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Abstract: Cardiovascular disease (CVD) is a leading global health concern. There is a critical need
for accurate and reliable decision-making tools to select the optimal approach for diagnosing cardio-
vascular disease (CVD). In this study, we have addressed this pressing issue. Complex intuitionistic
fuzzy set (CIFS) theory is adept at encapsulating vagueness due to its capability to encompass com-
prehensive problem specifications characterized by both intuitionistic uncertainty and periodicity.
Within the scope of this article, we present two novel aggregation operators: the complex intuition-
istic fuzzy dynamic weighted averaging (CIFDWA) operator and the complex intuitionistic fuzzy
dynamic weighted geometric (CIFDWG) operator. Some intriguing characteristics of these operators
are elucidated, and important special cases are also defined in detail. We devise an enhanced score
function to rectify the deficiencies observed in the existing score function under complex intuitionistic
fuzzy knowledge. Furthermore, these operators are employed in the development of a system-
atic approach for the handling of multiple attribute decision-making (MADM) scenarios involving
complex intuitionistic fuzzy data. Moreover, we undertake the resolution of an MADM problem,
wherein we ascertain the optimal approach for diagnosing cardiovascular disease (CVD) through
the utilization of the proposed operators, thereby substantiating their utility in decision-making
processes. Finally, we conduct a comprehensive comparative analysis, pitting the presented operators
against an array of existing counterparts, in order to demonstrate the reliability and stability inherent
in the derived methodologies.

Keywords: complex intuitionistic fuzzy sets; dynamic aggregation operators; decision-making
methods; cardiovascular disease

MSC: 03E72; 94D05

1. Introduction
1.1. Background

Algorithmic decision-making systems have greatly improved the management of large
healthcare datasets, particularly in prediction and diagnosis [1,2]. In various fields, such
as computer science, business administration, medical diagnostics, and enterprise man-
agement, strategic decision-making tools play a crucial role, especially in dynamic market
product selection. Each attribute involved in decision-making plays a unique and influen-
tial role, often leading to different attribute weights in the framework of MADM [3,4]. The
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utilization of fuzzy sets (FS) is imperative in addressing the complexities and uncertainties
inherent in real-world decision-making. Zadeh [5] introduced the theory of fuzzy sets,
which has since proven to be valuable in evaluating uncertain and ambiguous data. The
central concept of a fuzzy set revolves around membership degrees, bounded within the
range [0, 1]. The challenge of aggregating attributes and quantifying dissimilarities among
them is prevalent across various domains, leading to an increasing reliance on fuzzy sets,
as documented in the existing literature [6–8]. Over time, the scope of FS has evolved
beyond its initial focus on membership degrees, overlooking the non-membership aspect.
In response, Atanassov [9] introduced the concept of non-membership degrees within the
domain of intuitionistic fuzzy sets (IFS). The mathematical formulation designates the mem-
bership degree as µ(z), while the non-membership degree is represented as ν(z), subject to
the constraint: 0 ≤ µ(z) + ν(z) ≤ 1. Fuzzy set theory is a specific case of IFS, achieved
by setting ν(z) = 0. Addressing the challenge of aggregating and quantifying the distance
between multiple attributes, researchers have proposed various IFS-based approaches in
different disciplines. For example, Liu et al. [10] developed a hybrid approach incorpo-
rating variable weighting for interval-valued IFS. Thao [11] investigated entropies and
divergence measures for IFS, considering Archimedean norms. Gohain et al. [12] extended
this research by examining the similarity and distance measures associated with IFSs. Garg
and Rani [13] identified and studied similarity measures tailored to IFSs. Hayat et al. [14]
explored new aggregation operators for effectively representing information within an IFS
framework. For further advances in the field of IFSs, readers are recommended to read
references [15–22].

The practical effectiveness of the information provided in the previous paragraph
is restricted due to its reliance on FS and IFS, which only process one dimension of data
at a time. Consequently, it is possible that experts have incurred significant data losses
due to these factors. In lieu of FS and IFS, a need has arisen for a technique that can
effectively handle two-dimensional information. After substantial research, Ramot et al. [23]
addressed this issue by developing a unique theory of complex fuzzy sets (CFSs), which
incorporates a periodic term in the membership degree, referred to as the “phase term”,
that assumes a pivotal and significant function within the context of the decision-making
process. Furthermore, the task of aggregating and determining the distance between
multiple attributes remains challenging for everyone. Given these challenging scenarios,
certain considerations have arisen regarding the utilization of CFSs in various fields [24–27].
The concept of a complex-valued non-membership degree is introduced in [28] to develop
the idea of CIFS, a generalization of CFS.

The challenge of aggregating and measuring the distance between multiple attributes
remains a complex task. In response to these challenges, various considerations have
emerged regarding the application of CIFS in different domains. For instance, Garg and
Rani [29] explored novel aggregation operators within the realm of CIFS. Reference [30]
delved into robust aggregation information within CIFS, while [31] investigated general-
ized geometric aggregation information in this context. Moreover, in [32], a comprehensive
theory was developed for prioritized aggregation operators concerning complex intuitionis-
tic fuzzy soft information, with a subsequent focus on their practical use in decision-making.
Masmali et al. [33] introduced a technique for finding an optimal water purification proce-
dure using a complex intuitionistic fuzzy Dombi environment.

1.2. Novelty, Objectives, and Main Outcomes of the Study

The above-mentioned research efforts primarily address decision-making scenarios
where all initial decision data are presented simultaneously. However, in various decision-
making contexts, such as dynamic medical diagnostics, multi-period investment decision-
making, the dynamic assessment of military system efficiency, and personnel dynamic
evaluation, it is common for the primary decision-related data to be gathered at disparate
time intervals. Thus, it becomes important to conduct research dealing with the problems
associated with dynamic fuzzy MADM [34,35]. Dynamic aggregation operators offer
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adaptability and precision in decision-making by accommodating changing data with
regard to time. They enable real-time decisions, reduce risks, optimize resource allocation,
aid in strategic planning, and can lead to cost savings.

The primary objective of this study is to enhance the field of MADM by addressing
the unique challenges posed by dynamic decision data. We aim to develop novel dynamic
aggregation operators and associated methodologies to effectively handle complex intu-
itionistic fuzzy information. The study proposes two novel dynamic aggregation operators,
namely, the CIFDWA operator and the CIFDWG operator, for the purpose of aggregating
complex intuitionistic fuzzy information in the context of MADM problems. Additionally,
based on the CIFDWA and CIFDWG operators, we developed respective step-by-step math-
ematical mechanisms for solving complex intuitionistic fuzzy dynamic MADM problems in
which all attribute values are expressed as complex intuitionistic fuzzy numbers collected
in different time periods. Our research endeavors revolve around several key theoretical
framework objectives.

i. A novel score function that enhances the complex intuitionistic fuzzy system while
mitigating the limitations of the previous score function is formulated. The task is
achieved through the utilization of advanced mathematical and statistical methods.
This improves the accuracy and precision of the grading system.

ii. Two novel aggregation operators, namely, the CIFDWA operator and the CIFDWG
operator, are proposed for the purpose of aggregating complex intuitionistic fuzzy
dynamic information in the context of MADM problems.

iii. A comprehensive imperative description is provided to elucidate the fundamental
characteristics of the operators under consideration, specifically their idempotency,
monotonicity, and boundedness.

iv. These operators are employed in the development of a systematic approach for the
handling of MADM scenarios involving complex intuitionistic fuzzy data.

v. The practical application of the CIFDWA and CIFDWG operators is demonstrated
through their implementation for an MADM problem that involves identifying the
most effective strategy for diagnosing cardiovascular disease. This practical applica-
tion serves to demonstrate the effectiveness of our operators in enhancing decision-
making processes.

vi. The stability and efficacy of the proposed approach is validated by conducting com-
parative analyses with various existing studies.

The remaining part of this work is organized in the following manner: In Section 2,
we provide a comprehensive exposition of fundamental definitions. We also address the
shortcomings in the existing score function and introduce a novel score function tailored to
rectify this limitation within the context of the complex intuitionistic fuzzy environment.
Section 3 expounds upon dynamic aggregation operators designed for CIFS and delves
into their foundational properties. In Section 4, we elucidate a method for addressing
the intricate problem of multiple attribute decision making (MADM) with complex intu-
itionistic fuzzy information by employing complex intuitionistic fuzzy dynamic weighted
aggregation operators. In Section 5, these newly formulated operators are employed to
ascertain the most efficacious approach for diagnosing cardiovascular disease. Additionally,
we present a comparative analysis, aiming to elucidate the effectiveness and viability of
this innovative strategy in contrast to established methodologies. Finally, the paper cul-
minates by furnishing a conclusion of the principal findings and deliberating on potential
implications.

2. Preliminaries

This section elucidates fundamental definitions essential for comprehending the sub-
ject matter discussed in this study. Additionally, we introduce a novel score function that
enhances the complex intuitionistic fuzzy system and addresses the limitations of the
previous score function.
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The subsequent definition provides an overview of the IFS concept, which arises
as an expansion of traditional fuzzy sets by accounting for both membership and non-
membership degrees of an element.

