)

An important tool in the geometry of the tangent bundle are the metrics constructed as
natural lifts of the Riemannian metric from base manifold to the total space of the tangent
bundle, classified by O. Kowalski and M. Sekizawa in [36]. By using this classification and
the results in [37], V. Oproiu defined in [35] a general natural metric on TM, given locally as:

G
(

δ
δxi ,

δ
δxj

)
= c1gij + d1g0ig0j = G(1)

ij

G
(

∂
∂yi ,

∂
∂yj

)
= c2gij + d2g0ig0j = G(2)

ij

G
(

∂
∂yi ,

δ
δxj

)
= G

(
δ

δxi ,
∂

∂yj

)
= c3gij + d3g0ig0j = G(3)

ij ,

(4)

where ci, di (i = 1, 2, 3) are smooth real functions of the energy density on TM and
g0i = gliyl .
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The invariant expression of the metric G is:
G(XH

y , YH
y ) = c1(t)gτ(y)(X, Y) + d1(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YV

y ) = c2(t)gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),
G(XV

y , YH
y ) = c3(t)gτ(y)(X, Y) + d3(t)gτ(y)(X, y)gτ(y)(Y, y),

(5)

for all X, Y ∈ T 1
0 (M), y ∈ TM, where t is the energy density of y.

The nondegeneracy conditions for the metric G are as follows:

c1c2 − c2
3 6= 0, (c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)

2 6= 0. (6)

The metric G is positive definite if:

c1 + 2td1 > 0, c2 + 2td2 > 0, (c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)
2 > 0. (7)

When the horizontal and vertical distributions are orthogonal with respect to the
metric G, we say that G is a metric of natural diagonal lift type or a natural diagonal metric on
TM (see [44]). This type of metric has the expression (5), with c3 = d3 = 0. We say that a
metric given by (5) is a proper general natural metric if it is not a natural diagonal metric.

The matrix of the metric G with respect to the adapted local frame field {δi, ∂j}n
i,j=1

and the inverse matrix are, respectively:
(

G(1)
ij

) (
G(3)

ij

)
(

G(3)
ij

) (
G(2)

ij

)


i,j∈{1,...,n}

,


(

H jk
(1)

) (
H jk
(3)

)
(

H jk
(3)

) (
H jk
(2)

)


j,k∈{1,...,n}

,

where:

Hkl
(1) = p1gkl + q1ykyl , Hkl

(2) = p2gkl + q2ykyl , Hkl
(3) = p3gkl + q3ykyl , (8)

with:

p1 = c2
c1c2−c2

3
, p2 = c1

c1c2−c2
3
, p3 = − c3

c1c2−c2
3

(9)

q1 = − c2d1 p1−c3d3 p1−c3d2 p3+c2d3 p3+2d1d2 p1t−2d2
3 p1t

(c1+2d1t)(c2+2d2t)−(c3+2d3t)2 ,

q2 = (c3+2d3t)[(d3 p1+d2 p3)(c1+2d1t)−(d1 p1+d3 p3)(c3+2d3t)]
(c2+2d2t)[(c1+2d1t)(c2+2d2t)−(c3+2d3t)2]

− d2 p2+d3 p3
c2+2d2t ,

q3 = − (d3 p1+d2 p3)(c1+2d1t)−(d1 p1+d3 p3)(c3+2d3t)
(c1+2d1t)(c2+2d2t)−(c3+2d3t)2 .

(10)

Inspired by the Schouten–van Kampen connection associated to a linear connection
on a smooth manifold with two globally complementary distributions (see [45] and [46]),
we defined in [42] the Schouten–van Kampen connection ∇ associated to the Levi-Civita
connection ∇ of a general natural metric G by the relation:

∇XY = V∇XVY + H∇X HY, (11)

for any vector fields X, Y on TM, where V and H are the projection tensor fields corre-
sponding to VTM and HTM, respectively.
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Proposition 1. (Proposition 3.1 [42]) The Schouten–van Kampen connection ∇ associated to the
Levi-Civita connection ∇ of a general natural metric G on TM has the following expression in the
adapted local frame field {∂i, δj}n

i=1:
∇ ∂

∂yi

∂
∂yj = Qh

ij
∂

∂yh , ∇ δ
δxi

∂
∂yj =

(
Γh

ij + Uh
ji

)
∂

∂yh

∇ ∂
∂yi

δ
δxj = Uh

ij
δ

δxh , ∇ δ
δxi

δ
δxj =

(
Γh

ij + Sh
ij

)
δ

δxh ,
(12)

where Γh
ij are the Christoffel symbols of the metric g of the base manifold M:



Qh
ij =

1
2 (∂iG

(2)
jk + ∂jG

(2)
ik − ∂kG(2)

ij )Hkh
(2) +

1
2 (∂iG

(3)
jk + ∂jG

(3)
ik )Hkh

(3),

Uh
ij =

1
2 (∂iG

(3)
jk − ∂kG(3)

ij )Hkh
(3) +

1
2 (∂iG

(1)
jk + Rl

0jkG(2)
li )Hkh

(1),

Uh
ij =

1
2 (∂iG

(3)
jk − ∂kG(3)

ij )Hkh
(2) +

1
2 (∂iG

(1)
jk + Rl

0jkG(2)
li )Hkh

(3),

Sh
ij = − 1

2 (∂kG(1)
ij + Rl

0ijG
(2)
lk )Hkh

(3) + c3Ri0jk Hkh
(1),

(13)

where Rh
kij are the components of the curvature of the base manifold and:

Rl
0ij = Rl

hijy
h, Ri0jk = Rihjkyh.

The torsion tensor field T of the connection ∇ is defined by the formula:

T(X, Y) = ∇XY−∇YX− [X, Y], ∀X, Y ∈ T 1
0 (TM). (14)

Proposition 2. The torsion tensor field of the Schouten–van Kampen connection ∇ given in
Proposition 1 has the following components with respect to the adapted local frame field {∂i, δj}n

i=1: T
(

∂
∂yi ,

∂
∂yj

)
= 0, T

(
δ

δxi ,
δ

δxj

)
= Rh

0ij
∂

∂yh ,

T
(

∂
∂yi ,

δ
δxj

)
= −T

(
δ

δxj ,
∂

∂yi

)
= Uh

ij
δ

δxh −Uh
ij

∂
∂yh .

(15)

Proof. We showed in [42] Proposition 3.2 that the torsion tensor field of the Schouten–van
Kampen connection ∇ has the components:

T
(

∂
∂yi ,

∂
∂yj

)
= (Qh

ij −Qh
ji)

∂
∂yh ,

T
(

δ
δxi ,

δ
δxj

)
=
(

Sh
ij − Sh

ji

)
δ

δxh + Rh
0ij

∂
∂yh ,

T
(

∂
∂yi ,

δ
δxj

)
= −T

(
δ

δxj ,
∂

∂yi

)
= Uh

ij
δ

δxh −Uh
ij

∂
∂yh .

