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Abstract: In an article published in 2015, Hussain et al. introduced a notion of a fuzzy b-metric space
and obtained some fixed point theorems for this kind of space. Shortly thereafter, Nădăban presented
a notion of a fuzzy b-metric space that is slightly different from the one given by Hussain et al., and
explored some of its topological properties. Related to Nădăban’s study, Sedghi and Shobe, Saadati,
and Šostak independently conducted investigations in articles published in 2012, 2015, and 2018,
respectively, about another class of spaces that Sedgi and Shobe called b-fuzzy metric spaces, Saadati,
fuzzy metric type spaces, and Šostak, fuzzy k-metric spaces. The main contributions of our paper
are the following: First, we propose a notion of fuzzy b-metric space that encompasses and unifies
the aforementioned types of spaces. Our approach, which is based on Gabriec’s notion of a fuzzy
metric space, allows us to simultaneously cover two interesting classes of spaces, namely, the 01-fuzzy
b-metric spaces and the K-stationary fuzzy b-metric spaces. Second, we show that each fuzzy b-metric
space, in our sense, admits uniformity with a countable base. From this fact, we derive, among other
consequences, that the topology induced by means of its “open” balls is metrizable. Finally, we obtain
a characterization of complete fuzzy b-metric spaces with the help of a fixed point result which is
also proved here. In support of our approach, several examples, including an application to a type of
difference equations, are discussed.
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1. Introduction

We will assume that readers are familiar with the concept of a uniform space, as well
as its basic properties. The classical books [1] and [2] are instances of excellent references
for general topology and, in particular, for the study of uniformities.

In this paper, we will denote by N and R+ the set of natural numbers and the set of
non-negative real numbers, respectively.

Given a metric d on a set X, we denote by τd and Ud, respectively, the topology and the
uniformity induced by d. We remind the reader that Ud has as a base the countable family

{{(x, y) ∈ X×X : d(x, y) < 2−n} : n ∈ N} .

It is known that the so-called b-metric spaces provide a simultaneous and appealing
generalization of metric spaces and quasi-normed spaces (a detailed and careful expo-
sition in this regard can be found in [3] (Section 2)). The name b-metric space is due to
Czerwik [4,5], who explored some topological properties of these spaces and obtained
some fixed point theorems. However, b-metric spaces were also considered by various
authors under other denominations and from other points of view. In fact, there are numer-
ous publications on both topological properties and fixed point theory in such spaces, so,
both for our goals here and for the pertinent updates it will suffice to refer to the recent
articles [3,6,7], and the references therein.
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Let us recall that a b-metric on a set X is a pair (d, K), where d is a function from X×X

to R+ and K is a real constant with K ≥ 1, fulfilling the next conditions for every x, y, z ∈ X:

(bM1) d(x, y) = 0 if and only if x = y;
(bM2) d(x, y) = d(y, x);
(bM3) d(x, y) ≤ K(d(x, z) + d(z, y)).

Thus, a b-metric space is a 3-tuple (X, d, K) such that X is a set and (d, K) is a b-metric
on X.

Note that every metric space can be considered a b-metric space for any K ≥ 1.

Remark 1. See, e.g., [3,8–10] to find noteworthy examples of b-metric spaces. In particular, it is well
known that if (X, e) is a metric space, the pair (d, K) is a b-metric on X, where d(x, y) = (e(x, y))r

for all x, y ∈ X, with r > 1 and K = 2r−1. Moreover, d is not a metric on X, in general.

Just as in the metric case, each b-metric d on a set X induces naturally a topology τd
on X: A subset Y of X is declared τd-open if for each x ∈ Y there is an εx > 0 such that the
“open” ball Bd(x, εx) := {y ∈ X : d(x, y) < εx} is a subset of Y. Then, it is easily checked
that τd fulfills the axioms of a topology.

It is interesting to point out that, in contrast to the classical metric case, not every
“open” ball is a τd-open set (see, e.g., [10] (Example 3.9)). Nevertheless, the topological
space (X, τd) is metrizable (see, e.g., [6,7]).

We also have (see, e.g., [6,7]) that a sequence (xn)n∈N in a b-metric space (X, d, K)
is τd-convergent to an x ∈ X if and only if d(x, xn) → 0 as n → +∞, and, by definition,
the b-metric space (X, d, K) is complete, provided that every Cauchy sequence in (X, d, K)
is τd-convergent, where Cauchy sequences are defined exactly as for metric spaces.

Generalizing naturally the concept of a fuzzy metric space (in the sense of Kramosil
and Michálek [11]) to a b-metric context, Nădăban introduced in [12] the notion of a
fuzzy b-metric space and analyzed some of its basic topological properties. A year earlier,
Hussain et al. [13] described a somewhat different notion to the one given by Nădăban,
and obtained some fixed point theorems for those spaces. Under the names of a b-fuzzy
metric space, a fuzzy metric type space, and a fuzzy k-metric space, respectively, Sedghi
and Shobe [14], Saadati [15] and Šostak [16] discussed in detail many topological proper-
ties of a close structure, based on the notion of a fuzzy metric space due to George and
Veeramani [17,18]. In particular, several relevant examples were furnished in [15,16]. Later
on, and from the perspective of Kramosil and Michálek, Zhong and Šostak [19] generalized
the notion of a fuzzy k-metric space, giving motivating examples and deeply discussing
the properties of this new structure. In parallel, various authors have contributed to
the development of a theory of a fixed point for these structures (see, e.g., [13,14,20–24]),
while generalizations of the notion of a fuzzy b-metric space to the metric-like and the
quasi-metric setting have been initiated and studied in [25,26], respectively.

