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Abstract: Shrinkage estimators are often used to mitigate the consequences of multicollinearity in
linear regression models. Despite the ease with which these techniques can be applied to small- or
moderate-size datasets, they encounter significant challenges in the big data domain. Some of these
challenges are that the volume of data often exceeds the storage capacity of a single computer and
that the time required to obtain results becomes infeasible due to the computational burden of a
high volume of data. We propose an algorithm for the efficient model estimation and validation of
various well-known shrinkage estimators to be used in scenarios where the volume of the data is
large. Our proposed algorithm utilises sufficient statistics that can be computed and updated at the
row level, thus minimizing access to the entire dataset. A simulation study, as well as an application
on a real-world dataset, illustrates the efficiency of the proposed approach.

Keywords: big data; efficient computation; Liu estimator; matrix of sufficient statistics; multicollinearity;
ridge estimator
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1. Introduction

The ability to collect data for which the volume, velocity, and variety exceeds the
capacity of standard analytical tools has been made possible by advancements in computer
technology employed in practically every field of science and daily life. Access to these
data types encourages innovation across a wide range of scientific fields but poses chal-
lenges to data storage, computational efficiency, and current statistical and computational
methods [1]. Although the high variety and velocity aspects of big data require novel
statistical methodology, the data considered in this paper speak to the high-volume aspect
of big data. A dataset with a size exceeding 20% of a computer’s RAM is considered large,
whereas a dataset with a size exceeding 50% of the computer’s RAM is considered massive
since simple calculations would consume all remaining RAM [2]. Access to large datasets
enables us to gain a better understanding of the relationship between a response variable
and a set of predictor variables, but we often face major issues during the analysis of such
data. Multicollinearity is one of these issues [3].

Multicollinearity refers to the existence of linear relationships between the predictor
variables in a regression problem. Two major consequences of multicollinearity are unstable
regression coefficients due to inflated standard errors and poor out-of-sample prediction
performance. The consequences of multicollinearity, such as unstable regression coefficients,
are often addressed with shrinkage estimators. Shrinkage estimators restrict the parameter
space to avoid parameter explosion due to inflated standard errors. However, these
estimators are often nonlinear with respect to the shrinkage parameter, which complicates
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their optimisation. For an overview of ongoing research relating to shrinkage estimators
for multicollinearity and optimal tuning parameter selection, see [3,4].

Despite the ease with which these techniques can be applied to small- or moderate-
size datasets, they encounter significant challenges in the big data domain. Some of these
challenges are that the volume of the data frequently exceeds the storage capacity of a
single computer and that the time required to obtain results becomes infeasible due to
the computational burden of a high volume of data. Many strategies for the efficient
computation of shrinkage estimators in ultrahigh dimensions exist, but the body of works
relating to shrinkage estimators for datasets with many observations is limited. In the
context of a large number of observations, Ref. [5] proposed an algorithm that utilises
sufficient statistics to obtain the ridge estimator of the multiple linear regression model to
address the above-mentioned big data challenges. Their proposal relied on a grid search
strategy for finding the optimal shrinkage parameter.

In this paper, we extend the work of [5] by proposing a method for the efficient
model estimation of various well-known ridge- and Liu type estimators with closed-from
solutions for the optimal shrinkage parameter. Our approach also allows efficient model
validation through K-fold cross-validation to evaluate the generalisability of the model. We
utilise an array of sufficient statistics and can overcome the memory and computational
efficiency barrier since we do not need access to the entire dataset simultaneously to
obtain sufficient statistics. Furthermore, the dataset can be removed from memory once
the sufficient statistic has been computed, and hence, minimal access to the dataset is
required. For illustrative purposes, we consider five shrinkage estimators that aim to
address multicollinearity in the linear regression model. These estimators are the ridge
estimator [6], the modified ridge type estimator [7], the Liu estimator [8], the modified
one-parameter Liu estimator [9] and the Kibria–Lukman estimator [10]. This paper is
structured as follows: Section 2 introduces the linear regression model and the shrinkage
estimators under consideration. An algorithm for efficient model estimation and validation
is proposed in Section 3. Section 4 illustrates the efficiency of our proposed approach
through a simulation study and application on a real-world dataset, and lastly, Section 5
concludes the paper.