(16)

From the first expression in (13) it follows that Qh
ij is symmetric in i and j, and hence,

from (16), we have:

T
(

∂

∂yi ,
∂

∂yj

)
= 0.

By substituting into the last relation (13) the components of the metric G from (4) and
the entries of the inverse matrix form (8), then using in turn (10) and (9), we obtain that:

Sh
ij − Sh

ji =
c2c3

c1c2 − c2
3

(
Rh

ij0 + Rh
j0i + Rh

0ij

)
,

which vanishes due to the first Bianchi identity, and hence, the second relation in (16)
reduces to:

T
(

δ

δxi ,
δ

δxj

)
= Rh

0ij
∂

∂yh .
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Thus, the components of the torsion tensor field of the Schouten–van Kampen connec-
tion ∇ on (TM, G) are those given in the statement.

Theorem 1. (Theorem 3.4 [42]) The Schouten–van Kampen connection on (TM, G), given in
Proposition 1, is torsion-free if and only if the base manifold (M, g) is locally flat and the metric G
has the expression:

G(XH
y , YH

y ) = κ1gτ(y)(X, Y),
G(XV

y , YV
y ) = c2(t)gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = c3(t)gτ(y)(X, Y) + c′3(t)gτ(y)(X, y)gτ(y)(Y, y),
(17)

where κ1 is a real constant and c2, d2, c3 are smooth functions depending on the energy density on
TM, such that one of the following two sets of conditions is satisfied:

(i) κ1c2 − c2
3 6= 0, κ1(c2 + 2td2)− (c3 + 2tc′3)

2 6= 0,

(ii) κ1 > 0, c2 + 2td2 > 0, κ1(c2 + 2td2)− (c3 + 2tc′3)
2 > 0.

In the first case, G is a pseudo-Riemannian metric and in the second one it is a Riemannian metric.

Proposition 3. (Proposition 3.5 [42]) The torsion-free Schouten–van Kampen connection char-
acterized in Theorem 1 coincides with the Levi-Civita connection of a pseudo-Riemannian general
natural metric G given by (17) if and only if the coefficients of G fall in one of the instances:

(i) c3(t) = 0, ∀t ≥ 0, c2, d2 are some smooth functions of t such that:

κ1c2(t) 6= 0, c2(t) + 2td2(t) 6= 0, ∀t ≥ 0;

(ii) c2(t) = d2(t) = 0, ∀t ≥ 0 and c3 is an arbitrary nonzero smooth function of t,
c3(t) 6= const√

t
, for all const ∈ R and all t > 0;

(iii) c2(t) = κ2 ∈ R, c3(t) = κ3 ∈ R, such that κ1κ2 − κ2
3 6= 0, d2(t) = 0, for all t ≥ 0;

(iv) c2(t) = κ(c3(t))2, d2(t) = 2κc′3(t)(c3(t) + tc′3(t)), where κ is a nonzero real constant, such
that κ1κ 6= 1 and c3 is an arbitrary nonzero smooth function of t, c3(t) 6= const√

t
, for all

const ∈ R and all t > 0.

If the coefficients of the metric G from Proposition 3 have the expressions (iv) extended
to the situation when κ is an arbitrary real constant such that κ1κ 6= 1, then by taking
κ = 0, we get the coefficients from (ii), and by taking c3(t) = κ3 ∈ R \ {0}, we get the
coefficients from (iii) for a proper general natural metric. Thus, we can state the following
characterization of the proper general natural metrics on TM whose Levi-Civita connection
coincides with the associated Schouten–van Kampen connection.

Proposition 4. The proper general natural metrics G on TM for which the Levi-Civita connection
coincides with its associated Schouten–van Kampen connection are given by (17), where c3 is an
arbitrary nonzero smooth function of t, c3(t) 6= const√

t
for every t > 0, const ∈ R, and the functions

c2 and d2 have the particular expressions:

c2(t) = κ(c3(t))2, d2(t) = 2κc′3(t)(c3(t) + tc′3(t)),

where κ is an arbitrary real constant such that κ1κ 6= 1.

3. General Natural Metrics Torsion-Coupled with the Schouten–van Kampen
Connection

Statistical manifolds, the main tool of classical information geometry, were defined
in [14] as follows:
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Definition 1. Let (M, h) be a pseudo-Riemannian manifold, and let ∇ be a torsion-free affine
connection on M. The triplet (M,∇, h) is called a statistical manifold if the tensor field ∇h is
totally symmetric, that is:

(∇Xh)(Y, Z) = (∇Yh)(X, Z), ∀X, Y, Z ∈ T 1
0 (M). (18)

A metric h and an affine connection ∇ satisfying (18) are called Codazzi-coupled. In this case, the
couple (∇, h) is called a Codazzi pair or a statistical structure on M and ∇ is called a statistical
connection on (M, h).

Extending the condition (18) to the case when the affine connection has nontrivial
torsion, T. Kurose defined in [15] the statistical manifolds admitting torsion, also known
as quasi-statistical manifolds (see [17]), which represent the subject of quantum informa-
tion geometry.

Definition 2. Let (M, h) be a pseudo-Riemannian manifold, and let ∇ be an affine connection of
torsion T∇ on M. If the metric h and the connection ∇ satisfy the relation:

(∇Xh)(Y, Z)− (∇Yh)(X, Z) = −h
(

T∇(X, Y), Z
)

, ∀X, Y, Z ∈ T 1
0 (M), (19)

then the triplet (M,∇, h) is called a statistical manifold admitting torsion or a
quasi-statistical manifold.

We say that a metric h and an affine connection ∇ with nonzero torsion T∇ satisfying (19)
are torsion-coupled. In this case the couple (∇, h) is called a statistical structure admitting torsion
on M or a quasi-statistical structure on M and ∇ is called a quasi-statistical connection on (M, h).

In particular, if TM is the total space of the tangent bundle of a Riemannian manifold
(M, g), endowed with a general natural metric G and with the corresponding Schouten–van
Kampen connection ∇, we say that the metric G and the connection ∇ are torsion-coupled,
(∇, G) is a statistical structure admitting torsion on TM or a quasi-statistical structure on TM,∇
is a quasi-statistical connection on (TM, G), and the triplet (TM,∇, G) is a statistical manifold
admitting torsion or a quasi-statistical manifold if:

(∇XG)(Y, Z)− (∇YG)(X, Z) + G(T(X, Y), Z) = 0, ∀X, Y, Z ∈ T 1
0 (TM), (20)

where T is the torsion tensor field of ∇.
If the connection ∇ is torsion-free, then the relation (20) reduces to:

(∇XG)(Y, Z)− (∇YG)(X, Z) = 0, ∀X, Y, Z ∈ T 1
0 (TM). (21)

If the metric G and the connection ∇ satisfy the relation (21), we say that G and ∇
are Codazzi-coupled, (∇, G) is a Codazzi pair or a statistical structure on TM, ∇ is a statistical
connection on (TM, G) and the triplet (TM,∇, G) is a statistical manifold.