Definition 1 ([9]). An IFS, denoted as A within the universal set Z, is formally characterized
as A = {(z, µA(z), νA(z)) : z ∈ Z}. In this representation, µA and νA are functions mapping
elements of Z to the closed interval [0, 1] and known as membership and non-membership functions,
respectively. These functions adhere to the constraint 0 ≤ µA(z) + νA(z) ≤ 1. Moreover, the
hesitancy margin of the IFS, denoted as πA(z), is described by πA(z) = 1− µA(z)− νA(z).

In the following definition, we expound upon the conceptual framework of CFS, a
significant advancement of classical fuzzy sets that adeptly addresses both phase and
periodicity aspects.

Definition 2 ([23]). A CFS denoted as C over Z is formally characterized as: C = {(z, µC(z)) :
z ∈ Z}. Here, µC represents the complex-valued membership degree function, which maps el-
ements of Z to a subset of complex numbers {a : a ε C, |a|≤ 1} and is defined as: µC(z) =
rC(z)ei2ΠθC(z). In this expression, i =

√
−1 and the parameters rC(z) and θC(z) satisfy the

constraints 0 ≤ rC(z), θC(z) ≤ 1.

Now, we provide the definition of CIFS, an extension of both IFS and CFS.

Definition 3 ([28]). A CIFS denoted as C over Z is formally described as follows: C = {(z, µC(z),
νC(z)) : z ∈ Z}. Here, µC and νC represent the complex-valued membership and non-membership
functions, respectively, that assign to each element a complex number in the unit closed disk, and
are defined as: µC(z) = rC(z)ei2ΠθC(z) and νC(z) = КC(z)ei2ΠϕC(z)

Moreover, in these expressions, the parameters rC(z), КC(z), θC(z), and ϕC(z) satisfy
the constraints 0 ≤ rC(z), КC(z), θC(z), ϕC(z), rC(z) +КC(z), θC + ϕC(z) ≤ 1.

For the sake of clarity and convenience, we denote the membership and non-membership
degrees of an element z ∈ Z as C = ((Γ, θ), (К, ϕ)), referring to it as a complex intuitionistic
fuzzy number (CIFN). In this CIFN framework, the following conditions are met: 0 ≤ Γ, К,
Γ +К ≤ 1, and 0 ≤ θ, ϕ, θ + ϕ ≤ 1.

Aggregation operators serve as fundamental mathematical tools for combining mul-
tiple inputs into a singular, distinct output. In the following discourse, we elucidate
arithmetic aggregation operators tailored for the synthesis of complex intuitionistic fuzzy
(CIF) information.

Definition 4 ([30]). Let αγ = ((Γγ, θγ), (Кγ, ϕγ)) for γ = 1, 2, . . . , n be a collection of CIFNs.
Furthermore, let w = [w1, w2, . . . , wn]

T denotes the weight vector associated with αγ, such
that wγ ∈ [0, 1], satisfying the constraint ∑n

γ=1 wγ = 1. For a set of n CIFNs, α1, α2, . . . , αn,
the mapping complex intuitionistic fuzzy weighted averaging operator (CIFWA), denoted as
CIFWA: ψp → ψ , is defined as follows:

CIFWA(α1, α2, . . . , αn) = ⊕n
γ=1wγαγ =

((1−∏n
γ=1 (1− Γ γ

)wγ
, 1−∏n

γ=1(1− θγ)
wγ
)

,(
∏n

γ=1(Кγ)
wγ , ∏n

γ=1(ϕγ)
wγ
) )

(1)

Definition 5 ([30]). Let αγ = ((Γγ, θγ), (Кγ, ϕγ)) for γ = 1, 2, . . . , n be a collection of CIFNs.
Furthermore, let w = [w1, w2, . . . , wn]

T denotes the weight vector associated with αγ, such
that wγ ∈ [0, 1], satisfying the constraint ∑n

γ=1 wγ = 1. For a set of n CIFNs, α1, α2, . . . , αn,
the mapping complex intuitionistic fuzzy weighted geometric operator (CIFWG), denoted as
CIFWG : ψp → ψ , is defined as follows:
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CIFWG(α1, α2, . . . , αn) = ⊗n
γ=1αγ

wγ =

( (
∏n

γ=1 (Γ γ

)wγ
, ∏n

γ=1(θγ)
wγ
)

,(
1−∏n

γ=1(1−Кγ)
wγ , 1−∏n

γ=1

(
1− ϕγ

)wγ
)) (2)

In the subsequent definition, we rewrite the notion of an intuitionistic fuzzy variable.

Definition 6 ([35]). Let t be a time variable, we define αt as an intuitionistic fuzzy variable,
where αt = (µt, νt), characterized by µt and νt, both of which are constrained within the interval
[0, 1] and subject to the condition µt + νt ≤ 1. For intuitionistic fuzzy variable αt = (µt, νt),
if t = t1, t2, . . . , tp then αt1 , αt2 , . . . , αtp indicate p intuitionistic fuzzy numbers collected at p
different periods.

The next definition provides the concept of CIFN which is used in evaluation and rank-
ing procedures based on designated score and accuracy functions within the established
framework.

Definition 7 ([28]). Let CIFN α0 be represented as ((Γ0, θ0), (К0, ϕ0)), where the score function
is defined as: S(α0) =

1
2 (Γ0 −К0 + θ0 − ϕ0), S(α0) ∈ [−1, 1].

Additionally, the accuracy function is specified as: H(α0) = 1
2 (Γ0 +К0 + θ0 + ϕ0),

H(α0) ∈ [0, 1]. Furthermore, it is worth noting that any pair of CIFNs, α1 and α2, adhere to
the following comparative principles:

i. If S(α1) > S(α2), then α1 > α2
ii. If S(α1) < S(α2), then α1 < α2
iii. If S(α1) = S(α2), then H(α1) > H(α2) =⇒ α1 > , H(α1) < H(α2) =⇒ α1 < α2 and

H(α1) = H(α2) =⇒ α1 = α2

Improved Score Function

Here, we endeavor to illuminate the constraints inherent in the score function em-
ployed for CIFNs, as previously articulated in the literature [28]. Subsequent to this
exposition, our discourse centers upon the refinement of the score function in order to
ameliorate this deficiency.

Example 1. Let us consider two arbitrary CIFNs, denoted as α1 = ((0.4, 0.6), (0.3, 0.2)) and
α2 = ((0.7, 0.3), (0.1, 0.4)). The application of Definition 7 to CIFNs α1 and α2 yields S(α1) =
S(α2) = 0.25 and H(α1) = H(α2) = 0.75. It is evident, based on property 3(c) in Definition 7,
that CIFNs α1 and α2 cannot be compared.

The aforementioned example serves to underscore the deficiency intrinsic to the extant score
function within our scope of study. Consequently, this prompts our pursuit of refining the score
function, resulting in the introduction of an updated score function expounded upon in the subse-
quent definition.

Definition 8. Let α0 = ((Γ0, θ0), (К0, ϕ0)) signify a CIFN. The improved score function denoted
as C(α0) for CIFNs is formulated as follows:

C(α0) =
1
2
(Γ0 −К0 + θ0 − ϕ0 + Γ0К0)

Herein, C(α0) ∈ [−1, 1].
Moreover, it is imperative to highlight that the aforementioned proposed score function adheres

to the comparison law for any pair of CIFNs α1 and α2, that is, C(α1) > C(α2) =⇒ α1 > α2 ,
C(α1) < C(α2) =⇒ α1 < α2 , and C(α1) = C(α2) =⇒ α1 = α2 .

To illuminate the precision and utility of this proposed score function tailored for CIFNs, let us
delve into the following illustrative example.
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Example 2. Consider two CIFNs, α1 = ((0.4, 0.6), (0.3, 0.2)) and α2 = ((0.7, 0.3), (0.1, 0.4)),
which are arbitrarily selected. Notably, Example 1 has previously demonstrated the limitations
of the extant score function when applied to these CIFNs. Applying the framework delineated in
Definition 7 to these CIFNs yields C(α1) = 0.51 and C(α2) = 0.68. Consequently, in accordance
with the precept elucidated in Property 2 of Definition 7, it becomes evident that α1 < α2. This
compelling evidence leads to the inference that α2 is indeed superior to α1.

3. Dynamic Operations on CIFNs

The process of aggregating information is a basic and important topic of research
within the field of information fusion. The operators CIFWA and CIFWG are restricted to
the aggregation of complex intuitionistic fuzzy information that involves time-independent
arguments. When considering the element of time, it is important to note that complex
intuitionistic fuzzy information can be acquired at various intervals. In such cases, it is
necessary to ensure that the aggregation operators and their corresponding weights are
not held constant. As a consequence, in the subsequent sections based on [36], we initially
establish the conceptual framework of a complex intuitionistic fuzzy variable.

3.1. Operational Laws of Dynamic CIFNs

In this subsection, we introduce the concept of a complex intuitionistic fuzzy dynamic
variable and delineate its fundamental laws.

In the following definition, we develop the concept of a complex intuitionistic fuzzy
variable.

Definition 9. In the realm of mathematical discourse, we introduce the concept of a “complex
intuitionistic fuzzy variable,” denoted as αt, where t is a time variable. This variable is characterized
by the following components: ((Γt, θt), (Кt, ϕt)), such that Γt, Кt, θt, ϕt ∈ [0, 1]. Additionally,
these parameters must adhere to the constraint Γt +Кt ≤ 1 and θt + ϕt ≤ 1.