Based on the notion of fuzzy metric space introduced by Gabriec in [27], we here
propose a definition of fuzzy b-metric space that generalizes and unifies the types of spaces
mentioned in the preceding paragraph. Our approach enables us to simultaneously cover
two important classes of spaces, namely, the 01-fuzzy b-metric spaces and the stationary
fuzzy (b)-metric spaces. We show that each fuzzy b-metric space, in our sense, admits a
uniformity with a countable base, and deduce from this fact that the topology induced
by means of its “open” balls is metrizable as well as a fuzzy b-metric counterpart of
a renowned and classical characterization of compact metric spaces due to Niemytzki
and Tychonoff [28]. We also characterize complete fuzzy b-metric spaces by means of a
fixed point theorem that is proved here. Various examples illustrating our point of view
are included.

2. On the Notion of Fuzzy b-Metric Space: Remarks and Examples

We begin this section by recalling the following important concepts.
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A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous triangular norm provided
that it verifies the next conditions: (i) ∗ is associative and commutative; (ii) ∗ is continuous;
(iii) u ∗ 1 = u for all u ∈ [0, 1]; (iv) u ∗ w ≤ v ∗ w if u ≤ v, where u, v, w ∈ [0, 1].

The book [29] constitutes an excellent source for the study of continuous triangular
norms.

We remind that ∗ ≤ ∧ for any continuous triangular norm ∗, where ∧ designates the
continuous triangular norm defined as u ∧ v = min{u, v}.

To help the reader understand the different notions of fuzzy b-metric space and other
related ones that are of interest in our context, we consider the next conditions for a set X,
a fuzzy set F in X×X×R+, a continuous triangular norm ∗, a real constant with K ≥ 1,
and x, y, z ∈ X:

(FbM1) F(x, y, 0) = 0;
(FbM1’) F(x, y, t) > 0 for all t > 0;
(FbM2) x = y if and only if F(x, y, t) = 1 for all t > 0;
(FbM2’) F(x, x, t) = 1 for all t > 0, and F(x, y, t) < 1 whenever y 6= x;
(FbM3) F(x, y, t) = F(y, x, t) for all t > 0;
(FbM4) F(x, z, K(t + s)) ≥ F(x, y, t) ∗ F(y, z, s) for all t, s ≥ 0;
(FbM5) the function F(x, y, ·) : R+ → [0, 1] is left continuous.
(FbM5’) the function F(x, y, ·) : R+ → [0, 1] is continuous.
(FbM6) limt→+∞ F(x, y, t) = 1.

If conditions (FbM1’), (FbM2’), (FbM3), (FbM4), and (FbM5’) are satisfied, the 4-tuple
(X,F, ∗, K) was called, by Sedghi and Shobe a b-fuzzy metric space, by Saadati [15], a fuzzy
metric type space and, by Šostak [16], a fuzzy k-metric space. Observe that when K = 1,
one has the notion of a fuzzy metric space in the sense of [17,18].

If conditions (FbMb1’), (FbM2’), (FbM3), (FbM4), and (FbM5) are satisfied, the 4-tuple
(X,F, ∗, K) was called, by Hussain et al. [13], a fuzzy b-metric space.

Note that in the preceding notions, the domain of F is the set X× X× (R+\{0}).
Nevertheless, and without loss of generality, we can extend its domain to X×X×R+ and
define F(x, y, 0) = 0 for all x, y ∈ X.

In [12], Nădăban defined a fuzzy b-metric space as 4-tuple (X,F, ∗, K) for which
conditions (FbMb1), (FbM2), (FbM3), (FbM4), (FbM5) and (FbM6) are satisfied (Zhong and
Šostak [19] also called fuzzy k-metric spaces to these spaces). Observe that when K = 1 one
has the notion of a fuzzy metric space in the sense of [11].

Now, we give the following.

Definition 1. A fuzzy b-metric on a set X is a 3-tuple (F, ∗, K), where F is a fuzzy set in
X× X× R+, ∗ is a continuous triangular norm and K is a real constant with K ≥ 1, fulfill-
ing conditions (FbM1), (FbM2), (FbM3), (FbM4) and (FbM5) above.

A fuzzy b-metric space is a 4-tuple (X,F, ∗, K) such that X is a set and (F, ∗, K) is a fuzzy
b-metric on X.

Note that a fuzzy b-metric space is a fuzzy metric space, in the sense of Gabriec [27],
when k = 1. Moreover, every fuzzy metric space (X,F, ∗), in the sense of [27], can be
considered to be a fuzzy b-metric space, in the sense of Definition 1, for any K ≥ 1, because,
by [27] (Lemma 4), F(x, y, K(t + s)) ≥ F(x, y, t + s) for all x, y ∈ X and all t, s > 0.

It is clear that the notion proposed in Definition 1 generalizes the ones given in [12–16,19].
Examples 1 and 3 below show that, in fact, it provides a real generalization of such notions.

In the rest of this paper, the terms fuzzy b-metric and fuzzy b-metric space will be used
in the sense of Definition 1, while the terms fuzzy metric and fuzzy metric space will be
used in the sense of [27].