For simplicity of notations, we consider a (0, 3)-tensor field T on TM:

T (X, Y, Z) = (∇XG)(Y, Z)− (∇YG)(X, Z) + G(T(X, Y), Z), (22)

for every X, Y, Z ∈ T 1
0 (TM). Thus, the relation (20) which characterizes the statistical

manifold admitting torsion (TM,∇, G) takes the simpler form:

T (X, Y, Z) = 0, ∀X, Y, Z ∈ T 1
0 (M). (23)
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Taking into account the expressions (15) of the torsion of∇ and the relation (22) which
gives the tensor field T , we obtain the components of T with respect to the adapted local
frame field {δi, ∂j}n

i,j=1:

T (∂i, ∂j, ∂k) = (∇∂i
G)(∂j, ∂k)− (∇∂j

G)(∂i, ∂k); (24)

T (∂i, ∂j, δk) = (∇∂i
G)(∂j, δk)− (∇∂j

G)(∂i, δk); (25)

T (∂i, δj, ∂k) = (∇∂i
G)(δj, ∂k)− (∇δj G)(∂i, ∂k) + Uh

ijG
(3)
hk −Uh

ijG
(2)
hk ; (26)

T (∂i, δj, δk) = (∇∂i
G)(δj, δk)− (∇δj G)(∂i, δk) + Uh

ijG
(1)
hk −Uh

ijG
(3)
hk ; (27)

T (δi, δj, ∂k) = (∇δi G)(δj, ∂k)− (∇δj G)(δi, ∂k) + Rh
0ijG

(2)
hk ; (28)

T (δi, δj, δk) = (∇δi G)(δj, δk)− (∇δj G)(δi, δk) + Rh
0ijG

(3)
hk . (29)

Proposition 5. Let (M, g) be a connected Riemannian manifold of dimension n > 2 and let TM
be the total space of the tangent bundle, endowed with a general natural metric G given by (5). If
the metric G and the corresponding Schouten–van Kampen connection are torsion-coupled, then the
base manifold is a space form when c2(0)c3(0) 6= 0 and locally flat when c3(t) = 0 for every t ≥ 0.

Proof. By using the relations (24), (4), (12), (13), and (8), we obtain:

T (∂i, ∂j, ∂k) =
1
2
[(2c′3 − 2d3 − c′1c3 p1 + c3d1 p1 − 2c3c′3 p3 + 2c3d3 p3 (30)

+ 2d1d3 p1t− 2c′3d3 p3t + 2d2
3 p3t + 2c3d1q1t− 2c3c′3q3t

+ 2c3d3q3t + 4d1d3q1t2 − 4c′3d3q3t2 + 4d2
3q3t2)·

(gjkg0i − gikg0j)− c2c3 p1(Rlijk − Rl jik)yl

+ c2(d3 p1 + c3q1 + 2d3q1t)(Rlikmg0j − Rl jkmg0i)ylym].

The connection ∇ and the metric G are torsion-coupled if and only if the tensor
field T vanishes, that is all its components with respect to the adapted local frame field
{δi, ∂j}n

i,j=1 vanish, and hence, a necessary condition for the torsion coupling between ∇
and G is T (∂i, ∂j, ∂k) = 0. Differentiating the expression (30) with respect to the tangential
coordinates yl and taking the value of this derivative in y = 0, since the curvature of the
base manifold does not depend on the tangent vector y, for c2(0)c3(0) 6= 0 we obtain that:

Rlijk − Rl jik =
2(1− c3 p3)(c′3 − d3)− c3 p1(c′1 − d1)

c2c3 p1

∣∣∣∣
t=0

(gligjk − gl jgik). (31)

Due to the anti-symmetry of the Riemann-Christoffel tensor field in the last two
arguments, the left-hand side of relation (31) becomes Rlijk + Rl jki, and from the first
Bianchi identity it follows that:

Rlkij = c(gligjk − gl jgik),

where the function c depends on x1, . . . , xn, only, having the expression:

c = −
2(1− c3 p3)(c′3 − d3)− c3 p1(c′1 − d1)

c2c3 p1

∣∣∣∣
t=0

.

Since the manifold M is connected and of dimension n > 2, from Schur’s theorem we
obtain that c is constant, i.e., M is a space form.
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Now, we study the situation when c3(t) = 0 for every t ≥ 0. In this case, by using (10)
and then (9), the expression (30) becomes simpler:

T (∂i, ∂j, ∂k) =
−2d2

3t(c2 + c′2t)
c1c2 + 2t(c2d1 + c1d2) + 4t2(d1d2 − d2

3)
(gjkg0i − gikg0j), (32)

and its condition of vanishing does not involve the curvature of (M, g).
Analyzing the other components of the tensor field T in the same manner, we obtain:

T (δi, δj, ∂k) =
d2

3t
c1c2 + 2t(c2d1 + c1d2) + 4t2(d1d2 − d2

3)
· (33)

[c1(gjkg0i − gikg0j) + c2(Rhjkl g0i − Rhikl g0j)yhyl ]

− c2Rhkijyh,

whose derivative with respect to yh computed in y = 0 is c2(0)Rhkji.
Since c3(t) = 0 for every t ≥ 0, from the nondegeneracy condition (6) of the metric G

it follows that c2(0) 6= 0, and hence, c2(0)Rhkji vanishes if and only if Rhkji = 0, that is the
base manifold is locally flat.

One can easily prove the following lemma, which will be used to obtain the main
results of the paper.

Lemma 1. Let (M, g) be a Riemannian manifold of dimension n > 2 and α1, α2, α3, α4 be four
smooth real functions of the energy density on TM. If these functions satisfy the following relation:

α1(t)gjkg0i + α2(t)gikg0j + α3(t)gijg0k + α4(t)g0ig0jg0k = 0, ∀t > 0,

where g0i = ghiyh, then α1(t) = α2(t) = α3(t) = α4(t) = 0, for all t ≥ 0.

Theorem 2. Let (M, g) be a connected Riemannian manifold of dimension n > 2 and let the total
space TM of the tangent bundle be endowed with a general natural metric G given by (5) such that
c3(t) = 0 for every t ≥ 0. The following assertions are equivalent:

(i) The metric G and the Schouten–van Kampen connection ∇ associated to the Levi-Civita
connection ∇ of G are torsion-coupled;

(ii) The triplet (TM,∇, G) is a statistical manifold;
(iii) The base manifold is locally flat and the metric G is of natural diagonal lift type, given by:

G(XH
y , YH

y ) = κ1gτ(y)(X, Y),
G(XV

y , YV
y ) = c2(t)gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = 0,
(34)

for all X, Y ∈ T 1
0 (M), y ∈ TM, κ1 ∈ R \ {0}, where c2, d2 are some arbitrary nonzero

smooth real functions of energy density t of y such that c2(t) + 2td2(t) 6= 0, for every t ≥ 0;
(iv) The Schouten–van Kampen connection ∇ coincides with the Levi-Civita connection ∇.