In a broader perspective, if we consider a sequence of time instances, t1, t2, . . . , tp, then
αt1 , αt2 , . . . , αtp represent p distinct CIFNs, each associated with a specific time period.

In the domain of CIFNs, we articulate the fundamental principles governing their interrela-
tionship in Definitions 10 and 11.

Definition 10. Consider two CIFNs, αt1 = ((Γt1 , θt1), (Кt1 , ϕt1)) and αt2 = ((Γt2 , θt2), (Кt2 , ϕt2)).
The essential operational laws governing their interaction are as follows:

i. αt1 ≤ αt2 i f Γt1 ≤ Γt2 , Кt1 ≥ Кt2 and θt1 ≤ θt2 , ϕt1 ≥ ϕt2

ii. αt1 = αt2 if and only if αt1 ⊆ αt2 and αt2 ⊆ αt1

iii. αc
t1
= ((Кt1 , ϕt1), (Γt1 , θt1))

Definition 11. For two CIFNs, αt1 = ((Γt1 , θt1), (Кt1 , ϕt1)) and αt2 = ((Γt2 , θt2), (Кt2 , ϕt2)),
in tandem with a positive real scalar factor λ, the general operations are succinctly articulated
as follows:

i. αt1 ⊕ αt2 =
((

1−∏2
k=1
(
1− Γtk

)
, 1−∏2

k=1
(
1− θtk

))
,
(

∏2
k=1 Кtk , ∏2

k=1 ϕtk

))
ii. αt1 ⊗ αt2 =

((
∏2

k=1 Γtk , ∏2
k=1 θtk

)
,
(

1−∏2
k=1
(
1−Кtk

)
, 1−∏2

k=1
(
1− ϕtk

)))
iii. λαt1 =

(
1− (1− Γt1)

λ, 1− (1− θt1)
λ
)

,
(
(Кt1)

λ, (ϕt1)
λ
)

iv. αt1
λ =

(
(Γt1)

λ, (θt1)
λ
)

,
(

1− (1−Кt1)
λ, 1− (1− ϕt1)

λ
)

3.2. Structural Properties of CIFDWA Operator

In this subsection, we introduce the concept of a CIFDWA operator and establish its
fundamental structural properties.
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Definition 12. We consider a set CIFNs, denoted as αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
, with respect

to different time periods tk (k = 1 to p). We also have weight vector λt =
[
λt1 , λt2 , . . . , λtp

]T

associated with time periods tk , where λtk ∈ [0, 1] and ∑
p
k=1 λtk = 1. The CIFDWA operator is a

mapping CIFDWA : ψp → ψ , defined as follows;

CIFDWA
(

αt1 , αt2 , . . . , αtp

)
= ⊕p

k=1λtk αtk (3)

This operator combines these CIFNs using their associated weights in the framework of complex
intuitionistic fuzzy logic.

The following theorem shows that the aggregated value of any number of CIFNs
within the framework of the CIFDWA operator yields another CIFN.

Theorem 1. Consider a collection of CIFNs represented as αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
, observed

at p distinct time periods denoted by tk, where k ranges from 1 to p. Let λt =
[
λt1 , λt2 , . . . . . . , λtp

]T

be the associated weight vector of time periods tk, such that λtk ∈ [0, 1], satisfying the con-
straint ∑

p
k=1 λtk = 1. Therefore, the aggregated value of these CIFNs, as determined within

the framework of the CIFDWA, is also a CIFN. This aggregated CIFN is computed as follows:

CIFDWA
(

αt1 , αt2 , . . . , αtp

)
= (

(
1−∏

p
k=1 (1−Γ tk

)λtk , 1−∏
p
k=1(1−θtk )

λtk

)
,(

∏
p
k=1(Кtk )

λtk , ∏
p
k=1(ϕtk )

λtk
) ).

Proof of Theorem 1. We establish the validity of the theorem through the application of
the mathematical induction technique.

For the base case when p = 2, we have two CIFNs, namely, αt1 = ((Γt1 , θt1), (Кt1 , ϕt1))
and αt2 = ((Γt2 , θt2), (Кt2 , ϕt2)). Employing the operations defined for CIFNs, we obtain
the following expressions:

λt1 αt1 =

((
1−(1− Γ t1

)λt1 , 1− (1− θt1)
λt1

)
,
(
(Кt1)

λt1 , (ϕt1)
λt1

))
and

λt2 αt2 =

((
1−(1− Γ t2

)λt2 , 1− (1− θt2)
λt2

)
,
(
(Кt2)

λt2 , (ϕt2)
λt2

))
Applying the CIFDWA operator to αt1 and αt2 , we combine these two CIFNs as follows:

CIFDWA(αt1 , αt2) = λt1 αt1 ⊕ λt2 αt2

=

((
1−(1− Γ t1

)λt1 , 1− (1− θt1)
λt1

)
,
(
(Кt1)

λt1 , (ϕt1)
λt1

))
⊕
((

1−(1− Γ t2

)λt2 , 1− (1− θt2)
λt2

)
,
(
(Кt2)

λt2 , (ϕt2)
λt2

))
It follows that:

CIFDWA(αt1 , αt2)

=

((
1−∏2

k=1 (1− Γ tk

)λtk , 1−∏2
k=1
(
1− θtk

)λtk

)
,
(

∏2
k=1
(
Кtk

)λtk , ∏2
k=1
(

ϕtk

)λtk
))

Hence, we have established the correctness of the theorem for the base case when
p = 2.
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Now, we proceed with the induction step. Let us assume that the result holds for
p = m, where m is a positive integer. This means that:

CIFDWA(αt1 , αt2 , . . . , αtm) =

((1−∏m
k=1 (1− Γ tk

)λtk , 1−∏m
k=1
(
1− θtk

)λtk

)
,(

∏m
k=1
(
Кtk

)λtk , ∏m
k=1
(

ϕtk

)λtk
) )

Now, for the case when p = m + 1, we have:

CIFDWA
(
αt1 , αt2 , . . . , αtm , αtm+1

)
= (λ t1

αt1

)
⊕ (λt2 αt2)⊕ . . .⊕ (λtm αtm)⊕

(
λtm+1 αtm+1

)
=

((
1−∏m

k=1 (1− Γ tk

)λtk , 1−∏m
k=1
(
1− θtk

)λtk

)
,
(

∏m
k=1
(
Кtk

)λtk , ∏m
k=1
(

ϕtk

)λtk
))

⊕
((

1−(1− Γ tm+1

)λtm+1 , 1−
(
1− θtm+1

)λtm+1

)
,
((

Кtm+1

)λtm+1 ,
(

ϕtm+1

)λtm+1
))

This shows that:

CIFDWA
(
αt1 , αt2 , . . . , αtm , αtm+1

)
=

((
1−∏m+1

k=1 (1− Γ tk

)λtk , 1−∏m+1
k=1 (1− θtk)

λtk

)
,
(

∏m+1
k=1 (Кtk)

λtk , ∏m+1
k=1 (ϕtk)

λtk

))
This expression is consistent with the formula provided in the theorem statement.

Therefore, by the principle of mathematical induction, we have demonstrated that the
result holds for all positive integers of p. �

The following example serves to elucidate the aforementioned assertion.

Example 3. Suppose αt1 = ((0.6, 0.5), (0.3, 0.5)), αt2 = ((0.4, 0.8), (0.2, 0.1)), αt3 = ((0.3, 0.3),
(0.4, 0.7)), and αt4 = ((0.9, 0.4), (0.1, 0.4)) are any four CIFNs and λt = [0.35, 0.15, 0.3, 0.2]T de-

notes the weight vectors of the time periods tk where, k = 1, 2, 3, 4 . Then, we have ∏4
k=1 (1− Γ tk

)λ(tk)

= 0.381 , ∏4
k=1
(
1− θtk

)λ(tk) = 0.499, ∏4
k=1
(
Кtk

)λ(tk) = 0.247 and ∏4
k=1

(
ϕtk

)λ(tk) = 0.146.
This implies that

CIFDWA(αt1 , αt2 , αt3 , αt4) = ⊕4
k=1λtk αtk

= ((0.619, 0.501), (0.247, 0.416))

Therefore, we deduce that the outcome derived from the preceding discourse also constitutes
a CIFN.

The following result delineates that the collection of any number of CIFNs manifests
the property of idempotency within the context of the CIFDWA operator.