2. Statistical Methodology

Consider the multiple linear regression model given by

y = Xβ + e, (1)

with y = (y1, . . . , yn)
> the n-dimensional response variable, X = (x1, . . . , xn)

> the n× p
matrix of nonstochastic explanatory variables, β =

(
β1, β2, . . . , βp

)> the p-dimensional
vector of regression coefficients, and e = (e1, . . . , en)

> ∼ N
(
0, σ2I

)
the n-dimensional error

vector. If rank(X>X) = p, then let Z = XQ and α = Q>β, where Q is the orthogonal
matrix whose columns constitute the eigenvectors of X>X. Thus, the ordinary least squares
estimator of α is α̂ =

(
Z>Z

)−1
Z>y. Accordingly, σ̂2 = y>

[
I− Z

(
Z>Z

)−1
Z>
]
y/(n− p)

and V(α̂) = σ̂2(Z>Z
)−1

.
Now, consider any estimator of α with the form

α̂g = g
(

Z>Z
)

Z>y (2)

where g ∈ Rn×p → S(p), with S(p) the space of all positive definite, symmetric, p× p
matrices. The variance of α̂g is given by

V
(
α̂g
)

= g
(

Z>Z
)

Z>COV(y)Zg
(

Z>Z
)

= σ2g
(

Z>Z
)(

Z>Z
)

g
(

Z>Z
)

.
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In the presence of multicollinearity, Z>Z is ill-conditioned, and as a result, the OLS
estimator of α has a large variance. Various shrinkage estimators have been proposed to
mitigate the consequences of multicollinearity in the linear regression model. The shrinkage
estimators considered in this paper are listed below. These can all be written in terms of the
form given in (2), which is used in the algorithm proposed in Section 3.

1. The ridge estimator, with k ≥ 0, proposed by [6] as a possible solution to multi-
collinearity is given by

α̂RRE(k) =
(

Z>Z + kIp

)−1
Z>y.

In this case, g
(
Z>Z

)
=
(
Z>Z + kIp

)−1
. The shrinkage parameter, k, should be esti-

mated using the data, but it is unclear which value of k produces the best estimator.
A large number of efforts have been aimed at accurately estimating the shrinkage
parameter. Some proposed techniques for estimating k were proposed by refs. [11–14]
and recently, [15]. We consider the estimator of the shrinkage parameter proposed
by [6]. The estimator is k̂ = σ̂2/α̂2

max, where α̂max is the maximum element of α̂. .
2. The modified ridge-type estimator with g

(
Z>Z

)
=
(
Z>Z + k(1 + d)Ip

)−1
is

α̂MRT(k, d) =
(

Z>Z + k(1 + d)Ip

)−1
Z>y.

This estimator includes the ridge and OLS estimators as special cases. The authors of
Ref. [7] suggest an iterative approach to estimating the shrinkage parameters. Their
approach is as follows:

(a) Let the initial estimate of d be calculated as d̂ = min
(
σ̂2/α̂2

i
)

where α̂i is the ith
element of α̂.

(b) Using d̂ from 1, estimate k as k̂ = pσ̂2/
(

∑
p
i=1

(
1 + d̂

)
α̂2

i

)
.

(c) Let d̂ = σ̂2/
(
kα̂i

2)− 1. Estimate dmrt as d̂mrt = p/ ∑
p
i=1 d̂−1.

(d) Use d̂mrt = d̂ if d̂mrt is not between 0 and 1.

3. The Liu estimator with the combined benefits of the ridge estimator and the Stein
type estimator [16] was proposed by [8]. Given that rank(X>X) = p, the Liu estimator
is given by

α̂LIU(d) =
(

Z>Z + Ip

)−1(
Z>y + dα̂

)
=

(
Z>Z + Ip

)−1(
Z>Z + dIp

)(
Z>Z

)−1
Z>y

with g
(
Z>Z

)
=
(
Z>Z + Ip

)−1(
Z>Z + dIp

)(
Z>Z

)−1
. The estimator of the shrinkage

parameter is

d̂ = 1− σ̂2

∑
p
i=1(1/(λi(λi + 1)))