Proof. According to Proposition 5, if a metric G given by (5) such that c3(t) = 0 for every
t ≥ 0 is torsion-coupled with the Schouten–van Kampen connection ∇, then the base
manifold (M, g) is locally flat. Thus, the expression (33) of the component T (δi, δj, ∂k)
reduces to:

T (δi, δj, ∂k) =
c1d2

3t
c1c2 + 2t(c2d1 + c1d2) + 4t2(d1d2 − d2

3)
(gjkg0i − gikg0j). (35)



Mathematics 2023, 11, 4614 10 of 20

Applying Lemma 1, one has T (δi, δj, ∂k) = 0 for every t ≥ 0 if and only if c1d2
3 = 0.

Since c3(t) = 0 for every t ≥ 0, from the nondegeneracy condition (6) of the metric G it
follows that c1(t) 6= 0 for every t ≥ 0, and hence, the expressions (35) of T (δi, δj, ∂k) and (32)
of T (∂i, ∂j, ∂k) vanish simultaneously if and only if d3 = 0, i.e., the metric is of natural
diagonal lift type. We compute the other components of the tensor field T with resect to
the adapted local frame field {δi, ∂j}n

i,j=1 by imposing the conditions already obtained, that
is c3 = d3 = 0 and the locally flatness of the base manifold, and we have that:

T (∂i, ∂j, δk) = 0, T (∂i, δj, ∂k) = 0, T (δi, δj, δk) = 0,

T (∂i, δj, δk) =
1
2
(c′1gjkg0i + d1gikg0j + d1gijg0k + d′1g0ig0jg0k).

By using Lemma 1, it follows that T (∂i, δj, δk) = 0 if and only if c1(t) = κ1 ∈ R and
d1(t) = 0 for every t ≥ 0. For the nondegeneracy of the metric G the real constant κ1 and
the functions c2 and c2 + 2td2 must be nonzero. Thus, we prove that all the components of
the tensor field T corresponding to the general natural metric G with c3 = 0 vanish if and
only if the base manifold (M, g) is locally flat and the metric G has the form (34). Hence,
we proved the equivalence of the items (i) and (iii).

If assertion (iii) holds, i.e., the base manifold is locally flat and the metric G is
given by (34), we obtain by using Theorem 1 that the Schouten–van Kampen connec-
tion ∇ associated to the Levi-Civita connection ∇ of G is torsion-free. On the other
hand, we showed that (iii) is equivalent to (i), and since ∇ is torsion-free, items (i), (ii),
and (iii) are equivalent. Moreover, since the metric G given by (34) is the metric from
Proposition 3 (i), it follows that ∇ coincides with ∇, i.e., the items (iii) and (iv) in the
statement are equivalent.

Remark 1. Let (M, g) be a locally flat connected Riemannian manifold of dimension n > 2. A
natural diagonal metric whose corresponding Schouten–van Kampen connection is a statistical
connection on TM depends on an arbitrary nonzero real constant and on two arbitrary nonzero
smooth real functions c2 and d2 of the energy density t, such that c2(t) + 2td2(t) 6= 0 for all
t ≥ 0. For every metric in this family the Levi-Civita connection and its associated Schouten–van
Kampen connection are identical, and hence, there is no natural diagonal metric G on TM such that
(TM, G) endowed the corresponding Schouten–van Kampen connection is a statistical manifold
admitting torsion.

Theorem 3. Let (M, g) be a connected Riemannian manifold of dimension n > 2 and let TM
be the total space of the tangent bundle, endowed with a proper general natural metric G given
by (5) such that c2(0)c3(0) 6= 0 and with the Schouten–van Kampen connection ∇ associated to
the Levi-Civita connection ∇ of G. The following assertions hold:

(a) (TM,∇, G) is a statistical manifold if and only if the base manifold (M, g) is locally flat and
the metric G has one of the following expressions:

(i)


G(XH

y , YH
y ) = κ1gτ(y)(X, Y),

G(XV
y , YV

y ) = κ2(c3(t))2gτ(y)(X, Y)
+2κ2c′3(t)(c3(t) + c′3(t)t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = c3(t)gτ(y)(X, Y) + c′3(t)gτ(y)(X, y)gτ(y)(Y, y),
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for every X, Y ∈ T 1
0 (TM), y ∈ TM, where κ1, κ2 are some arbitrary nonzero real constants

such that κ1κ2 6= 1 and c3 is an arbitrary smooth function of the energy density t of y, such
that c3(0) 6= 0, c3(t) 6= const√

t
for all const ∈ R and all t > 0;

ii)


G(XH

y , YH
y ) = 0,

G(XV
y , YV

y ) = c2(t)gτ(y)(X, Y)

+
c′2(t)c3(t)2+2c′2(t)c3(t)c′3(t)t−2c2(t)c′23 (t)t

c2
3(t)

gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = c3(t)gτ(y)(X, Y) + c′3(t)gτ(y)(X, y)gτ(y)(Y, y),

for every X, Y ∈ T 1
0 (TM), y ∈ TM, where c2, c3 are some arbitrary smooth functions of the

energy density t of y ∈ TM such that c2(0)c3(0) 6= 0, c3(t) 6= const√
t

for all const ∈ R and
all t > 0.
The Levi-Civita connection ∇ of G and its associated Schouten–van Kampen connection ∇
coincide for every metric G given by i).
The connections ∇ and ∇ are different, i.e., (TM,∇, G) is a nontrivial statistical manifold if
the metric G has the expression ii) with c2(t) 6= κ2c2

3(t) for every t ≥ 0 and every κ2 ∈ R.
(b) (TM \ {0},∇, G) is a quasi-statistical manifold if and only if the base manifold (M, g) has

constant sectional curvature c < 0 and the metric G has the following expression:
G(XH

y , YH
y ) = − cκ2

t gτ(y)(X, y)gτ(y)(Y, y),
G(XV

y , YV
y ) = κ2

t gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = ±
[

κ2
√
−2c√
t

gτ(y)(X, Y)− κ2
√
−2c

2t
√

t
(t)gτ(y)(X, y)gτ(y)(Y, y)

]
,

for every X, Y ∈ T 1
0 (TM), y ∈ TM, where κ2 is an arbitrary nonzero real constant and d2

is an arbitrary smooth real function of the energy density t of y such that d2(t) 6= − κ2
2t2 , for

every t > 0.