Theorem 2. (Idempotency Property): A set of CIFNs αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
, for k ranging

from 1 to p, satisfies the condition αtk = αt0 for all tk, where αt0 = ((Γt0 , θt0), (Кt0 , ϕt0)) is itself a

CIFN. We also have weight vector λt =
[
λt1 , λt2 , . . . , λtp

]T
associated with time periods tk, where

λtk ∈ [0, 1] and ∑
p
k=1 λtk = 1. Therefore, CIFDWA

(
αt1 , αt2 , . . . , αtp

)
= αt0 .
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Proof of Theorem 2. Given that αtk = αto for all k, it follows from Definition 10 that
Γtk = Γt0 ,θtk = θt0 , Кtk = Кt0 , and ϕtk = ϕt0 for all k. Substituting these relations into
Theorem 1, we obtain the following:

CIFDWA
(

αt1 , αt2 , . . . , αtp

)
= (

(
1−∏

p
k=1 (1−Γ t0

)λtk , 1−∏
p
k=1(1−θt0)

λtk

)
,(

∏
p
k=1(Кt0)

λtk , ∏
p
k=1(ϕt0)

λtk
) )

= (

(
1−(1−Γt0)

∑
p
k=1 λtk , 1−(1−θt0)

∑
p
k=1 λtk

)
,(

(Кt0)
∑

p
k=1 λtk , (ϕt0)

∑
p
k=1 λtk

) )

= ((Γt0 , θt0), (Кt0 , ϕt0))

Hence, we conclude that CIFDWA
(

αt1 , αt2 , . . . , αtp

)
= αt0 . �

The following result delineates that the collection of any number of CIFNs manifests
the monotonicity property within the framework governed by the CIFDWA operator.

Theorem 3. (Monotonicity Property): Consider two collections of CIFNs, denoted as αtk =((
Γtk , θtk

)
,
(
Кtk , ϕtk

))
and α′tk

=
((

Γ′tk
, θ′tk

)
,
(
К′tk

, ϕ′tk

))
for all k = 1, 2, 3, . . . , p. Let λt =[

λt1 , λt2 , . . . , λtp

]T
denotes the weight vector associated with time periods tk, such that λtk ∈ [0, 1]

and ∑
p
k=1 λtk = 1. If the following conditions hold for each k: Γtk ≤ Γ′tk

, Кtk ≥ К′tk
, θtk ≤ θ′tk

, and

ϕtk ≥ ϕ′tk
, then we can establish that: CIFDWA

(
αt1 , αt2 , . . . , αtp

)
≤ CIFDWA

(
α′t1,α

′
t2

, . . . , α′tp

)
.

Proof of Theorem 3. In view of the given presentations of αtk and α′tk
, the corresponding

CIFDWA’s outcomes are as follows:

CIFDWA
(

αt1 , αt2 , . . . , αtp

)
= ((Γt, θt), (Кt, ϕt)) and CIFDWA

(
α′t1,α

′
t2

, . . . , α′tp

)
=
((

Γ′t, θ′t
)
,
(
К′t, ϕ′t

))
.

By observing that Γtk ≤ Γ′tk
, we can deduce that 1− Γtk ≥ 1− Γ′tk

, which in turn implies

∏
p
k=1 (1− Γ tk

)λtk ≥ ∏
p
k=1

(
1− Γ′tk

)λtk =⇒ 1−∏
p
k=1 (1− Γ tk

)λtk ≤ 1−∏
p
k=1

(
1− Γ′tk

)λtk .

Hence, we can conclude that Γt ≤ Γ′t.

Similarly, by considering Кtk ≥ К′tk
, we derive ∏

p
k=1

(
Кtk

)λtk ≥∏
p
k=1

(
К′tk

)λtk , which

implies Кt ≥ К′t.
Therefore, utilizing Definition 10, we establish the desired result. �

The subsequent result elucidates that the collection of any number of CIFNs possesses
the boundedness property within the domain of CIFDWA operator.

Theorem 4. (Boundedness Property) Let α−t =

((
min

tk
{Γtk

}
,min

tk
{θtk

})
,
(

max
tk

{
Кtk

}
,max

tk

{
ϕtk

}))
and α+t =

((
max

tk

{
Γtk

}
,max

tk

{
θtk

})
,
(

min
tk
{Кtk

}
, min

tk
{ϕtk

}))
be the lower and upper bounds

of the CIFNs αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
. We also have weight vector λt =

[
λt1 , λt2 , . . . , λtp

]T

associated with time periods tk, where λtk ∈ [0, 1] and ∑
p
k=1 λtk = 1. Therefore, α−t ≤ CIFDWA(

αt1 , αt2 , . . . , αtp

)
≤ α+t .

Proof of Theorem 4. Consider the result of applying the CIFDWA operator to the collection
of CIFNs, denoted as CIFDWA

(
αt1 , αt2 , . . . , αtp

)
= ((Γt, θt), (Кt, ϕt)).
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For each CIFN αtk , min
tk
{Γtk} ≤ Γtk ≤ max

tk
{Γtk} =⇒ 1−max

tk
{Γtk} ≤ 1− Γtk ≤ 1−

min
tk
{Γtk} =⇒ ∏

p
k=1

(
1−max

tk
{Γtk}

)λtk
≤ ∏

p
k=1(1− Γtk)

λtk ≤ ∏
p
k=1

(
1−min

tk
{Γtk}

)λtk

=⇒
(

1−max
tk
{Γtk}

)∑
p
k=1 λtk

≤∏
p
k=1 (1− Γtk)

λtk ≤
(

1−min
tk
{Γtk}

)∑
p
k=1 λtk

⇒ 1−max
tk
{Γtk} ≤

∏
p
k=1 (1− Γtk)

λtk ≤1−min
tk
{Γtk} =⇒ min

tk
{Γtk} ≤ 1−∏

p
k=1

(
1− Γtk

)λtk ≤ max
tk

{
Γtk

}
. Hence,

min
tk

{
Γtk

}
≤ Γt ≤ max

tk

{
Γtk

}
.

Additionally, min
tk

{
Кtk

}
≤ Кtk ≤ max

tk

{
Кtk

}
=⇒ ∏

p
k=1

(
min

tk

{
Кtk

})λtk
≤ ∏

p
k=1

{
Кtk

}λtk

≤ ∏
p
k=1

(
max

tk

{
Кtk

})λtk
=⇒

(
min

tk

{
Кtk

})∑
p
k=1 λtk

≤ ∏
p
k=1

(
Кtk

)λtk ≤
(

max
tk

{
Кtk

})∑
p
k=1 λtk

=⇒ min
tk

{
Кtk

}
≤ Кt ≤ max

tk

{
Кtk

}
.

Similarly, we can determine that min
tk

{
θtk

}
≤ θt ≤ max

tk

{
θtk

}
and min

tk

{
ϕtk

}
≤ ϕt ≤

max
tk

{
ϕtk

}
. Hence, by employing Definition 10, we determine that

α−t ≤ CIFDWA
(

αt1 , αt2 , . . . , αtp

)
≤ α+t .

�

3.3. Structural Properties of CIFDWG Operator

In this section, we introduce the notion of complex intuitionistic fuzzy dynamic
weighted geometric operator and establish its fundamental structural properties.

Definition 13. Let αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
be a collection of CIFNs at p different periods

tk, where k = 1, 2, . . . , p. Furthermore, let λt =
[
λt1 , λt2 , . . . , λtp

]T
denotes the weight vector

associated with time periods tk and λtk ∈ [0, 1], satisfying the constraint ∑
p
k=1 λtk = 1. The

CIFDWG operator is a mapping CIFDWG : ψp → ψ , is defined as follows:

CIFDWG
(

αt1 , αt2 , . . . , αtp

)
= ⊗p

k=1αtk
λtk (4)

The following theorem elucidates that the combined value resulting from the aggre-
gation of any number of CIFNs conforms to the CIFN structure within the context of
CIFDWG operator.

Theorem 5. Let αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
be a collection of CIFNs at p different periods

tk(k = 1, 2, . . . , p). Let λt =
[
λt1 , λt2 , . . . , λtp

]T
denotes the weight vector associated with time

periods tk, and λtk ∈ [0, 1], satisfying the constraint ∑
p
k=1 λtk = 1. Therefore, the aggregated value

of these CIFNs in the framework of the CIFDWG operator is also a CIFN and is determined as
follows:

CIFDWG
(

αt1 , αt2 , . . . , αtp

)
=

( (
∏

p
k=1 (Γ tk

)λtk , ∏
p
k=1

(
θtk

)λtk

)
,(

1−∏
p
k=1

(
1−Кtk

)λtk , 1−∏
p
k=1

(
1− ϕtk

)λtk
))
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Proof of Theorem 5. We establish the validity of the theorem through the application of
the mathematical induction technique.

For the base case when p = 2, we have two CIFNs, namely, αt1 = ((Γt1 , θt1), (Кt1 , ϕt1))
and αt2 = ((Γt2 , θt2), (Кt2 , ϕt2)). Employing the operations defined for CIFNs, we obtain
the following expressions:

αt1
λt1 =

((
(Γt1)

λt1 , (θt1)
λt1

)
,
(

1−(1−К t1

)λt1 , 1− (1− ϕt1)
λt1

))
(5)

and

αt2
λt2 =

((
(Γt2)

λt2 , (θt2)
λt2

)
,
(

1−(1−К t2

)λt2 , 1− (1− ϕt2)
λt2

))
(6)

Now, applying the CIFDWG operator to αt1 and αt2 , we combine these two CIFNs as
follows:

CIFDWG(α t1
, αt2

)
= αt1

λt1 ⊗ αt2
λt2

=

((
(Γt1)

λt1 , (θt1)
λt1

)
,
(

1−(1−К t1

)λt1 , 1− (1− ϕt1)
λt1

))
⊗
((

(Γt2)
λt2 , (θt2)

λt2

)
,
(

1−(1−К t2

)λt2 , 1− (1− ϕt2)
λt2

))
It follows that:

CIFDWG(α t1
, αt2

)
= (
(

∏2
k=1
(
Γtk

)λtk , ∏2
k=1
(
θtk

)λtk
)

,(
1−∏2

k=1
(
1−Кtk

)λtk , 1−∏2
k=1
(
1− ϕtk

)λtk
)
)

Hence, we have established the correctness of the theorem for the base case when
p = 2.