The next observations and properties, due to Nădăban [12] (see also [15,16]), remain
valid for fuzzy b-metric spaces (indeed, condition (FbM6) is not necessary for showing
that facts).
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Remark 2. Let (X,F, ∗, K) be a fuzzy b-metric space and let t > s ≥ 0. Then, F(x, y, Kt) ≥ F(x, y, s)
for all x, y ∈ X.

Let (X,F, ∗, K) be a fuzzy b-metric space. For each x ∈ X, ε ∈ (0, 1) and t > 0, define

BF(x, ε, t) := {y ∈ X : F(x, y, t) > 1− ε}.

Now, set

τF = {Y ⊆ X : for each x ∈ Y there are εx ∈ (0, 1), t > 0, such that BF(x, εx, t) ⊆ Y}.

Then, τF is a topology on X, and, analogously to b-metric spaces, the “open” balls
BF(x, ε, t) are not necessarily τF-open sets. In this direction, Example 5 below provides a
method to easily construct fuzzy b-metric spaces for which there exist “open” balls that are
not open sets.

From the construction of τF it follows that a sequence (xn)n∈N in X is τF-convergent
to x ∈ X if and only if limn→+∞ F(x, xn, t) = 1 for all t > 0.

A sequence (xn)n∈N in X is called a Cauchy sequence if for each ε ∈ (0, 1) and t > 0
there exists an nε,t ∈ N such that F(xn, xm, t) > 1− ε for all n, m ≥ nε,t, and (X,F, ∗, K) is
called complete if every Cauchy sequence is τF-convergent.

Now, we shall give several examples and observations.

Example 1 (compare [19]). Given a b-metric space (X, d, K) denoted by Fd,01 the fuzzy set in
X× X× R+ defined as Fd,01(x, y, t) = 1 if d(x, y) < t, and Fd,01(x, y, t) = 0 if d(x, y) ≥ t.
Then, (Fd,01, ∗, K) is a fuzzy b-metric on X for any continuous triangular norm ∗, which we
call a 01-fuzzy b-metric, and the 4-tuple (X,F, ∗, K), a 01-fuzzy b-metric space. Furthermore,
the topology τFd,01 agrees with the topology τd induced by d, i.e., τFd,01 = τd. We also have that
(X,Fd,01, ∗, K) is complete if and only if (X, d, K) is complete.

Note that this type of space is not covered by the notions established in [13–16] because such
spaces do not verify condition (FbM1’) whenever |X| > 1.

Example 2 (compare [12,15,16]). Let (d, K) be a b-metric on a set X. Define a fuzzy set Fd in
X× X× R+ as Fd(x, y, 0) = 0 for all x, y ∈ X, Fd(x, x, t) = 1 for all x ∈ X and all t > 0,
and Fd(x, y, t) = t/(t+ d(x, y)) otherwise. Then, (Fd, ∗, K) is a fuzzy b-metric for any continuous
triangular norm ∗, named the standard fuzzy b-metric. In addition, τFd = τd, and (X,Fd, ∗, K) is
complete if and only if (X, d, K) is complete.

It is well known [15,16] that, by deleting condition (FbM1), then, (X,Fd, ∗, K) is a b-fuzzy
metric space, i.e., a fuzzy metric type space, i.e., a fuzzy k-metric space.

In one paper [30], the notion of a stationary fuzzy metric was introduced: A fuzzy
metric (F, ∗) on a set X is stationary provided that there is a function ϕ : X×X → [0, 1]
such that F(x, y, t) = ϕ(x, y) for all x, y ∈ X and all t > 0.

Example 3 (compare [31]). Let α ∈ R+ be a constant and let X = R+. Denote by ∗P the product
continuous triangular norm; thus, u ∗P v = uv for all u, v ∈ [0, 1]. Then, the pair (F, ∗P) is a
stationary fuzzy metric on X, where the fuzzy set F is defined as F(x, y, 0) = 0 for all x, y ∈ X,
F(x, x, t) = 1 for all x ∈ X and all t > 0, and

F(x, y, t) =
min{x, y}+ α

max{x, y}+ α
,

otherwise (see [31] (Example 3 (C))).
Furthermore, (X,F, ∗P) is complete when α > 0, and it is not complete for α = 0 (indeed,

notice that (1/n)n∈N is a non-τF-convergent Cauchy sequence).
Note that this type of space is not covered by the notions established in [12,19] because such

spaces do not verify condition (FbM6) whenever |X| > 1.
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It is interesting to emphasize that the kind of stationary fuzzy (b-)metrics given in
Example 3 constitutes the substrate to constructing suitable fuzzy metrics that are success-
fully applied to questions concerning color image processing (see, e.g., [31] (Section 4).

Observe that if we define the concept of a stationary fuzzy b-metric in a natural way,
we obviously have that every stationary fuzzy b-metric is a stationary fuzzy metric. For this
reason, we are going to construct a type of fuzzy b-metrics that is stationary only when one
has a fuzzy metric.

We say that a fuzzy b-metric (F, ∗) on a set X is K-stationary if there is a b-metric (d, K)
on X and a function ϕ : X×X→ [0, 1] such that

F(x, y, t) = exp
(
− (K− 1)d(x, y)

t

)
ϕ(x, y),

for all x, y ∈ X and all t > 0.
Notice that if K = 1, (F, ∗) is a stationary fuzzy metric on X.