Proof. Our purpose is to determine the proper general natural metrics G such that the
manifold (TM,∇, G) is a statistical manifold admitting torsion. To this aim, we study the
conditions of vanishing for all the components of the tensor field T given by (22) with
respect to the adapted local frame field {δi, ∂j}n

i,j=1.

From Proposition 5, a necessary condition for (TM,∇, G) to be a statistical manifold
admitting torsion is that the base manifold (M, g) has constant sectional curvature c, and
hence, we take from the beginning:

Rh
kij = c(δh

i gkj − δh
j gki),

where δh
i is the Kronecker delta.

By using the expressions (24)–(29), in which we substitute the components of the
metric from (4), the components of the torsion T from (15), the expressions (12) of the
Schouten–van Kampen connection, its coefficients from (13), the entries of the inverse
matrix H from (8) and their coefficients from (10) and (9), we obtain that the components of
the tensor field T have the forms:

T (∂i, ∂j, ∂k) = A1(t)(gjkg0i − gikg0j); T (∂i, ∂j, δk) = A2(t)(gjkg0i − gikg0j);
T (∂i, δj, ∂k) = A3(t)gjkg0i + Ã3gikg0j + B3(t)gijg0k + C3(t)g0ig0jg0k;
T (∂i, δj, δk) = A4(t)gjkg0i + Ã4gikg0j + B4(t)gijg0k + C4(t)g0ig0jg0k;
T (δi, δj, ∂k) = A5(t)(gjkg0i − gikg0j); T (δi, δj, δk) = A6(t)(gjkg0i − gikg0j),

where Ai, i = 1, . . . , 6 and Ãj, Bj, j = 3, 4, are some rational functions depending on the
coefficients of the metric G, their derivatives, the constant sectional curvature c of (M, g),
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and the energy density t. Since the expressions of Ai and Bi are quite long, we present here
the shorter ones:

B3(t) =
c′1c2c3 + c1(c′2c3 − c2c′3)− c2

3c′3 + (c2
3 − c1c2)d3

2(c1c2 − c2
3)

,

B4(t) = 1
2 (cc2 + d1).

(36)

From Lemma 1, we have that all the components of the tensor field T from above vanish if
and only if Ai(t) = 0, i = 1, . . . , 6, Ãj(t) = 0, Bj(t) = 0, j = 3, 4.

From the conditions of vanishing of B3(t) and B4(t) given in (36), we obtain two
necessary conditions for (TM,∇, G) to be a quasi-statistical manifold:

d3 =
c′1c2c3 + c1(c′2c3 − c2c′3)− c2

3c′3
c1c2 − c2

3
, (37)

d1 = −cc2. (38)

After substituting the value obtained for d1 into the expression of Ã3(t) this turns into:

Ã3(t) =(2cc1c3
2c3 + c2

1c2c′′2 c3 − 2cc2
2c3

3 − c1c′2c3
3 − 2c2

1c2c3d2 (39)

+ 2c1c3
3d2 + 2c2

1c2
2d3 − 2c1c2c2

3d3 − 4c2c4
2c3t− 2cc1c2

2c′2c3t

+ 2cc2c′2c3
3t + 8cc1c2

2c3d2t− 4cc2c3
3d2t− 4cc1c3

2d3t + 2c2
1c2c′2d3t

− 4cc2
2c2

3d3t− 2c1c′2c2
3d3t− 8c2c3

2c3d2t2 − 4cc1c2
2c′2d3t2

+ 4cc2c′2c2
3d3t2 − 8cc2

2c3d2
3t2)/[2(c1c2 − c2

3)(c1c2 − c2
3

− 2cc2
2t + 2c1d2t− 4c3d3t− 4cc2d2t2 − 4d2

3t2)],

To obtain the necessary and sufficient conditions for Ã3(t) = 0, we have to treat the
following cases:

(Case I) c1 − 2cc2t 6= 0 and c1c2 − c2
3 6= 2cc2

2t;
(Case II) c1 − 2cc2t = 0;
(Case III) c1c2 − c2

3 = 2cc2
2t.

Next, we study each case separately.
(Case I) When c1 − 2cc2t 6= 0 (i.e., c1 + 2td1 6= 0) and c1c2 − c2

3 6= 2cc2
2t, from (39) we

obtain that Ã3(t) = 0 if and only if:

d2 =
1

2c3(c1 − 2cc2t)(c2
3 − c1c2 + 2cc2

2t)

{
4c2c4

2c3t− c1(c1c2 − c2
3)[2c2d3 (40)

+ c′2(c3 + 2d3t)] + 2cc2{c1c2[c′2t(c3 + 2d3t)− c2(c3 − 2d3t)]

+ c3[c2(c2
3 + 2c3d3t + 4d2

3t2)− c′2c3t(c3 + 2d3t)]}
}

.

By using (40) and then (37) and (38), we obtain that the numerators of Ã4(t) and A6(t)
become, respectively:

NÃ4
(t) =2cc3

1c4
2 − c2

1c′1c2
2c2

3 − 4cc2
1c3

2c2
3 − c3

1c2c′2c2
3 + c1c4

3(c1c2)
′ (41)

+ 2cc1c2
2c4

3 + 2c3
1c2

2c3c′3 − 2c2
1c2c3

3c′3 − 4c2c2
1c5

2t + 2cc3
1c3

2c′2t

+ 4c2c1c4
2c2

3t− 2cc2
1c2

2c′2c2
3t− 2cc2c4

3t(c1c2)
′ − 4cc2

1c3
2c3c′3t

+ 8cc1c2
2c3

3c′3t− 4c2c2
1c4

2c′2t2 − 4c2c′1c4
2c2

3t2 + 8c2c1c4
2c3c′3t2,
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NA6(t) =c3
1c′1c2

2 + 2cc3
1c3

2 − 2c2
1c′1c2c2

3 − 2cc2
1c2

2c2
3 + c1c′1c4

3 − 2cc1c2c4
3 (42)

+ 2cc6
3 − 4cc2

1c′1c3
2t− 4c2c2

1c4
2t + 2cc3

1c2
2c′2t + 6cc1c′1c2

2c2
3t

− 2cc2
1c2c′2c2

3t− 6cc′1c2c4
3t + 4c2c2

2c4
3t− 4cc1c′2c4

3t + 4cc1c2c3
3c′3t

+ 4cc5
3c′3t + 4c2c1c′1c4

2t2 − 4c2c2
1c3

2c′2t2 − 12c2c′1c3
2c2

3t2

− 4c2c1c2
2c′2c2

3t2 + 8c2c1c3
2c3c′3t2 + 8c2c2

2c3
3c′3t2.

Studying the simultaneous vanishing of Ã4 and A6 we distinguish the following
subcases of Case I:

(I.1) c2
3 6= 2cc2

2t and c1 6= 0;
(I.2) c1 6= 0, c > 0 and c3 = ±

√
2ctc2;

(I.3) c1 = 0.