∑
p
i=1

(
α̂i

2/(λi + 1)2
)


where α̂i and λi are the ith element of α̂ and the vector of eigenvalues of X>X, respectively.
4. A limitation of the estimator of the shrinkage parameter of the Liu estimator is that,

in some instances, it has a negative value that affects the estimator’s performance [17].
The modified one-parameter Liu estimator proposed by [9] yields a positive value of
d̂ and provides a significant improvement in the performance of the estimator. Given
that rank(X>X) = p, the modified one-parameter Liu estimator is given by

α̂MLIU(d) =
(

Z>Z + Ip

)−1(
Z>Z− dIp

)(
Z>Z

)−1
Z>y
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with g
(
Z>Z

)
=
(
Z>Z + Ip

)−1(
Z>Z− dIp

)(
Z>Z

)−1
. The optimal value of the shrink-

age parameter is

d̂ = min

(
λi
(
σ̂2 + α̂i

2)
σ̂2 + λiα̂i

2

)

where α̂i and λi are the ith element of α̂ and the vector of eigenvalues of X>X, respectively.
5. Lastly, the Kibria–Lukman estimator, proposed by [10], is a one-parameter estimator

that combines the characteristics of both the ridge and Liu estimators. Given that
rank(X>X) = p, the estimator is given by

α̂KL(k) =
(

Z>Z + kIp

)−1(
Z>y− kα̂

)
=

(
Z>Z + kIp

)−1(
Z>Z− kIp

)(
Z>Z

)−1
Z>y

with g
(
Z>Z

)
=
(
Z>Z + kIp

)−1(
Z>Z− kIp

)(
Z>Z

)−1
. The estimator of the shrinkage

parameter proposed by [10], is

k̂ =
σ̂2

2α̂i
2 + (σ̂2/λi)

with α̂i the ith element of α̂ and λi the ith eigenvalue of X>X. Following [18], the
harmonic mean version is given by

k̂ =
σ̂2

∑
p
i=1

[
2α̂i

2 + (σ̂2/λi)
] .

3. Efficient Model Estimation and Validation in Big Data Analytics

The consequences of multicollinearity in linear regression models are often mitigated
using shrinkage methods. Despite the ease with which these techniques can be applied to
small or moderate datasets, they encounter significant challenges in the big data domain.
Some of these challenges are that the high volume of data frequently exceeds the storage
capacity of a single computer and that the time required to obtain results becomes infeasible
due to the computational burden of such a high volume of data. To address these big data
challenges, Ref. [5] proposed an algorithm that utilises an array of sufficient statistics to
obtain the ridge estimator of the multiple linear regression model. The sufficient statistics
array can be computed and updated at the row or mini-batch level. However, the ridge
estimator is nonlinear with respect to the shrinkage parameter, which complicates its
optimisation. The shrinkage estimators given in Section 2 are frequently utilised to address
the adverse effects of multicollinearity in linear regression models and has the added
advantage of having closed-form solutions. In this section, we extend the work of [5] to
include various other well-known shrinkage estimators and also adapt their algorithm
to allow an efficient model validation by employing K-fold cross-validation. We utilise
the array of sufficient statistics given in (3) in our proposed approach. The sufficient
statistic array is used to determine the estimator of the regression coefficients as well as
the estimator of the covariance matrix of the regression coefficients in the multiple linear
regression model when using the estimators in Section 2. For estimation purposes, access
to the entire dataset is not needed once the sufficient statistics array has been computed.
The sufficient statistics array for shrinkage estimators with the form given in (2) is

A :=
n

∑
i=1

Ai =

[
Syy S>zy
Szy Szz

]
=

[
∑n

i=1 y2
i ∑n

i=1 yiz>i
∑n

i=1 ziyi ∑n
i=1 ziz>i

]
. (3)
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Considering the sufficient statistics array, the form of the estimators in Section 2 is

α̂g = g(Szz)Szy.