Example 4. Let X = R+ and let (d, K) be any b-metric on X (for instance, and according to
Remark 1, define d(x, y) = |x− y|r for all x, y ∈ X, with r > 1 and K = 2r−1. Then, the pair
(d, K) is a b-metric on X such that d is not a metric).

Now, define a fuzzy set F in X×X×R+ as F(x, y, 0) = 0 for all x, y ∈ X, F(x, x, t) = 1 for
all x ∈ X and all t > 0, and

F(x, y, t) = exp
(
− (K− 1)d(x, y)

t

)
min{x, y}+ α

max{x, y}+ α
,

otherwise (α ∈ R+ is a constant).
We show that (F, ∗P, K) is a K-stationary fuzzy b-metric on X. To this end, it suffices to check

condition (FbM4) because the rest of the conditions of Definition 1 are obvious.
Indeed, Saadati proved in [15] (Example 1.5) that the 3-tuple (G, ∗P, K) is a fuzzy b-metric

on X where G(x, y, 0) = 0 for all x, y ∈ X, G(x, x, t) = 1 for all x ∈ X and all t > 0, and

G(x, y, t) = exp
(
− (K− 1)d(x, y)

t

)
,

otherwise. Taking also into account Example 3, we obtain

F(x, y, K(t + s)) = G(x, y, K(t + s))
min{x, y}+ α

max{x, y}+ α

≥ G(x, z, t)G(z, y, s)
min{x, z}+ α

max{x, z}+ α

min{z, y}+ α

max{z, y}+ α

= F(x, z, t)F(z, y, s).

We point out that for any x, y ∈ X, with x 6= y, one has limt→+∞ F(x, y, t) < 1, so, condition
(FbM6) is not satisfied, in general.

Zhong and Šostak gave in [19] an example of a fuzzy b-metric space that is not a fuzzy
metric space. Next, we offer a method to construct fuzzy b-metric spaces that are not fuzzy
metric spaces.

Proposition 1. Let (X, d, K) be a b-metric space such that (X, d) is not a metric space. Then,
the fuzzy b-metric space (X,Fd,01, ∗, K) of Example 1 is not a fuzzy metric space.

Proof. Since (X, d) is not a metric space, there exists x, y, z ∈ X and ε > 0 such that

d(x, y) > 2ε + d(x, z) + d(z, y).
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Put t = d(x, z) + ε and s = d(z, y) + ε. Then, Fd,01(x, z, t) = 1 and Fd,01(z, y, s) = 1. So,

Fd,01(x, z, t) ∗ Fd,01(z, y, s) = 1.

However, Fd,01(x, y, t + s) = 0 because d(x, y) > t + s.

Example 5. Let (X, d, K) be a b-metric space for which there is an “open” ball Bd(x, r) which is
not a τd-open set. Then, there exists a sequence (xn)n∈N whose elements are in X\Bd(x, r) and a
y ∈ Bd(x, r) such that d(y, xn)→ 0 as n→ +∞.

(A) Let (X,Fd,01, ∗, K) be the fuzzy metric space of Example 1. Fix an ε ∈ (0, 1). We show
that BFd,01(x, ε, r) is not a τFd,01 -open set.

Indeed, since d(x, y) < r we obtain Fd,01(x, y, r) = 1, so y ∈ BFd,01(x, ε, r).
On the other hand, the elements of the sequence (xn)n∈N are in X\BFd,01(x, ε, r) because

Fd,01(x, xn, r) = 0 for all n ∈ N.
Finally, since τd = τFd,01 (see Example 1), we obtain that the sequence (xn)n∈N is τFd,01-convergent

to y. Consequently, BFd,01(x, ε, r) is not a τFd,01-open set.

(B) Let (X,Fd, ∗, K) be the b-fuzzy metric space of Example 2. Then, we obtain

Fd(x, y, r) =
r

r + d(x, y)
>

r
2r

=
1
2

,

and
Fd(x, xn, r) =

r
r + d(x, xn)

≤ r
2r

=
1
2

,

for all n ∈ N, which implies that y ∈ BFd(x, 1/2, r) but xn ∈ X\BFd(x, 1/2, r). Since τd = τ
Fd

we obtain that the sequence (xn)n∈N is τFd -convergent to y. So, X\BFd(x, 1/2, r) is not τ
Fd

-closed
and, consequently, the “open” ball BFd(x, 1/2, r) is not τ

Fd
-open.

In connection with the preceding example, we remind the reader that Kirk and
Shahzad [9] introduced the notion of a strong b-metric space to obtain a class of b-metric
spaces for which every “open” ball is an open set. Let us recall that a b-metric space (X, d, K)
is a strong b-metric space if it fulfills conditions (bM1) and (bM2) above, and condition
(bM3) is replaced with the following one:

d(x, y) ≤ d(x, z) + Kd(z, y), for all x, y, z ∈ X.

Extending the idea of Kirk and Shahzad to the fuzzy framework, Öner introduced
and examined in [32] the concept of a fuzzy strong b-metric space. A b-fuzzy metric space
(equivalently, a fuzzy metric type space, and a fuzzy k-metric space) (X,F, ∗, K) is said to
be a fuzzy strong b-metric space if it satisfies conditions (FbM1’), (FbM2’), (FbM3), (FbM5’),
and condition (FbM4) is replaced with the following stronger one:

F(x, z, t + Ks) ≥ F(x, y, t) ∗ F(y, z, s) for all x, y, z ∈ X and all t, s ≥ 0.