We treat each subcase separately.
(I.1) When c2

3 6= 2cc2
2t and c1 6= 0, solving the system of equations given by

NÃ4
(t) = 0 and NA6(t) = 0, we obtain that the derivatives of the functions c1 and c2

have the expressions:

c′1 =
2c(c1c2c2

3 + c4
3 + 2c1c2c3c′3t + 2c3

3c′3t)
(c1 − 2cc2t)(2cc2

2t− c2
3)

, (43)

c′2 =
2c2[cc2

1c2
2 + cc4

3 + c2
1c3c′3 + 2c(c2

3 − c1c2)(cc2
2 + c3c′3)t + 4c2c2

2c3c′3t2]

−c1(c1 − 2cc2t)(2cc2
2t− c2

3)
. (44)

Substituting (43) and (44) into the expression of T (∂i, δj, δk), this reduces to:

T (∂i, δj, δk) =
cc3(2c1c2 + c2

3 − 2cc2
2t)(c3 + 2c′3t)

(c1 − 2cc2t)(2cc2
2t− c2

3)
gjkg0i (45)

+
c2c2c3(c2

3 + 2cc2
2t)(c3 + 2c′3t)

c1(c1 − 2cc2t)(2cc2
2t− c2

3)
g0ig0jg0k,

and it vanishes, according to Lemma 1, if and only if the involved coefficients vanish
simultaneously. Since the metric G is proper general natural, i.e., c3 6= 0, d3 6= 0, the
coefficient of g0ig0jg0k vanishes if and only if one of the following instances happens:

(I.1.i) c = 0, which together with (37), (38), (40), (43), (44) leads to:

c1 = κ1 ∈ R \ {0}, d1 = 0, c′2 =
2c2c′3

c3
, i.e., c2 = κ2c2

3, d2 = 2κ2c′3(c3 + c′3t), d3 = c′3,

where κ2 is an arbitrary nonzero real constant and c3 is an arbitrary smooth nonzero real
function of t such that c3(0) 6= 0 and the nondegeneracy conditions (6) of the metric G
are satisfied, i.e., κ1κ2 6= 1 and (κ1κ2 − 1)(c3 + 2tc′3)

2 6= 0, and hence, c3(t) 6= const√
t

for
all const ∈ R and all t > 0. By substituting the values of the coefficients of the metric G
obtained in Case I.1.i) and c = 0 into each component of the tensor field T with respect to
the adapted local frame filed {δi, ∂j}n

i,j=1, we obtain, by using Mathematica, that T = 0. On
the other hand, the obtained metric satisfies Proposition 4, and hence, the Schouten–van
Kampen connection ∇ coincides with the Levi-Civita connection of the metric G, i.e., in
Case (I.1.i), (TM,∇, G) is obviously a statistical manifold.

(I.1.ii) c3 + 2c′3t = 0, i.e., c3(t) = κ3√
t
, for every κ3 ∈ R \ {0}, t > 0, but together

with (38), (40), (37), and (43), which would imply d2 = − c2
2t , i.e., c2 + 2td2 = 0 and d3 = c′3,

i.e., c3 + 2td3 = 0, and hence, the second nondegeneracy condition (6) of the metric G
would not be satisfied.

(I.1.iii) c2 = 0 does not satisfy the condition c2(0)c3(0) = 0 from the hypothesis.
(I.1.iv) c < 0 and c2

3 = −2cc2
2t, which substituted into (45), turns the factor

2c1c2 + c2
3 − 2cc2

2t from the coefficient of gjkg0i into 2c2(c1 − 2cc2t) and this vanishes if and
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only if c2 = 0 (see I.1.iii) or c1 = 2cc2t, which together with d1 = −cc2 yields c1 + 2td1 = 0,
which does not hold in Case I.

We conclude that the only favorable subcase of Case I.1 is (I.1.i), rended in the state-
ment at a (i). We already showed that in Case (I.1.i) the Schouten–van Kampen connection
∇ coincides with the Levi-Civita connection of G.

(I.2) c1 6= 0, c > 0 and c3 = ±
√

2ctc2, i.e., c2 = ± c3√
2ct

for every t > 0. Substituting

c2 = ε c3√
2ct

(where ε = 1 or ε = −1) into NÃ4
we obtain:

NÃ4
(t) =

√
cc3[c1(2c2

1 − 5εc1c3
√

2ct + 10cc2
3t)(c3 + 2c′3t)

− 2c′1c3t(c2
1 − εc1c3t

√
2ct + 4cc2

3t)],

which vanishes if and only if one of the following instances happens:

(I.2.i)
{

c2
1 − εc1c3t

√
2ct + 4cc2

3t = 0,
(2c2

1 − 5εc1c3
√

2ct + 10cc2
3t)(c3 + 2c′3t) = 0.

If c3 + 2c′3t = 0, i.e., c3(t) =
κ3√

t
for every t > 0, κ3 ∈ R \ {0}, then the first relation in

(I.2.i) turns into:
c2

1 − εκ3
√

2ctc1 + 4κ2
3ct = 0,

which is not satisfied by any real function c1 of t.
If 2c2

1 − 5εc1c3
√

2ct + 10cc2
3t = 0, since the first relation in (I.2.i) holds, it follows that

3c2
1 + 10cc2

3t = 0, where c > 0, and hence c1 = c3 = 0, which do not satisfy neither the
nondegeneracy condition (6) for the metric G nor the conditions (I.2).

(I.2.ii)
{

c1 = κ1 ∈ R \ {0},
(2c2

1 − 5εc1c3
√

2ct + 10cc2
3t)(c3 + 2c′3t) = 0.

In this case, the first factor in the second relation of I.2.ii) becomes:

10ctc2
3 − 5εκ1

√
2ctc3 + 2κ2

1 6= 0

for every real function c3 of t. On the other hand, if the first relation in (I.2.ii) is satisfied
and c3 + 2c′3t = 0, i.e., c3 = κ3√

t
, for every t > 0, κ3 ∈ R \ {0}, by taking into account the

expressions (38), (40), (37) of the coefficients d1, d2, d3 and the expression of c2 in Case I.2,
it follows that:

(c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)
2 = 0,

hence, the second nedegeneracy condition (6) is not satisfied.