The storage capacity of a single computer may be much less than the size of a large
dataset, and hence the computation of (3) has to be distributed across multiple processors,
in which case, algorithms based on multiple processors should be utilised. Parallel compu-
tation is extremely useful in this regard, and hence the concept of MapReduce is important
in our approach since it interleaves parallel and sequential computation. The MapReduce
concept enables us to perform K-fold cross-validation with ease, and hence we base our
algorithm on a strategy suitable for multiple processors. Model validation often relies on
resampling techniques that utilise two datasets, one for training the model and one for
evaluating the prediction performance of the model on unseen data. The testing dataset
must be accessed after the regression coefficients are estimated, irrespective of the method
used to obtain the regression coefficients, since the predicted response is calculated using
only the observed testing data and the estimated regression coefficients. The advantage of
using K-fold cross-validation as a model validation technique lies in the fact that (3) can be
obtained for each of the K training datasets without any more access to the data than would
be required to calculate (3) for the complete dataset. Suppose we partition the dataset into
K blocks containing nk observations. The sufficient statistics array of each block is then
given by ∑nk

i=1 Ai, such that the sufficient statistics array of the complete dataset is

A :=
K

∑
k=1

A(k) :=
K

∑
k=1

nk

∑
i=1

Ai.

We can easily obtain the array of sufficient statistics for any training dataset since each
of the K training datasets contains (K− 1) of the K blocks. Algorithm 1 is used for the model
estimation and validation of the shrinkage estimators given in Section 2. Furthermore,
Algorithm 1 is partitioned into four stages. The eigenvectors and eigenvalues of X>X
corresponding to the K training datasets are calculated in the first stage. The second step
involves calculating the sufficient statistics array for each of the K blocks. In the third stage,
we obtain the estimators proposed in Section 2, and finally, the prediction performance is
evaluated in the fourth stage.

It is important to note that the estimators we considered have a general mathematical
form, and hence the approach is not limited to only those estimators presented in this
paper. Should feature selection be of interest, our approach can be applied to various other
penalties, such as the elastic net, by using the local quadratic approximation of [19]. In
these cases, it is not necessary to use the canonical form of the multiple linear regression
model since the optimal turning parameter needs to be obtained through K-fold cross-
validation. Furthermore, with minor modifications to the algorithm, data issues such
as outliers could be addressed with the robust ridge estimator [20]. However, our main
concern is multicollinearity, and hence the simulation and application considered the five
estimators given in Section 2.
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Algorithm 1 Model estimation and validation based on the sufficient statistics array

Input: Subsets of the data
Output: α̂g, σ̂2, V

(
α̂g
)

and measures of prediction performance based on the testing
dataset.

1. Divide the data into K blocks.

MAP tasks

2. For each of the K blocks:
2.1 Calculate Sxx(k) = ∑nk

i=1 xix>i
Reduce tasks

3. Let j be the index of the block to be excluded from each of the K training datasets
such that −j represent the remaining K− 1 blocks.
For the K training datasets:
3.1 Calculate ∑k 6=j Sxx(k)
3.2 Calculate Q(−j), the eigenvectors of ∑k 6=j Sxx(k).
3.3 Calculate

(
λ1, . . . , λp

)
(−j), the eigenvalues of ∑k 6=j Sxx(k).

MAP tasks

4. For each of the K blocks:
4.1 Calculate Syy(k), Szy(k), Szz(k) and A(k) for each Q(−j) with j ∈ {1, . . . , K}.
Reduce tasks

5. For each of the K training datasets with j ∈ {1, . . . , K}:
5.1 Calculate ∑k 6=j A(k).
5.2 Calculate α̂(−j), and σ̂2

(−j).
5.3 Calculate the shrinkage parameter of the estimator under consideration.
5.4 Calculate α̂g and V

(
α̂g
)
.

6. For each of the K testing datasets:
6.1 Calculate the predicted response.
6.2 Calculate prediction performance measures based on the observed and predicted
responses.

4. Numerical Analysis

In this section, the performance of the proposed approach is evaluated through an
extensive simulation study and an application on a real-world dataset. A high-performance
computer with 60 cores and 256GB RAM was used for all computations.