Then, Öner showed that every “open” ball in a fuzzy strong b-metric space is an open
set. Since then, fuzzy strong b-metric spaces have received the attention of some researchers
(see, e.g., [33–35]).

Remark 3. In a recent result [24] (Theorem 2.1), the authors claimed that every “open” ball in a
b-fuzzy metric space (X,F, ∗, K) is a τF-open set. Example 5 (B) above shows that, unfortunately,
this result is not correct (the error occurs because, in the proof of that theorem, the inequality
t0/b < t does not imply, in general, that t > t0, so B(y, 1− r1, (t− t0)/r) may be undefined).

3. Uniform Properties and Metrizability of Fuzzy b-Metric Spaces

We begin by establishing the following version of the famous Kelley’s metrization
Lemma [1] (p. 185), which will be a key to proving the main result of this section.
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Lemma 1. Let U be a uniformity on a set X and let V ={Vn : n ∈ N} be a countable family of
symmetric members of U such that ∆ =

⋂
n∈N Vn and V2

n+1 ⊆ Vn for all n ∈ N. Then, there exists
a metric d on X such that

Vn+1 ⊆ {(x, y) ∈ X×X : d(x, y) < 2−n} ⊆ Vn,

for all n ∈ N.
(As usual, by ∆ we have indicated the diagonal of X× X).

We also need the next auxiliary result.

Proposition 2. Let (X,F, ∗, K) be a fuzzy b-metric space. For any x, y ∈ X the following
are equivalent:

(i) F(x, y, t) > 1− t for all t > 0.
(ii) F(x, y, 1/n) > 1− 1/n for all n ∈ N.
(iii) x = y.

Proof. (i)⇒(ii) is obvious and (iii)⇒(i) follows from Definition 1, (FbM2).
(ii)⇒(iii) Let x, y ∈ X be such that F(x, y, 1/n) > 1− 1/n for all n ∈ N. Fix t > 0.

Choose an n0 ∈ N verifying n0t > K. Then, for every n ≥ n0 we obtain t/K > 1/n, so,
by Remark 2,

F(x, y, t) = F(x, y, K
t
K
) ≥ F(x, y,

1
n
) > 1− 1

n
,

for all n ≥ n0, which implies that F(x, y, t) = 1. Since t is arbitrary we deduce that x = y,
by Definition 1, (FbM2).

Theorem 1. Let (X,F, ∗, b) be a fuzzy b-metric space. For each n ∈ N put

Un = {(x, y) ∈ X×X : F(x, y, 1/n) > 1− 1/n}.

Then, the following statements hold:
(st1) The family

UF = {U ⊆ X×X : there is n ∈ N with Un ⊆ U},

is a uniformity on X for which the countable family BF = {Un : n ∈ N} is a base.
(st2) There is a metric dF on X whose induced uniformity coincides with UF.
(st3) τdF = τF on X.
(st4) (X, τF) is a metrizable topological space.
(st5) (X,F, ∗, K) is complete if and only if (X,dF) is so.

Proof. (st1): We first show that BF is a (countable) base for uniformity on X.
We have

⋂
n∈N Un = ∆ because if (x, y) ∈ ⋂n∈N Un, we obtain F(x, y, 1/n) > 1− 1/n

for all n ∈ N, so x = y by Proposition 2. Furthermore, it is obvious that U−1
n = Un for all

n ∈ N, so each Un is symmetric.
Next, we show that for each n, m ∈ N there is p ∈ N such that U2

p ⊆ Un ∩Um.
Indeed, suppose without loss of generality that m ≥ n. By the continuity of ∗, there is

p ∈ N such that

p > 2K2m and (1− 1/p) ∗ (1− 1/p) > 1− 1/m.

Let (x, y) ∈ U2
p. Then, there is z ∈ X such that (x, z) ∈ Up and (z, y) ∈ Up.
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So, from Remark 2 (note that 1/Kn ≥ 1/Km > 2K/p) and Definition 1, (FbM4), we
deduce that

F(x, y,
1
n
) = F(x, y, K

1
Kn

) ≥ F(x, y,
2K
p
)

≥ F(x, z,
1
p
) ∗ F(z, y,

1
p
) ≥ (1− 1

p
) ∗ (1− 1

p
)

> 1− 1
m
≥ 1− 1

n
,

and, similarly,

F(x, y,
1
m
) > 1− 1

m
,

which implies that (x, y) ∈ Un ∩Um.
We conclude that UF is a uniformity on X for which the (countable) family BF is a base.
(st2): In the statement (st1) we have shown that each member Un of the (countable)

base BF is symmetric and verifies that U2
n+1 ⊆ Un. Furthermore, ∆ =

⋂
n∈N Un. Hence, all

conditions of Lemma 1 are satisfied, so there exists a metric dF on X such that

Un+1 ⊆ {(x, y) ∈ X×X : dF(x, y) < 2−n} ⊆ Un, (1)

for all n ∈ N, which implies that the uniformities UdF and UF coincide.
(st3) It is a trivial consequence of (st2), and (st4) is a trivial consequence of (st3).
(st5): From the inclusion relations (1) obtained in statement (st2), it follows that a

sequence in X is a Cauchy sequence in (X,F, ∗, K) if and only if it is a Cauchy sequence
in (X, dF), so, by the statement (st3), we deduce that (X,F, ∗, K) is complete if and only if
(X, dF) is so.