Now, we proceed with the induction step. Let us assume that the result holds for
p = m, where m is a positive integer. This means that:

CIFDWG
(

αt1 , αt2 , . . . , αtp

)
=

( (
∏m

k=1 (Γ tk

)λtk , ∏m
k=1
(
θtk

)λtk

)
,(

1−∏m
k=1
(
1−Кtk

)λtk , 1−∏m
k=1

(
1− ϕtk

)λtk
)) (7)

Now, for the case when p = m + 1, we have:

CIFDWG
(
αt1 , αt2 , . . . , αtm , αtm+1

)
= αt1

λt1 ⊗ αt2
λt2 ⊗ . . .⊗ αtm

λtm ⊗ αtm+1
λtm+1

=

((
∏m

k=1
(
Γtk

)λtk , ∏m
k=1
(
θtk

)λtk
)

,
(

1−∏m
k=1 (1−К tk

)λtk , 1−∏m
k=1
(
1− ϕtk

)λtk

))
⊗
(((

Γtm+1

)λtm+1 ,
(
θtm+1

)λtm+1
)

, 1
(
−(1−К tm+1

)λtm+1 , 1−
(
1− ϕtm+1

)λtm+1

))
It follows that:

CIFDWG
(
αt1 , αt2 , . . . , αtm , αtm+1

)
=

((
∏m+1

k=1 (Γtk)
λtk , ∏m+1

k=1 (θtk)
λtk

)
,
(

1−∏m+1
k=1 (1−К tk

)λtk , 1−∏m+1
k=1 (1−ϕtk)

λtk

))
This expression is consistent with the formula provided in the theorem statement.

Therefore, by the principle of mathematical induction, we have demonstrated that the
result holds for all positive integers of p. �

The following example serves to elucidate the previously asserted fact.
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Example 4. Suppose αt1 = ((0.4, 0.5), (0.4, 0.3)), αt2 = ((0.5, 0.8), (0.3, 0.1)), αt3 = ((0.7, 0.3),
(0.2, 0.6)), and αt4 = ((0.9, 0.4), (0.1, 0.4)) are any four CIFNs and λt = [0.35, 0.15, 0.3, 0.2]T

denotes the weight vector of the periods tk where k = 1, 2, 3, 4. Then, we have

∏4
k=1 (Γ tk

)λtk = 0.575, ∏4
k=1

(
θtk

)λtk = 0.440

∏4
k=1

(
1−Кtk

)λtk = 0.726, ∏4
k=1

(
1− ϕtk

)λtk
)
= 0.596

This implies that
CIFDWG(αt1 , αt2 , αt3 , αt4) = ⊗

p
k=1αtk

λtk

= ((0.575, 0.440), (0.274, 0.404))

Therefore, we conclude that the result of the preceding discussion is also a CIFN.

The forthcoming result delineates that the aggregation of any number of CIFNs within
the context of a CIFDWG operator exhibits the idempotency property.

Theorem 6 (Idempotency Property). A set of CIFNs αtk =
((

Γtk , θtk

)
,
(
Кtk , ϕtk

))
, for k ranging

from 1 to p, satisfies the condition αtk = αt0 for all tk, where αt0 = ((Γt0 , θt0), (Кt0 , ϕt0)) is itself a

CIFN. We also have weight vector λt =
[
λt1 , λt2 , . . . , λtp

]T
associated with time periods tk, where

λtk ∈ [0, 1] and ∑
p
k=1 λtk = 1. Therefore, CIFDWG

(
αt1 , αt2 , . . . , αtp

)
= αt0 .

Proof of Theorem 6. The proof of this theorem follows a similar logic to that of Theorem 2.
�

The following result elucidates that the collection of any number of CIFNs exhibits the
characteristic of monotonicity within the domain of CIFDWG operator.

Theorem 7 (Monotonicity Property). Consider two collections of CIFNs, denoted as αtk =((
Γtk , θtk

)
,
(
Кtk , ϕtk

))
and α′tk

=
((

Γ′tk
, θ′tk

)
,
(
К′tk

, ϕ′tk

))
for all tk = 1, 2, 3, . . . , p. Let λt =[

λt1 , λt2 , . . . , λtp

]T
be the associated weight vector of time periods tk, such that λtk ∈ [0, 1],

satisfying the constraint ∑
p
k=1 λtk = 1. If the following conditions hold for each tk: Γtk ≤ Γ′tk

, Кtk ≥
К′tk

, θtk ≤ θ′tk
, and ϕtk ≥ ϕ′tk

, then we can establish that: CIFDWG
(

αt1 , αt2 , . . . , αtp

)
≤

CIFDWG
(

α′t1,α
′
t2

, . . . , α′tp

)
.

Proof of Theorem 7. The proof of this theorem follows a similar logic to that of Theorem 3.
�

The subsequent result expounds that the collection of any number of CIFNs conforms
to the boundedness property within the framework of CIFDWG operator.

Theorem 8 (Boundedness Property). Let α−t =


(

min
tk
{Γtk

}
, min

tk
{θtk

})
,(

max
tk

{
Кtk

}
,max

tk

{
ϕtk

})
 and α+t =


(

max
tk

{
Γtk

}
,max

tk

{
θtk

})
,(

min
tk
{Кtk

}
, min

tk
{ϕtk

})
 be the lower and upper bounds of the CIFNs αtk =

((
Γtk , θtk

)
,
(
Кtk , ϕtk

))
.



Mathematics 2023, 11, 4616 13 of 23

We also have weight vector λt =
[
λt1 , λt2 , . . . , λtp

]T
associated with time periods tk, where

λtk ∈ [0, 1] and ∑
p
k=1 λtk = 1. Therefore, α−t ≤ CIFDWG

(
αt1 , αt2 , . . . , αtp

)
≤ α+t .

Proof of Theorem 8. The proof of this theorem follows a similar logic to that of Theorem 4.
�

4. Algorithm to Solve MADM Problems by Complex Intuitionistic Fuzzy Dynamic
Weighted Aggregation Operators

In this section, we elucidate a method for addressing the intricate problem of multiple
attribute decision making (MADM) with complex intuitionistic fuzzy information by
employing complex intuitionistic fuzzy dynamic weighted aggregation operators.

Let us denote a discrete set of alternatives as A = {A1, A2, . . . , Am}. Additionally,
we consider a set of attributes denoted as C = {C1, C2, . . . , Cn}, where the corresponding
weight vector is represented as w = (w1, w2, . . . , wn)

T , where wγ ≥ 0 for γ = 1, 2, . . . , n and
∑n

γ=1 wγ = 1. Furthermore, for p discrete time periods denoted as tk, where k = 1, 2, . . . , p,

each associated with a weight vector
[
λt1 , λt2 , . . . , λtp

]T
, with λtk ∈ [0, 1] and ∑

p
k=1 λtk = 1.

Let Rtk =
(

δij(tk)

)
m×n

=
((

Γij(tk)
, θij(tk)

)
,
(
Кij(tk)

, ϕij(tk)

))
be the complex intuition-

istic fuzzy decision matrix at p distinct time periods tk, where k = 1, 2, . . . , p. In this
matrix, Γij(tk)

and θij(tk)
represent the degrees to which the alternative Ai satisfies the at-

tribute Cj at time periods tk, whereas Кij(tk)
and ϕij(tk)

signify the degrees to which the
alternative Ai does not satisfy the attribute Cj at time periods tk. Importantly, these values
are bounded within the range [0, 1] and they adhere to the conditions 0 ≤ Γij(tk)

+Кij(tk)
,

θij(tk)
+ ϕij(tk)

≤ 1, where i = 1, 2, . . . , m and j = 1, 2, . . . , n.
To tackle the MADM problem, the following algorithms are formulated:

4.1. Algorithm for CIFDWA

Step 1. Employ the CIFDWA operator to aggregate the complex intuitionistic fuzzy
decision matrices as follows:(

δij(tk)

)
=
((

Γij(tk)
, θij(tk)

)
,
(
Кij(tk)

, ϕij(tk)

))
= CIFDWA

(
δij(t1)

, δij(t2)
, . . . , δij(tp)

)
= (

(
1−∏

p
k=1 (1−Γ ij(tk)

)λtk ,
(

1−∏
p
k=1

(
1−θij(tk)

)λtk
)

,(
∏

p
k=1

(
Кij(tk)

)λtk , ∏
p
k=1

(
ϕij(tk)

)λtk
) )

This operation aggregates all the complex intuitionistic fuzzy decision matrices Rtk =(
δij(tk)

)
m×n

=
((

Γij(tk)
, θij(tk)

)
,
(
Кij(tk)

, ϕij(tk)

))
m×n

where k = 1, 2, . . . , p into a collective

complex intuitionistic fuzzy decision matrix R =
(
δij
)

m×n =
((

Γij, θij
)
,
(
Кij, ϕij

))
m×n.