4.1. Simulation Study

The simulation study considered two experiments. The first experiment aimed to com-
pare the execution time of our proposed approach with the execution time of the traditional
approach, where we performed the relevant matrix algebra from Section 2 using the entire
dataset at once. The second experiment was to verify that our algorithm yielded the same
estimators and performance measures as the traditional approach. Theoretically, our proposed
approach should yield the same answers as the traditional approach, which was verified by
the results of the second experiment. The predictor variables were generated using

Xij =
(

1− γ2
)1/2

zij + γzi(p+1)

with i ∈ {1, . . . , n}, j ∈ {1, . . . , p}, zij independent standard normal random numbers and
γ2 the correlation between any two predictor variables. The response was generated by

yi = β1xi1 + β2xi2 + · · ·+ βpxip + ei
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with i ∈ {1, . . . , n} and ei ∼ N
(
0, σ2). We considered n = 10, 000, 000, p = 100,

γ = 0.9, 0.99, and σ2 = 1. The regression coefficients were generated from a uniform(−1, 1)
distribution. Furthermore, we included both 5-fold and 10-fold cross-validation and consid-
ered three performance measures, namely the mean squared error (MSE) of the estimators,
the mean prediction error (MPE) of the predicted response on the testing dataset, and
the symmetric mean absolute percentage error (SMAPE) of the predicted response on the
testing dataset. For an extended performance evaluation, the measures used by [21] can
also be considered. The MSE, MPE, and SMAPE were calculated using

MSE(β̂) =
1
K

K

∑
k=1

(
β̂k − β

)>(
β̂k − β

)
MPE(ŷ) =

1
n

K

∑
k=1

(ŷk − y)>(ŷk − y).

SMAPE(ŷ) =
100%

n

K

∑
k=1

n
K

∑
i=1

|ŷik − yik|
(|yik|+ |ŷik|)/2

.

Figure 1 and Table 1 contain the results obtained in the simulation study.

Figure 1. Time required to obtain (a) the parameter estimates and (b) the performance measures of
the five estimators for both the traditional approach given in Section 2 and the approach proposed in
Section 3. (c) Total time required to obtain the estimated model as well as the performance measures.

The computational time required to obtain the estimated model using the proposed ap-
proach was ±eight times faster than the traditional approach for the 5-fold cross-validation
and ±five times faster for the 10-fold cross-validation. The time required to obtain the
predicted responses and the performance measures on the testing dataset was less for
the traditional approach. When using the traditional approach, the complete dataset was
imported before the model estimation was performed. The dataset was never discarded,
and hence it was readily available when prediction on the testing set commenced. This
came at a cost since the memory used to store the complete dataset was unavailable at the
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model estimation stage. Although our proposed approach required the testing datasets to
be imported again, the total time required to obtain the models, predict, and calculate the
relevant performance measures was significantly less when using the approach proposed
in Section 3.

Table 1. Difference in performance measures calculated for the approach proposed in Section 3 and
the traditional approach given in Section 2 when K = 5 and K = 10.

γ Estimator MSE (β̂) MSE (ŷ) SMAPE (ŷ)