Remark 4. Using a technique similar to the employed one in the proof of (st1) above, Gregori and
Romaguera showed in [36] that every fuzzy metric space (in the sense of George and Veeramani) is
metrizable, and Öner and Sostak showed in [34] that every fuzzy strong b-metric space is metrizable.

It follows from Theorem 1 that several classical theorems of the theory of metric spaces
can be easily translated to the fuzzy b-metric framework.

For instance, Niemytzki and Tychonoff proved, in [28], their famous theorem that a
metrizable topological space (X, τ) is compact if and only if every metric d on X such that
τd = τ is complete.

We conclude this section by obtaining the following fuzzy b-metric version of Niemytzki-
Tychonoff’s theorem.

Theorem 2. Let (X,F, ∗, K) be a fuzzy b-metric space. Then, the following statements
are equivalent:

(1) The topological space (X, τF) is compact.
(2) Every fuzzy b-metric (G, ∗′, K′) on X such that τG = τF is complete.
(3) Every fuzzy b-metric (G, ∗, K) on X such that τG = τF is complete.

Proof. (1) ⇒ (2) From our assumption and Theorem 1, (st3), it follows that (X, τF) is a
compact metrizable space. So, by the Niemtyzki-Alexandorff theorem, every metric d on X

such that τd = τF is complete. Let (G, ∗′, K′) be a fuzzy b-metric on X such that τG = τF.
By Theorem 1, there is a metric e on X fulfilling, in particular, (st2) and (st5) with respect to
(X,G, ∗′, K′). Hence, by (st2), τe = τG, and, thus, τe = τF. Moreover, by (st5), (G, ∗′, K′) is
complete because e is so.

(2)⇒ (3) Obvious.
(3) ⇒ (1) Let d be a metric on X such that τd = τF. By Example 1, the 3-tuple

(Fd,01, ∗, K) is a fuzzy b-metric on X such that τFd,01 = τd. Hence, τF = τFd,01 . Since,
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by assumption, (Fd,01, ∗, K) is complete, we deduce that d is complete. By applying the
Niemytzki-Tychonoff theorem we conclude that (X, τF) is compact.

4. A Characterization of Complete Fuzzy b-Metric Spaces and Further Examples

Hicks [37] introduced and discussed a relevant type of contractive mappings under
the name of C-contractions (see also [38]). In one paper [39], the usefulness of contractions
of the Hicks’ type to characterize the completeness of fuzzy metric spaces was shown. We
extend and adapt Hicks’ notion to the fuzzy b-metric framework as follows.

Definition 2. Let (X,F, ∗, K) be a fuzzy b-metric space. A self-map T of X is said to be a Hicks
contraction (on X) if there is a constant c ∈ (0, 1) for which the following contraction condition
holds, for any x, y ∈ X, and t > 0,

F(x, y, t) > 1− t =⇒ F(T x, T y, ct) > 1− ct. (2)

If C is a subset of X, the notion of Hicks contraction on C is defined in the obvious
fashion, by considering the restriction of F to C × C ×R+.

In Theorem 3 below, we obtain a characterization of complete fuzzy b-metric spaces
by means of Hicks contractions having a fixed point. This result, which generalizes [39]
(Theorem 4), may be considered a fuzzy alternative for the characterization of complete
b-metric spaces obtained in [7] (Theorem 2).

Theorem 3. Let (X,F, ∗, K) be a fuzzy b-metric space. Then, the following statements
are equivalent:

(1) (X,F, ∗, K) is complete.
(2) Every Hicks contraction on any of the closed subsets of (X,F, ∗, K) has a (unique) fixed point.

Proof. (1) ⇒ (2) The first part of the proof of this implication uses mutatis mutandis
a bright idea from Radu [40] (see also the proof of [7] (Theorem 2)), so some details
are omitted.

Let T be a Hicks contraction on a τF-closed subset C of X, with constant c ∈ (0, 1).
Fix t0 > 1. Then, for any x, y ∈ C, F(x, y, t0) > 1− t0, so F(T x, T y, ct0) > 1− ct0.

Repeating this process we obtain

F(T nx, T ny, cnt0) > 1− cnt0, (3)

for all x, y ∈ C and all n ∈ N∪{0}.
Now, choose any x ∈ C. We show that (T nx)n∈N is a Cauchy sequence in (X,F, ∗, K).

Indeed, given ε ∈ (0, 1), take n(ε) ∈ N such that cn(ε)t0 < ε. Let m > n > n(ε). Thus,
m = n + j for some j ∈ N, and putting y = T jx, the inequality (3) provides

F(T nx, T mx, cnt0) > 1− cnt0 > 1− ε.

Therefore, there exists z ∈ X such that (xn)n∈N τF-converges to z. Since C is τF-closed,
z ∈ C. Furthermore, contraction condition (2) immediately implies that z = T z.

Finally, let u ∈ C be such that u = T u. Then, inequality (3) implies that F(u, z, t) >
1− t for all t > 0. So z is the unique fixed point of T in C.

(2)⇒ (1) Suppose that (X,F, ∗, K) is not complete. Then, there is a Cauchy sequence
(xn)n∈N of distinct points, in X, which is not τF-convergent.