Step 2. Utilize the CIFWA operator to determine the overall values (δi) for each
alternative Ai, where i = 1, 2, . . . , m:

(δi) = ((Γi, θi), (Кi, ϕi)) = CIFWA(δi1, δi2, . . . , δin)

= (

(
1−∏n

γ=1 (1−Γ iγ)
wγ , 1−∏n

γ=1(1−θiγ)
wγ
)

,(
∏n

γ=1(Кiγ)
wγ , ∏n

γ=1(ϕiγ)
wγ
) )

(8)

Step 3. Compute the score values C(δi) corresponding to each alternative Ai by using
Definition 8.

Step 4. Rank all the alternatives Ai (i = 1, 2, . . . , m) and select the best one(s) accord-
ing to their C(δi).
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4.2. Algorithm for CIFDWG

Step 1. Utilize the CIFDWG operator:(
δij(tk)

)
=
((

Γij(tk)
, θij(tk)

)
,
(
Кij(tk)

, ϕij(tk)

))
= CIFDWG

(
δij(t1)

, δij(t2)
, . . . , δij(tp)

)
= (

(
∏

p
k=1

(
Γij(tk)

)λtk , ∏
p
k=1

(
θij(tk)

)λtk
)

,((
1−∏

p
k=1 (1−К ij(tk)

)λtk , 1−∏
p
k=1

(
1−ϕij(tk)

)λtk
))) (9)

This operation aggregates all the complex intuitionistic fuzzy decision matrices Rtk =(
δij(tk)

)
m×n

=
((

Γij(tk)
, θij(tk)

)
,
(
Кij(tk)

, ϕij(tk)

))
m×n

where k = 1, 2, . . . , p into a collective

complex intuitionistic fuzzy decision matrix =
(
δij
)

m×n =
((

Γij, θij
)
,
(
Кij, ϕij

))
m×n.

Step 2. Employ the CIFWG operator to determine the overall values (δi) for each
alternative Ai, where i = 1, 2, . . . , m :

(δi) = ((Γi, θi), (Кi, ϕi)) = CIFWG(δi1, δi2, . . . , δin) =

( (
∏n

γ=1
(
Γiγ
)wγ , ∏n

γ=1
(
θiγ
)wγ
)

,(
1−∏n

γ=1 (1−К iγ

)wγ
, 1−∏n

γ=1
(
1− ϕiγ

)wγ
)) (10)

Step 3. Calculate the score values C(δi) corresponding to each alternative Ai by
utilizing Definition 8.

Step 4. Arrange all the alternatives Ai (i = 1, 2, . . . , m) in order of preference and
designate the best-performing one(s) in accordance with their C(δi).

5. Application of Proposed Complex Intuitionistic Fuzzy Dynamic Aggregation
Operators in an MADM Problem

In this section, we further elaborate on the previously discussed technique by provid-
ing a numerical example. We then compare the outcomes of this example with those of the
existing research.

5.1. Case Study

Cardiovascular diseases (CVDs) encompass a cluster of chronic conditions that have
detrimental effects on the cardiovascular system. A substantial proportion of the populace
within the United States harbors perilous levels of saturated fat, a condition manifesting in
multiple manifestations. In order to manage CVD, individuals have the option to imple-
ment lifestyle modifications or seek medical intervention through prescribed medication
under the guidance of a healthcare professional. Early detection of CVD facilitates a more
favorable outcome for successful treatment. CVD is the primary contributor to mortality
rates on a global scale as well as within the United States. Annually, a staggering number
of 655,000 individuals in the United States suffer deaths due to heart disease. Approxi-
mately 50% of the population in the United States experiences some form of CVD. Both
genders are affected. In reality, CVD is responsible for the mortality of one in every three
women. This phenomenon has an impact on individuals across diverse age groups, races,
and socioeconomic statuses. The primary behavioral risk factors associated with CVD
and stroke include inadequate diet, physical inactivity, tobacco smoking, and excessive
alcohol consumption. Behavioral risk factors can lead to elevated cholesterol levels, higher
blood glucose levels, increased serum lipids, and overweight or obesity in adults. These
intermediary risk factors serve as salient indicators of an elevated propensity for the occur-
rence of adverse cardiovascular events such as myocardial infarction, hemorrhage, cardiac
arrhythmia, and associated sequelae. It is plausible to subject these risk factors to scrutiny
and evaluation within primary care settings. Initiatives encompassing smoking cessation,
reduction in sodium consumption, augmentation of fruit and vegetable intake, engage-
ment in routine physical exercise, and the moderation of alcohol consumption constitute
viable strategies for mitigating the risk of cardiovascular diseases. To foster and sustain
healthful behaviors among individuals, it becomes imperative to institute health policies
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that facilitate the affordability and accessibility of salubrious alternatives. Furthermore, it
is imperative to acknowledge the existence of other contributory factors that underlie the
etiology of cardiovascular disorders. The primary factors that have an influence on social,
economic, and cultural development are globalization, urbanization, and population aging.
Genetic predispositions, psychological stress, and socioeconomic hardship are additional
risk factors for CVD. Medical therapies aimed at addressing hypertension, hyperglycemia,
and elevated serum lipid profiles are necessary to reduce the risk of cardiovascular events
such as myocardial infarctions and cerebrovascular events in these patients. According
to the World Health Organization (WHO), approximately 35% of deaths in Pakistan are
attributed to CVD. Due to an aging population and increasing rates of risk factors such as
hypertension, hypercholesterolemia, and diabetes, the prevalence of CVD in Pakistan is on
the rise. Lifestyle modifications have the potential to mitigate the risk of cardiovascular
disease. The risk factors outlined in this study include:

i. Hypertension, a medical ailment, induces the stiffening and constriction of arterial
walls as a consequence of heightened blood pressure levels. This elevation in blood
pressure significantly elevates the susceptibility to heart attacks, strokes, and kid-
ney failure. The etiological factors contributing to high blood pressure encompass
sedentary living, psychological stress, dietary habits, and genetic predisposition.

ii. Lipoproteins circulating in the bloodstream may have an elevated concentration of
cholesterol, which is characterized as a lipidaceous, waxy compound. Elevated levels
of cholesterol within the circulatory system can precipitate atherogenesis, a patho-
logical process entailing the deposition of cholesterol within the walls of arteries.
Atherosclerosis-induced vascular narrowing significantly augments the susceptibility
to myocardial infarctions and cerebrovascular events. Factors contributing to height-
ened cholesterol levels encompass suboptimal dietary patterns, sedentary lifestyle
choices, and a familial predisposition to the ailment.

iii. Smoking has a chance to cause damage to the lining of the end of the arteries, in-
creasing the chance of having a heart attack or stroke. Moreover, the consequences of
other risk factors, such as high blood pressure and cholesterol levels, may be further
intensified due to the presence of this illness.

iv. Diabetes is a chronic medical disorder that causes poor consumption and storage of
glucose, a form of sugar, within the body. High levels of blood glucose can have a
negative impact on vascular health, hence increasing one’s risk of CVD.

There are non-modifiable risk factors for cardiovascular disease, including age, gender,
and family medical history. The previously mentioned risk factors are subject to modifica-
tion. In general, the male population has a higher susceptibility to cardiovascular illness in
comparison to their female counterparts, with this risk increasing as individuals advance
in age. The existence of a family history of CVD increases an individual’s susceptibility to
developing the condition.

In Pakistan, there are multiple strategies for the prevention and management of CVD.
These approaches include:

a. Promoting cardiovascular health and mitigating the risk of disease can be achieved
through a range of beneficial lifestyle choices. These include maintaining a healthy
weight through balanced nutrition and regular exercise while also refraining from
smoking. Engaging in regular physical activity not only enhances cardiovascular well-
being but also aids in weight management. A diet rich in fruits, vegetables, whole
grains, and lean proteins can effectively lower blood pressure and cholesterol levels,
offering multiple health benefits. Finally, abstaining from tobacco use significantly
reduces the risk of cardiovascular disease.

b. Pharmacological interventions such as antihypertensive agents, statins, and an-
tiplatelet medications play a pivotal role in the management and mitigation of CVD
risks. These therapeutic modalities are often prescribed by healthcare practitioners
and necessitate strict adherence to prescribed regimens to ensure their efficacy.
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c. Primary prevention entails a proactive approach aimed at averting the onset of CVD
in asymptomatic individuals. This multifaceted strategy encompasses the adoption
of a healthy dietary regimen, regular physical exercise, and systematic screening for
predisposing risk factors, including but not limited to elevated blood pressure and
cholesterol levels.

d. Secondary prevention constitutes a pivotal facet of the comprehensive strategy
against CVD. This imperative entails the attenuation of CVD progression in in-
dividuals already afflicted by the ailment. Such an endeavor necessitates the im-
plementation of judicious lifestyle modifications, the judicious administration of
pharmacotherapies, and the diligent oversight of healthcare professionals to monitor
advancements and ameliorate potential side effects.

e. The meticulous management of risk factors assumes paramount significance in the
realm of CVD prevention and control. By effectively addressing conditions such
as hypertension, hypercholesterolemia, and diabetes, individuals can substantially
curtail their vulnerability to CVD. The orchestration of this preventive symphony
encompasses lifestyle modifications, pharmaceutical interventions, and vigilant
medical supervision.

f. Community-based initiatives comprise a vital stratum within the multifaceted ap-
proach to combating CVD. These initiatives encompass a gamut of endeavors, includ-
ing public health crusades, educational programs, and support networks, all geared
towards fostering awareness regarding CVD and advocating for healthier lifestyles
among the populace.