(I.2.iii)


c2

1 − εc1c3t
√

2ct + 4cc2
3t 6= 0

c′1 =
2c3

1c3 − 5εc2
1c2

3

√
2ct + 10cc1c3

3t + 4c3
1c′3t− 10εc2

1c3c′3t
√

2ct + 20cc1c2
3c′3t2

2c3t(c2
1 − εc1c3t

√
2ct + 4cc2

3t)
,

for every t > 0. By using the expressions (38), (40), (37) of d1, d2, d3, the expression of c′1 in
Case (I.2.iii) and that of c2 in Case I.2, we obtain that the component T (δi, δj, δk) reduces to:

T (δi, δj, δk) =
2ε
√

c(c2
1 − ε

√
2ctc1c3 + 4cc2

3t)
√

t(
√

2c1 − 6ε
√

ctc3)
6= 0,

for every c1, c3 nonzero smooth real functions of t. Subsequently, a general natural metric
G whose coefficients satisfy Case (I.2.iii) is not torsion-coupled with the corresponding
Schouten–van Kampen connection.
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(I.3) c1 = 0, which substituted into the expression of T (∂i, δj, δk) together
with (38), (40), (37) turns the coefficient A4(t) into:

A4(t) =
ct(2c2c′3 − c′2c3)(c3 + 2c′3t)

c3(c3 + 2tc′3) + 2cc2t(c2 + 2tc′2)

and this vanishes if and only if one of the following situations happens:
(I.3.i) c = 0, which turns relation (38) into d1 = 0. In this subcase, it follows that the

first condition of Case I, c1 + 2td1 6= 0 is not satisfied, and hence, the subcase (I.3.i) is not
possible.

(I.3.ii) c3 + 2tc′3 = 0, i.e., c3 = κ3√
t
, for all κ3 ∈ R \ {0}, t > 0, which together with

c1 = 0 and the expressions (38), (40), and (37) leads to c2 + 2td2 = c3 + 2td3 = 0, i.e., the
second nondegeneracy condition in (6) is not satisfied, and hence, there is no metric G
whose coefficients satisfy Case I.3.ii).

(I.3.iii) 2c2c′3− c′2c3 = 0, i.e., c2 = κ2c2
3, for every κ2 ∈ R \ {0}. Together with (38), (40),

and (37), the expression obtained for c2 yields:

T (∂i, δj, δk) = −
cκ2c3(c3 + 2tc′3)

2t
g0ig0jg0k. (46)

The expression (46) vanishes if and only if c = 0 or c3 + 2tc′3 = 0, relations which are
not possible in Case I.3 (see the discussion from I.3.i and I.3.ii).

(Case II) When c1 − 2cc2t = 0, i.e., c1 + 2td1 = 0, by using (37), we obtain that the
coefficient B4(t) from the expression of T (∂i, δj, δk) reduces to:

B4(t) =
2c2c3

2
c2

3 − 2cc2
2t

,

and hence, it vanishes if and only if one of the following subcases holds:
(II.1) c = 0, which due to relations (38) and (37) yields c1 = d1 = 0 and d3 = c′3, then

the expression of the component T (∂i, ∂j, ∂k) reduces to:

T (∂i, ∂j, ∂k) =
c′2c2

3 − c2
3d2 + 2c′2c3c′3t− 2c2c′23 t

c3(c3 + 2tc′3)
(gjkg0i − gikg0j),

and according to Lemma 1 it is zero if and only if:

d2 =
c′2c2

3 + 2c′2c3c′3t− 2c2c′23 t
c2

3
.

If the coefficients of the metric G have the expressions obtained in Case II.1 and the
base manifold is locally flat, we verify by using Mathematica that all the components of
the tensor field T with respect to the adapted local frame field {δi, ∂j}n

i,j=1 vanish. The
metric whose coefficients are those in Case II.1 is the metric from item a ii) in the statement.
From Theorem 1, it follows that the Schouten–van Kampen connection associated to the
Levi-Civita connection of the metric G given at a ii) is torsion-free, and since we proved
that T = 0, the triplet (TM,∇, G) is a statistical manifold. If in the expression a (ii)
we take c2(t) = κ(c3(t))2, where κ is an arbitrary nonzero real constant, it follows that
d2(t) = 2κc′3(t)(c3(t) + tc′3(t)), and hence, the metric G satisfies Proposition 4. It follows
that the Levi-Civita connection of the metric G given at a ii) coincides with the associated
Schouten–van Kampen connection only when c2(t) = κ(c3(t))2 for every t ≥ 0, κ ∈ R \ {0}.

If the metric G has the expression from a ii) with c2(t) 6= κ(c3(t))2 for every t ≥ 0,
κ ∈ R, then the Levi-Civita connection of G and its associated Schouten–van Kampen
connection do not coincide, and hence, the statistical manifold (TM,∇, G) is nontrivial.

(II.2) c2 = 0 doest not verify the condition c2(0)c3(0) = 0 from the hypothesis.
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(Case III) When c1c2 − c2
3 = 2cc2

2t, it follows from the nondegeneracy condition (6) of
the metric G that the base manifold (M, g) is not locally flat, c2(t) 6= 0 and t 6= 0, and hence,
in Case III, the metric G is defined on TM \ {0}, the total space of the bundle of nonzero
vector fields tangent to the space form (M, g). In this case, one has:

c1 =
c2

3 + 2cc2
2t

c2
(47)

and then the expression (37) of d3 reduces to:

d3 =
c2c3 + 2c′2c3t− c2c′3t

c2t
. (48)

Substituting the expressions (38), (47), and (48) into the expression of T (δi, δj, δk), we
obtain that the numerator of its coefficient is:

NA6(t) =c2
3[8c2

2c3
3 − 8cc4

2c3t + 27c2c′2c3
3t− 18c2

2c2
3c′3t− 14cc3

2c′2c3t2

+ 20c′22 c3
3t2 + 4cc4

2c′3t2 − 26c2c′2c2
3c′3t2 + 8c2

2c3c′23 t2

− 8cc2
2c′22 c3t3 + 4cc3

2c′2c′3t3 − 2c2c3d2t(c2
3 + 2cc2

2t)].

To obtain necessary and sufficient conditions for NA6(t) = 0, we have to study two
subcases of Case III:

(III.1) If c2
3 + 2cc2

2t 6= 0, then NA6(t) = 0 if and only if:

d2 =(8c2
2c3

3 − 8cc4
2c3t + 27c2c′2c3

3t− 18c2
2c2

3c′3t− 14cc3
2c′2c3t2 (49)

+ 20c′22 c3
3t2 + 4cc4

2c′3t2 − 26c2c′2c2
3c′3t2 + 8c2

2c3c′23 t2

− 8cc2
2c′22 c3t3 + 4cc3

2c′2c′3t3)/[2c2c3t(c2
3 + 2cc2

2t)].

Taking into account the expressions (38), (47), (48), and (49), we obtain that the numer-
ator of the coefficient of gikg0j involved in the expression of T (∂i, δj, ∂k) is of the form:

NÃ3
(t) = c3(c2

3 + 2cc2
2t)(2c2c3 + 3c′2c3t− 2c2c′3t).