By Theorem 1 ((st3) and the proof of (st5)), (xn)n∈N is a non- τdF-convergent Cauchy
sequence in the metric space (X, dF). Hence, there is a sequence (ηn)n∈N of real numbers,
such that ηn ∈ (0, 1) for all n ∈ N, and dF(xn, xm) ≥ ηn whenever m 6= n. This, in turn,
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and by virtue of the inclusion relations (1), implies the existence of a sequence of real
numbers (µn)n∈N such that µn ∈ (0, 1) for all n ∈ N, satisfying

F(xn, xm, µn) ≤ 1− µn, (4)

whenever m 6= n.
Fix c ∈ (0, 1). As (xn)n∈N is a Cauchy sequence, for each n ∈ N we find a λ(n) ∈ N

such that λ(1) > 1 and F(xi, xj, cµ1/2K2) > 1− (cµ1/2K2) for all i, j ≥ λ(1), and for n ≥ 2,
λ(n) > max{n, λ(n− 1)} and

F(xi, xj,
cµn

2K2 ) > 1− cµn

2K2 , (5)

for all i, j ≥ λ(n).
Now we define a self-map T from the τF-closed subset C := {xn : n ∈ N} into itself as

follows: T xn = xλ(n) for all n ∈ N.
Obviously, T has no fixed points because λ(n) > n for all n ∈ N. We are going to

prove that, nevertheless, T is a Hicks contraction on C (with constant c).
Indeed, suppose that F(xn, xm, t) > 1− t, with t > 0, and assume, without loss of

generality, that n > m. Then, it follows from inequality (4) that µn ≤ Kt, so µ < 2Kt.
Hence, taking into account inequality (5), we obtain

F(T xn, T xm, ct) = F(xλ(n), xλ(m), ct) ≥ F(xλ(n), xλ(m),
cµn

2K2 )

> 1− cµn

2K2 > 1− ct.

We have reached a contradiction that finishes the proof.

To finish we give two examples, including an application to difference equations,
which complement and illustrate Theorem 3.

Example 6. Consider the following difference equation, which can be seen as a simultaneous variant
and extension of a classical one posed, e.g., in [41] (p. 515), [42] (Equation (5)), [43] (Equation #23):

x1 = 1 and

xn+1 =

(
qxn

s + rxn

)4
,

for all n ∈ N, where 0 < q < 25/2s and r > 0.
By applying Theorem 3 to a suitable and appealing complete fuzzy b-metric space which is not

a fuzzy metric, we will show the existence and uniqueness of the solution for the above equation.
To this end, we first remind some well-known concepts and properties.
A sequence (xn)n∈N of real numbers, will be denote by x := (xn)n∈N , or simply by x if there

is no confusion. As usual, let

lp := {x :
+∞

∑
n=1
|xn|p < +∞}.

where p is a constant with p ∈ (0, 1).
Then, the pair (dp, 21/p) is a complete b-metric on lp where dp : lp × lp → R+ is given by

dp(x, y) = (
+∞

∑
n=1
|xn − yn|p)1/p,

for all x, y ∈ lp (see [8] (Example 1.3), [9] (Example 12.1)). Furthermore, dp is not a metric on lp.
According to Pietsch [44] (p. 67), the first example of a space of this kind was addressed

by Tychonoff [45] (p. 768). From Tychonoff’s result, it follows that the 3-tuple (l1/2, d1/2, 2) is a
complete b-metric space, but not a metric space (see also [3] (p. 526)).
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Observe that if we extend in a natural way the preceding definitions of lp and dp to p = 1, we
yield the classical complete metric space (l1, d1).

Due to the shape of the elements of our difference equation, we select, because of its apparent
simplicity, the complete 01-fuzzy b-metric space (l1/2,Fd1/2,01, ∗, 2) (see Example 1) as a suitable
mathematical setting for our purpose (we outline that the complete fuzzy metric space (l1,Fd1,01, ∗)
also could be a good candidate to our study. However, we will use the above-chosen space to
emphasize the usefulness of Theorem 3 and its applicability when fuzzy b-metric spaces that are not
fuzzy metrics are employed).

Let C be the subset of l1/2 defined as

C := {x ∈ l1/2 : x1 = 1 and 0 ≤ xn ≤ 1/(n + 1)4 for all n ≥ 2}.

It is straightforward to verify that C is a closed subset of (l1/2, d1/2, 2). Therefore, it is also a
closed subset of (l1/2,Fd1/2,01, ∗, 2).

Now we prove that d2(x, y) < 1 for all x, y ∈ C (this fact will be worthy later on).
Indeed, for any pair x, y ∈ C we have:

d1/2(x, y) = (
+∞

∑
n=2
|xn − yn|1/2)2 ≤ (

+∞

∑
n=2

1
(n + 1)2 )

2 < (
+∞

∑
n=2

1
n2 )

2 = (
π2

6
− 1)2 < 1.