According to available data from 2019, CVD emerged as the primary cause of mortality
in Asia, resulting in over 10.8 million deaths. This comprised nearly 35% of the total
number of fatalities recorded in the region [37]. Approximately 39% of these fatalities
related to CVD were deemed avoidable. The number of premature fatalities exceeded that
of premature CVD deaths in the United States (23%), Europe (22%), and globally (34%).
Ischemic heart disease (IHD), commonly known as a stroke, accounts for a staggering 87%
of CVD fatalities. On a global scale, the approximate fatality count attributable to CVDs
exhibited a noteworthy rise, ascending from approximately 12.1 million in 1990, with an
equitable distribution between both genders, to a figure of 18.6 million in 2019. This later
statistic featured a breakdown of 9.6 million male fatalities and 8.9 million female fatalities
(Figure 1). The source of Figure 1 is the Institute for Health Metrics and Evaluation (IHME),
GBD Compare Data Visualization. Seattle, WA: IHME, University of Washington, 2020.
This is freely available from http://vizhub.healthdata.org/gbdcompare (accessed on 18
March 2023).

The increase in patient treatment costs and challenges in Pakistan’s pharmaceutical
sector over the past few decades can be attributed to various factors, including the un-
even allocation of medical resources, low effectiveness within the medical industry, and
an inadequate health system. The severity of these disorders is increasing. Due to the
phenomenon of socioeconomic globalization in the twenty-first century, there has been a
notable and persistent rise in individuals’ living standards. There is an increasing conflict
between human growth and environmental concerns. Various urban areas in Pakistan
have encountered severe climatic conditions. The medical sector in Pakistan is currently
facing challenges due to increasingly apparent environmental issues. Currently, there is
a rapid increase in the number of CVD patients. Due to the better treatment services and
care environments offered by large hospitals in comparison to small clinics, people exhibit
a greater inclination towards seeking medical advice and assistance at these institutions.
The largest hospital in Pakistan, Lahore Hospital, is outfitted with sophisticated medical
apparatus and resources. In a nutshell, the Lahore Hospital has experienced an immense
increase in burden over the past several decades, rendering it incapable of meeting the
increased demands. The implementation of a hierarchical medical system in the context
of Lahore Hospital is seen as a viable solution aimed at alleviating the stress associated
with patient load. The aim is to classify the level of treatment complexity based on the

http://vizhub.healthdata.org/gbdcompare
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nature of the medical issue. The diverse range of medical degrees offered by various
institutes enables professionals to effectively address a wide array of illnesses. One basic
issue associated with the hierarchical medical system refers to the delineation of various
categories of illness severity. Instead of a scenario where all patients converge on a grade
III or class A facility, individuals with diverse medical conditions have the option to choose
from different levels of hospitals inside the hierarchical medical care system. The initial step
in building the hierarchical structure involves the identification of different levels of illness
severity, which is an essential step in the whole process. The fundamental objective of this
case study is to classify the different degrees of CVD in order to support the hierarchical
structure of the medical system.
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5.2. Illustrated Example

The process of selecting a cadre of consultants with a profound understanding of the
problem’s significance is pivotal. Given that the focal point of our paper revolves around
medical diagnosis, our selection has primarily focused on physicians possessing expertise
in this domain. These consultants have been tasked with diagnosing cardiovascular disease
(CVD) using a variety of alternative diagnostic measures and attributes considered essential
to the diagnostic process.

Let {A1, A2, A3, A4 } be the set of alternatives to diagnose CVD;

i. A1: Clinical symptoms;
ii. A2: Patient history;
iii. A3: Medical history;
iv. A4: Diagnostic test;

Let {C1, C2, C3, C4, C5} be the set of attributes each contributing to the diagnosis
of CVD.

i. C1: Accuracy;
ii. C2: Efficiency;
iii. C3: Reliability;
iv. C4: Expertise required;
v. C5: Sensitivity;

To create a CIFN, these factors are subsequently classified into two distinct characteris-
tics as delineated below:



Mathematics 2023, 11, 4616 18 of 23

a. Accurate diagnosis ensures appropriate treatment planning and monitoring progress.
b. Efficiency guarantees a streamlined diagnostic procedure and reduces result retrieval

delays.
c. The reliability of the diagnostic process promotes consistency and trustworthiness.
d. Expertise is crucial in determining the most appropriate diagnostic tests depending

on the patient’s symptoms and concerns.
e. The sensitivity factor plays a critical role in facilitating timely detection and enabling

rapid response.

The four possible alternative Ai values where, i = 1, 2, 3, 4 are to be evaluated using
the complex intuitionistic fuzzy information by the decision maker under the above five
attributes of Cj, where, j = 1, 2, 3, 4, 5 at the periods t1, t2, and t3, where t1 spans from
1990–1999, t2 represents the time period 2000–2009, and t3 describes the development
from 2010–2019, respectively. The weight vector of the periods assigned by the group
of consultants is λt = [0.2, 0.3, 0.5]T , where ∑3

k=1 λtk = 1 and the weight vector of the
attributes is w = [0.15, 0.10, 0.25, 0.30, 0.20]T , where ∑5

γ=1 wγ = 1. The expert opinions of
the group of consultants to evaluate the credibility of each alternative Ai corresponding
to each attribute Cj with respect to the time periods t1, t2 and t3 are summarized in the
following assessment matrices: Rt1 in Table 1, Rt2 in Table 2, and Rt3 in Table 3, respectively,
having entries as CIFNs.

Table 1. Assessment matrix acquired from Rt1 .

C1 C2 C3 C4 C5

A1 ((0.6,0.9),(0.1,0.1)) ((0.8,0.1),(0.1,0.4)) ((0.6, 0.6), (0.2, 0.2)) ((0.8,0.7),(0.1,0.2)) ((0.5,0.5),(0.4,0.3))

A2 ((0.7,0.6),(0.3,0.3)) ((0.4,0.9),(0.2,0.1)) ((0.7,0.7),(0.2,0.3)) ((0.4,0.6),(0.3,0.1)) ((0.6,0.6),(0.4,0.3))

A3 ((0.6,0.6),(0.2,0.2)) ((0.6,0.6),(0.3,0.1)) ((0.5,0.8),(0.3,0.1)) ((0.7,0.7),(0.1,0.2)) ((0.6,0.5),(0.4,0.4))

A4 ((0.3,0.4),(0.6,0.4)) ((0.6,0.6),(0.3,0.4)) ((0.3,0.4),(0.5,0.6)) ((0.7,0.7),(0.1,0.1)) ((0.5,0.7),(0.3,0.3))

Table 2. Assessment matrix acquired from Rt2 .

C1 C2 C3 C4 C5

A1 ((0.2,0.8),(0.5,0.1)) ((0.7,0.3),(0.3,0.3)) ((0.6,0.5),(0.1,0.1)) ((0.6,0.5),(0.3,0.4)) ((0.3,0.8),(0.3,0.2))

A2 ((0.5,0.3),(0.4,0.6)) ((0.3,0.1),(0.6,0.3)) ((0.7,0.3),(0.1,0.5)) ((0.6,0.3),(0.3,0.5)) ((0.3,0.5),(0.4,0.2))

A3 ((0.5,0.5),(0.3,0.4)) ((0.4,0.3),(0.2,0.5)) ((0.6,0.4),(0.4,0.4)) ((0.7,0.6),(0.2,0.3)) ((0.6,0.3),(0.3,0.6))

A4 ((0.4,0.8),(0.5,0.1)) ((0.7,0.9),(0.1,0.1)) ((0.6,0.5),(0.1,0.3)) ((0.8,0.5),(0.1,0.4)) ((0.6,0.8),(0.2,0.2))

Table 3. Assessment matrix acquired from Rt3 .

C1 C2 C3 C4 C5

A1 ((0.6,0.4),(0.1,0.5)) ((0.4,0.9),(0.5,0.1)) ((0.5,0.5),(0.3,0.3)) ((0.4,0.9),(0.5,0.1)) ((0.8,0.6),(0.2,0.3))

A2 ((0.3,0.8),(0.3,0.1)) ((0.8,0.3),(0.1,0.6)) ((0.7,0.6),(0.2,0.2)) ((0.2,0.7),(0.8,0.2)) ((0.7,0.7),(0.2,0.2))

A3 ((0.5,0.3),(0.4,0.6)) ((0.3,0.1),(0.6,0.3)) ((0.8,0.3),(0.1,0.5)) ((0.1,0.3),(0.6,0.5)) ((0.5,0.4),(0.3,0.1))

A4 ((0.9,0.6),(0.1,0.2)) ((0.5,0.5),(0.2,0.1)) ((0.6,0.6),(0.3,0.2)) ((0.7,0.7),(0.3,0.2)) ((0.7,0.4),(0.2,0.5))

Step 1. Utilize the CIFDWA operator to aggregate all the complex intuitionistic
fuzzy decision matrices Rtk into a collective complex intuitionistic fuzzy decision matrix

.
R

presented in the Table 4:
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Table 4. Collective complex intuitionistic fuzzy decision matrix
.
R using CIFDWA.