Since c2
3 + 2cc2

2t 6= 0 and G is a proper general natural metric, NÃ3
(t) = 0 if and only

if:

c′3 =
2c2c3 + 3c′2c3t

2c2t
,

which yields a simpler form of the coefficient of gjkg0i in the same component of T , namely:

A3(t) =
c3(c2

3 + 3cc2
2t)(c2 + c′2t)

4cc3
2t2

, (50)

while the coefficient involved in the expression of T (∂i, ∂j, δk) becomes:

A2(t) =
c3(cc2

2t− c2
3)(c2 + c′2t)

4cc3
2t2

. (51)

The expressions (50) and (51) vanish simultaneously if and only if c2 + c′2t = 0 or
c2

3 + 3cc2
2t = cc2

2t− c2
3 = 0.

If c2 + c′2t = 0, i.e., c2 = κ2
t for every t > 0, where κ2 is an arbitrary nonzero real

constant, then by taking into account (38), (47), (48) and (49) it follows that the second
nondegeneracy condition (6) for the metric G is not satisfied.

If c2
3 + 3cc2

2t = cc2
2t − c2

3 = 0, i.e., c2
3 = cc2

2t = 0, then under the condition of Case
III, it follows that c1c2 − c2

3 = 0, i.e., the metric G is degenerate. We conclude that in
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Case III.1, there is no proper general natural metric G torsion-coupled with the correspon-
ding Schouten–van Kampen connection ∇.

(III.2) The subcase c2
3 + 2cc2

2t = 0 holds for c < 0 and t > 0, and due to (47), it reduces
to the condition c1 = 0. Then, the relation (37) turns into d3 = c′3, and together with (38),
it yields:

T (∂i, ∂j, δk) = 0, T (δi, δj, ∂k) = 0,

T (δi, δj, δk) =
cc3(c3 + 2c′3t)2

c2
3 + 4c3c′3t + 2cc2t + 4c′23 t2 + 4cc2d2t2

(gikg0j − gjkg0i).

Then, T (δi, δj, δk) = 0 if and only if c3(t) =
κ3√

t
, for every t > 0, κ3 ∈ R \ {0}.

By using (38) and the coefficients obtained in Case III.2:

c1 = 0, c3 =
κ3√

t
, d3 = − κ3

2t
√

t
, (52)

we have:

T (∂i, ∂j, ∂k) =
c2 + c′2t

2t
(gjkg0i − gikg0j),

T (∂i, δj, δk) = −
c(c2 + c′2t)

2t
g0ig0jg0k,

T (∂i, δj, ∂k) =
κ2

3 + 2cc2
2t2

4κ3t2
√

t
(g0ig0jg0k − 2tgikg0j),

which vanish simultaneously if and only if:

c2 =
κ2

t
, κ3 = ±κ2

√
−2c, ∀t > 0, κ2 ∈ R \ {0}. (53)

Subsequently, in Case III.2, all the components of the tensor field T with respect to the
adapted local frame field {δi, ∂j}n

i,j=1 vanish simultaneously if and only if the coefficients
of the metric G satisfy the relations (38), (52), and (53) and d2 is an arbitrary smooth real
function of t, such that d2(t) 6= − κ2

2t2 , because if d2(t) = − κ2
2t2 , then the nondegeneracy

condition (6) for the metric G would not be satisfied. Thus, we proved that the triplet
(TM \ {0},∇, G) is a statistical manifold admitting torsion if and only if the metric G has
the expression given in the statement at item (b).

Remark 2. Let (M, g) be a locally flat connected Riemannian manifold of dimension n > 2. There
are two families of proper general natural metrics on TM such that the Schouten–van Kampen
connection associated to the Levi-Civita connection of a metric is a statistical connection on TM.
One family of metrics depends on an arbitrary smooth function c3 of the energy density t, different
from const√

t
with const ∈ R, c3(0) 6= 0, and on two nonzero arbitrary real constants, provided that

their product is not 1. The other family of metrics depends on two nonzero arbitrary smooth real
functions c2, c3 of t, provided that c2(0)c3(0) 6= 0, c3(t) 6= const√

t
for every t > 0, const ∈ R.

If, moreover, c2(t) 6= κ2c2
3(t) for every t ≥ 0, κ2 ∈ R, then the statistical structure on TM

is nontrivial.

Remark 3. Let (M, g) be a connected n > 2–dimensional Riemannian manifold of constant
sectional curvature c < 0. The family of proper general natural metrics on TM \ {0} such that
the Schouten–van Kampen connection associated to the Levi-Civita connection of a metric is a
quasi-statistical connection on TM \ {0} depends on the constant sectional curvature c of (M, g),
the energy density t, an arbitrary nonzero real constant κ2 and an arbitrary smooth function of t,
different from − κ2

2t2 .
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4. Conclusions

Investigating the quasi-statistical Schouten–van Kampen connection ∇ associated to
the Levi-Civita connection of a general natural metric G given by (5) on the total space TM
of the tangent bundle of a Riemannian manifold (M, g), we conclude the following:

(1) The base manifold must be a space form when c2(0)c3(0) 6= 0 and locally flat when
c3(t) = 0. Implicitly, when the metric G is of natural diagonal lift type, (M, g) must be
locally flat.

(2) There exists one family of natural diagonal metrics such that (TM,∇, G) is a statistical
manifold. The metrics in this family depend on two arbitrary nonzero smooth real
functions of the energy density t and on an arbitrary nonzero real constant such that
the nondegeneracy conditions of the metric are satisfied.

(3) When G is a proper general natural metric G on TM, ∇ is a statistical connection if
and only if (M, g) is locally flat and the metric G has two possible expressions. Hence,
there are two families of proper general natural metrics such that (TM,∇, G) is a
statistical manifold. The metrics in the first family depend on two arbitrary nonzero
real constants, κ1, κ2, and on an arbitrary smooth nonzero real function c3 of the energy
density t such that c3(0) 6= 0, while the metrics in the second family depend only on
two arbitrary smooth nonzero real functions of t, c2 and c3, for which c2(0)c3(0) 6= 0,
such that the nondegeneracy conditions of the metric are satisfied in each case.

(4) If c2(t) 6= κ2c2
3(t), then the statistical manifold (TM,∇, G) is nontrivial, i.e., the Levi-

Civita connection is different from its associated Schouten–van Kampen connection.
(5) The manifold (TM \ {0},∇, G) is quasi-statistical if and only if (M, g) has constant

sectional curvature c < 0 and the metric G depends on c, t, on an arbitrary nonzero
real constant κ2 and on an arbitrary smooth real function of t, different from − κ2

2t2 .

In a forthcoming paper we will determine the conditions under which the general natural
α-structures characterized in [47] are torsion coupled (in particular Codazzi coupled) with
the (quasi-)statistical Schouten–van Kampen connection ∇ associated to the Levi-Civita
connection∇ of a general natural metric G on TM. Another goal will be to characterize the
para-Kähler-like statistical manifolds (TM,∇, P, G), where the almost product structure P
and the metric G are of general natural lift type on TM.
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