Hence, d1/2(x, y) < 1.
Next, we define a map T on C as follows: for each x := (xn)n∈N ∈ C, (T x)1 = 1, and

(T x)n+1 =

(
qxn

s + rxn

)4
,

for all n ∈ N.
Actually, T is a self-map of C : Indeed, for each x := (xn)n∈N ∈ C, (T x)1 = 1, and

(T x)n+1 =

(
qxn

s + rxn

)4
≤
(

q
s(n + 1)4

)4
<

210

(n + 1)16 <
1

(n + 1)4 ,

for all n ∈ N.
It remains to prove that T has a unique fixed point in C, which, evidently, will be the solution

of the given difference equation.
We shall show that F is a Hicks contraction on C, with constant c = q4/210s4 < 1.
Let x, y ∈ C and t > 0 such that Fd1/2,01(x, y, t) > 1− t.
If Fd1/2,01(x, y, t) = 0, we obtain d1/2(x, y) ≥ t > 1, which contradicts the statement showed

above that d1/2(x, y) < 1.
Consequently, we only need to examine the case that Fd1/2,01(x, y, t) = 1.
In such a case, we obtain d1/2(x, y) < t, and we shall show that Fd1/2,01(T x, T y, ct) = 1.
To achieve this, the next easy relation will be useful:∣∣∣A4 − B4

∣∣∣ = ∣∣∣A2 + B2
∣∣∣|A + B||A− B|,

for all pairs A, B, of real numbers.
Combining the preceding relation with the following ones:∣∣∣∣∣

(
qxn

s + rxn

)2
+

(
qyn

s + ryn

)2
∣∣∣∣∣ ≤ 2q2

s2(n + 1)8 ,

and ∣∣∣∣ qxn

s + rxn
+

qyn

s + ryn

∣∣∣∣ ≤ 2q
s(n + 1)4 ,
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we obtain

|(T x)n+1 − (T y)n+1| =

∣∣∣∣∣
(

qxn

s + rxn

)4
−
(

qyn

s + ryn

)4
∣∣∣∣∣

≤ 4q3

s3(n + 1)12

∣∣∣∣ qxn

s + rxn
− qyn

s + yxn

∣∣∣∣
≤ 4q3

s3(n + 1)12 ·
qs|xn − yn|

s2 ≤ q4

210s4 |xn − yn|

= c|xn − yn|,

for all n ∈ N. Therefore,

d1/2(T x, T y) = (
+∞

∑
n=2
|(T x)n − (T y)n|1/2)2 ≤ c(

+∞

∑
n=1
|xn − yn|1/2)2

= cd1/2(x, y) < ct,

which implies that Fd1/2,01(T x, T y, ct) = 1.
We conclude that T is a Hicks contraction on the closed subset C of l1/2. So, by Theorem 3,

T has a unique fixed point z ∈ C, which is a solution for our difference equation.

Remark 5. Although the index K = 21/p, 0 < p < 1, is valid in Example 6, Reviewer 4 has
shown in their report that a better index is the one given by K = 2(1/p)−1.

Example 7. Let X = (a, 1], with a ∈ (0, 1) constant, let ∗ be a continuous triangular norm and
let F be the fuzzy set in X×X×R+ defined as F(x, y, 0) = 0 for all x, y ∈ X, F(x, x, t) = 1 for
all x ∈ X and all t > 0, and F(x, y, t) = min{x ∗ y, t}, otherwise.

We first show that (F, ∗) is a fuzzy metric (hence, a fuzzy b-metric for all K ≥ 1) on X.
Since conditions (FbM1), (FbM2), (FbM3) and (FbM5), in Definition 1, are almost trivially

fulfilled, we only show that F(x, z, t + s) ≥ F(x, y, t) ∗F(y, z, s), for all x, y, z ∈ X and all t, s > 0.
Indeed, we have

x ∗ z ≥ (x ∗ y) ∗ (y ∗ z) ≥ min{x ∗ y, t} ∗min{y ∗ z, s},

and, if t + s ≤ 1,
t + s ≥ t ∗ s ≥ min{x ∗ y, t} ∗min{y ∗ z, s}.

Consequently,

F(x, z, t + s) = min{x ∗ z, t + s} ≥ min{x ∗ y, t} ∗min{y ∗ z, s}
= F(x, y, t) ∗ F(y, z, s).

Now, we shall deduce that (X,F, ∗) is complete, as a consequence of Theorem 3.
To achieve it, let C be a τF-closed subset of X and let T be a Hicks contraction on C (with

contraction constant c). Fix x ∈ X, t0 > 1, and suppose that T nx 6= T n+1x for all n ∈ N∪{0}.
Then (see the proof of Theorem 3, (1)⇒ (2)),

F(T nx, T n+1x, cnt0) > 1− cnt0,

for all n ∈ N∪{0}.
By the definition of F we obtain cnt0 ≥ F(T nx, T n+1x, cnt0). Hence, cnt0 > 1/2 for

all n ∈ N∪{0}. Thus, we have reached a contradiction. Therefore, there is k ∈ N such that
T kx = T k+1x, which implies that T kx is a fixed point of T . From Theorem 3, (2) ⇒ (1), we
deduce that (X,F, ∗) is complete, i.e., (X,F, ∗, K) is complete for any K ≥ 1.
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5. Conclusions

Based on the notions of Kramosil and Michálek, and Grabiec of a fuzzy metric space,
we have proposed a notion of fuzzy b-metric space that generalizes and unifies previous
notions given and, independently, analyzed by Sedghi and Shobe, Hussain et al., Saadati,
Nădăban, and Šostak. Our approach simultaneously covers two interesting classes of
spaces, namely, the 01-fuzzy b-metric spaces and the K-stationary fuzzy b-metric spaces.
We have proved that each fuzzy b-metric space, in our sense, admits a uniformity with a
countable base. From this fact, we derive, among other consequences, that the topology
induced by means of its “open” balls is metrizable. A characterization of complete fuzzy
b-metric spaces with the help of a fixed point result is also obtained. Several examples,
including an application to a type of difference equations, were also discussed.
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