C1 C2 C3 C4 C4

A1

(
(0.508, 0.698),
(0.162, 0.224)

) (
(0.609, 0.722),
(0.311, 0.183)

) (
(0.553, 0.522),
(0.199, 0.199)

) (
(0.574, 0.798),
(0.311, 0.174)

) (
(0.650, 0.660),
(0.259, 0.266)

)
A2

(
(0.466, 0.666),
(0.327, 0.213)

) (
(0.637, 0.489),
(0.197, 0.341)

) (
(0.700, 0.553),
(0.162, 0.286)

) (
(0.387, 0.591),
(0.489, 0.229)

) (
(0.590, 0.629),
(0.282, 0.217)

)
A3

(
(0.522, 0.434),
(0.319, 0.426)

) (
(0.402, 0.291),
(0.376, 0.281)

) (
(0.704, 0.480),
(0.189, 0.339)

) (
(0.481, 0.501),
(0.302, 0.357)

) (
(0.553, 0.394),
(0.318, 0.226)

)
A4

(
(0.747, 0.647),
(0.232, 0.187)

) (
(0.589, 0.704),
(0.176, 0.131)

) (
(0.552, 0.536),
(0.239, 0.281)

) (
(0.734, 0.650),
(0.173, 0.214)

) (
(0.638, 0.624),
(0.217, 0.342)

)

Step 2. Utilize the CIFWA operator to compute the overall values δi = ((Γi, θi), (Кi, ϕi))
of the alternative Ai values, where i = 1, 2, 3, 4. Computed values are presented in Table 5.

Table 5. Aggregated values of alternatives using CIFWA.

δi

A1 ((0.580, 0.699), (0.243, 0.204))

A2 ((0.560, 0.593), (0.286, 0.247))

A3 ((0.561, 0.447), (0.279, 0.322))

A4 ((0.666, 0.625), (0.205, 0.235))

Step 3. Calculate the scores C(Ai), where i = 1, 2, 3, 4 of the overall complex intuition-
istic fuzzy preference values δi, to rank all the alternatives Ai.

C(A1) = 0.486

C(A2) = 0.390

C(A3) = 0.282

C(A4) = 0.494

Step 4. Since C(A4) > C(A1) > C(A2) > C(A3), the alternatives are ranked as
follows: A4 > A1 > A2 > A3.

The above discussion shows that the diagnostic test is the best approach to diagnos-
ing CVD.

Similarly, the above MADM problem in the framework of the CIFDWG operator is
solved as follows:

Step 1: Utilize the CIFDWG operator to aggregate all the CIF decision matrices Rtk

into a collective CIF decision matrix
.
R. The outcomes of these calculations are displayed in

Table 6.
Step 2. Utilize the CIFWG operator to obtain the overall values δi = ((Γi, θi), (Кi, ϕi))

of the alternatives Ai, where i = 1, 2, 4, 4. The outcomes of these calculations are provided
in Table 7.
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Table 6. Collective complex intuitionistic fuzzy decision matrix
.
R using CIFDWG.

C1 C2 C3 C4 C5

A1

(
(0.432, 0.579),
(0.246, 0.329)

) (
(0.543, 0.417),
(0.378, 0.231)

) (
(0.548, 0.518),
(0.225, 0.225)

) (
(0.519, 0.718),
(0.378, 0.221)

) (
(0.543, 0.631),
(0.274, 0.2)

)
A2

(
(0.414, 0.563),
(0.332, 0.329)

) (
(0.519, 0.269),
(0.311, 0.444)

) (
(0.700, 0.503),
(0.172, 0.154)

) (
(0.319, 0.526),
(0.626, 0.289)

) (
(0.526, 0.614),
(0.307, 0.221)

)
A3

(
(0.519, 0.402),
(0.334, 0.481)

) (
(0.376, 0.199),
(0.449, 0.335)

) (
(0.668, 0.398),
(0.242, 0.406)

) (
(0.265, 0.437),
(0.421, 0.392)

) (
(0.548, 0.384),
(0.321, 0.349)

)
A4

(
(0.566, 0.603),
(0.358, 0.218)

) (
(0.574, 0.619),
(0.193, 0.170)

) (
(0.522, 0.524),
(0.294, 0.331)

) (
(0.729, 0.633),
(0.206, 0.249)

) (
(0.625, 0.511),
(0.221, 0.384)

)

Table 7. Aggregated values of alternatives using CIFWG.

δi

A1 ((0.519, 0.591), (0.302, 0.250))

A2 ((0.468, 0.507), (0.402, 0.268))

A3 ((0.442, 0.379), (0.350, 0.396))

A4 ((0.611, 0.573), (0.255, 0.287))

Step 3. Calculate the scores C(Ai), where i = 1, 2, 3, 4 of the overall complex intuition-
istic fuzzy preference values δi, to rank all the alternative Ai values.

C(A1) = 0.357C(A2) = 0.247C(A3) = 0.115C(A4) = 0.399

Step 4. Since C(A4) > C(A1) > C(A2) > C(A3), the alternatives are ranked as
follows: A4 > A1 > A2 > A3.

The above discussion shows that the diagnostic test is the best approach to diagnosing
CVD. Figures 2 and 3 show the graphical presentation of the rankings of alternatives obtain
through CIFDWA and CIFDWG operators, respectively.
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5.3. Comparative Analysis

In this discussion, we conduct a comparative analysis to evaluate the validity of the
proposed techniques compared to the existing strategies developed in [22,29–31].

Comparison 1. Alcantud et al.’s [22] IFS-based aggregation operators have a structural
flaw: they do not have the phase term, which means that they cannot handle the complex
intuitionistic fuzzy data presented in Tables 1–3. Our operators are complex intuitionistic
fuzzy dynamic aggregation operators involving both phase and amplitude terms and, as a
result, have been successfully applied to complex intuitionistic fuzzy data (See Tables 1–7).

Comparison 2. Garg and Rani’s [29] CIFS-based aggregation operators do not in-
volve time periods, resulting in a notable loss of information. The proposed aggregation
operators are dynamic, and the data is collected from three different time intervals. Com-
plex intuitionistic fuzzy dynamic aggregation operators have the capability to handle this
type of data, while CIFS-based aggregation operators lack this property. The CIFS-based
aggregation operators proposed in [29] cannot handle the data presented in Tables 1–3.

Comparison 3. Garg and Rani’s [30] CIFS-based averaging geometric operator is not
dynamic, meaning it cannot be applied when the initial decision data is collected from
three different time intervals, as is the case in our study. Thus, the proposed complex
intuitionistic fuzzy dynamic aggregation operators can handle such cases when others fail.

Comparison 4. Garg and Rani’s [31] generalized geometric operator within CIFS is
also independent of time, leading to a substantial loss of information. Our study, in the
dynamic complex intuitionistic fuzzy context with varying time periods, enhances accuracy.
The geometric operators in [31] cannot evaluate decision data (Tables 1–3) collected from
three different time intervals.

Key Points of Comparative Analysis

Comparison 1 unequivocally establishes the superiority of complex intuitionistic fuzzy
dynamic aggregation operators over IFS-based aggregation operators for handling complex
intuitionistic fuzzy data, enhancing the ability to rank the alternatives accurately.

Comparisons 2–4 clearly demonstrate that the proposed complex intuitionistic fuzzy
dynamic aggregation operators are capable of addressing scenarios where the operators
introduced in [29–31] fall short. Therefore, CIFS dynamic operators accommodate data
collected from various time intervals, enhancing their versatility compared to static CIFS-
based methods.

6. Conclusions

In this article, we endeavor to introduce innovative approaches to address decision-
making challenges within dynamic complex intuitionistic fuzzy settings. While the litera-
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ture has already developed several valuable operators, none of them explicitly consider
the time period factor in complex intuitionistic fuzzy environments. Consequently, em-
ploying a dynamic complex intuitionistic fuzzy model proves to be a more effective means
of representing information related to time-dependent issues, as it can effectively han-
dle two-dimensional data within a unified framework. Taking these considerations into
account, we introduce a novel set of operators, namely, CIFDWA and CIFDWG within
the CIFS framework. We investigate the properties of these operators and propose an
updated novel score function for the purpose of evaluating and selecting the optimal
alternative. Within this investigation, we have presented a novel methodology to tackle
dynamic CIF- MADM problems. This approach leverages the CIFDWA and CIFDWG
operators to manage decision-related information concerning attribute values called CIFNs.
Importantly, our approach takes into account data collected at different time periods during
the decision-making process within this dynamic context.

Furthermore, we demonstrate the practical application of these recently developed
techniques in selecting the most suitable approach for diagnosing CVD in a patient. Lastly,
we conduct a comparative analysis to underscore the significance and validity of these
innovative methodologies when compared to existing techniques.

Since we have worked in a complex intuitionistic fuzzy environment, the proposed
scheme cannot solve decision data with a sum of membership and non-membership
values greater than 1. This is a limitation of the study. In future research endeavors,
we plan to explore more extended operators, such as the dynamic ordered weighted
averaging/geometric operator and dynamic Dombi aggregation operators. We also intend
to investigate the application of dynamic complex intuitionistic fuzzy MADM in various
domains, including dynamic investment analysis, dynamic personnel assessment, and the
dynamic evaluation of military system efficiency.
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