0.9 Ridge 3.866× 10−15

4.387 × 10−11
−2.776 ×10−17

1.206 × 10−13
6.501 ×10−13

3.270 × 10−9

0.9 Modified ridge −1.784 ×10−9

−9.465 × 10−9
3.679 ×10−10

3.539 × 10−10
−4.567 ×10−7

−6.069 × 10−7

0.9 Liu 2.568 ×10−8

−5.866 × 10−8
1.825 ×10−9

1.263 × 10−9
1.760 ×10−6

−4.399 × 10−6

0.9 Modified Liu 3.077 ×10−9

5.432 × 10−9
5.115 ×10−12

−1.852 × 10−12
3.470 ×10−7

2.999 × 10−7

0.9 Kibria–Lukman −1.865 ×10−15

−3.193 × 10−16
−1.388 ×10−17

−6.939 × 10−17
1.421 ×10−13

4.974 × 10−14

0.999 Ridge 4.184 ×10−12

−4.048 × 10−8
2.637 ×10−16

−2.637 × 10−11
2.540 ×10−12

−1.835 × 10−8

0.999 Modified ridge −6.462 ×10−6

−4.155 × 10−6
−6.894 ×10−9

5.182 × 10−9
−7.709 ×10−6

−1.219 × 10−7

0.999 Liu 8.086 ×10−5

−4.591 × 10−6
9.276 ×10−8

8.133 × 10−9
−4.793 ×10−6

−9.801 × 10−6

0.999 Modified Liu 3.448 ×10−6

5.979 × 10−6
2.908 ×10−10

1.749 × 10−10
1.503 ×10−6

1.051 × 10−6

0.999 Kibria–Lukman 2.920 ×10−13

4.710 × 10−13
2.776 ×10−17

−1.388 × 10−17
1.386 ×10−13

1.847 × 10−13

Furthermore, the difference between the performance measures calculated for the
proposed approach and the traditional approach, where we performed the relevant matrix
algebra from Section 2 using the entire dataset at once, was extremely close to zero. That
is, the proposed approach was as accurate as the traditional approach where the mean
squared error of the estimators, the mean prediction error, and the symmetric mean absolute
percentage error of the predicted response on the testing dataset were concerned. The
two experiments were also conducted on datasets where the level of multicollinearity was
low, e.g., cases where γ = 0.5, 0.6. The results obtained were very similar to the results
shown in Figure 1 and Table 1, and the conclusions arrived at also held for lower levels
of multicollinearity.

4.2. Application

The dataset used in this application was obtained from the Bureau of Transportation
Statistics, which provides information on U.S. transportation systems. The dataset contains
information such as the origin and destination airport of various flights, the time at which
flights are scheduled to arrive and depart, the delay in departing and arriving flights,
the time and distance to destination airports, and the date and time of these flights, for
major air carriers. We selected air traffic data from 2010 to 2020, resulting in a dataset with
±6, 000, 000 observations and ±90 features. The response variable was the arrival delay in
minutes. As in the simulation study, we considered two experiments. The first experiment
aimed to compare the execution time of our proposed approach with the execution time of
the traditional approach, where we performed the relevant matrix algebra from Section 2
using the entire dataset at once. The second experiment was to show that our algorithm
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was as accurate as the traditional approach. The performance measures used were the
mean prediction error (MPE) and the symmetric mean absolute percentage error (SMAPE)
of the predicted response on the testing dataset. The results obtained in the application are
given in Figure 2 and Table 2.

Figure 2. Time required to obtain (a) the parameter estimates and (b) the performance measures of
the five estimators for both the traditional approach given in Section 2 and the approach proposed in
Section 3. (c) Total time required to obtain the estimated model as well as the performance measures.

Table 2. Difference in performance measures calculated for the proposed approach and the traditional
approach given in Section 2 when K = 5 and K = 10.

Estimator MPE (ŷ) SMAPE (ŷ)

Ridge 4.025× 10−5

−2.948 × 10−4
6.719×10−7

1.781 × 10−5

Modified ridge 1.803×10−3

1.766 × 10−3
2.871×10−4

1.673 × 10−3

Liu 5.253×10−4

4.835 × 10−4
1.496×10−5

3.623 × 10−5

Modified Liu 3.131×10−5

9.429 × 10−5
9.764×10−7

1.000 × 10−5

Kibria–Lukman 7.488×10−6

7.397 × 10−5
5.760×10−7

9.347 × 10−6

From the results given in Figure 2 and Table 2, it is clear that the total computational
time required to obtain the models, predict, and calculate the relevant performance mea-
sures was significantly less when using the approach proposed in Section 3. Furthermore,
the differences between the performance measures calculated for the proposed approach
and the traditional approach were close to zero.
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5. Conclusions and Future Work

Shrinkage methods are often used to mitigate the consequences of multicollinearity in
linear regression models. These methods can easily be applied to small- or moderate-size
datasets but encounter significant challenges, such as the memory and time required to
obtain an optimal model in the big data domain. The goal of this paper was to propose a
method for the efficient model estimation and validation of various well-known shrinkage
estimators—mainly used to address multicollinearity—when considering large datasets.
We proposed an algorithm that utilised an array of sufficient statistics for model estima-
tion of various ridge- and Liu type estimators with closed-form solutions for the tuning
parameter. Our algorithm also enabled model validation through K-fold cross-validation.
A simulation study and an application on a real-world dataset illustrated the efficiency and
accuracy of our approach. The estimators that we considered have a general mathematical
form, and hence our approach is not limited to only the estimators presented in this paper.
Furthermore, some ideas for future work include:

• Extending the methodology to generalised linear models.
• Extending the methodology to streaming data.
• Extending the methodology to robust estimators.
• Extending the methodology to estimators for feature selection, for which one may

consider measures of validation and evaluation similar to those in [21].
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