
Citation: Shrahili, M.; Kayid, M.;

Mesfioui, M. Relative Orderings of

Modified Proportional Hazard Rate

and Modified Proportional Reversed

Hazard Rate Models. Mathematics

2023, 11, 4652. https://doi.org/

10.3390/math11224652

Academic Editors: Ioannis S.

Triantafyllou and Alex Karagrigoriou

Received: 20 September 2023

Revised: 9 November 2023

Accepted: 13 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Relative Orderings of Modified Proportional Hazard Rate and
Modified Proportional Reversed Hazard Rate Models
Mansour Shrahili 1 , Mohamed Kayid 1 and Mhamed Mesfioui 2,*

1 Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; msharahili@ksu.edu.sa (M.S.); drkayid@ksu.edu.sa (M.K.)

2 Département de Mathématiques et d’informatique, Université du Québec à Trois-Rivières, 3351,
Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada

* Correspondence: mhamed.mesfioui@uqtr.ca

Abstract: In this paper, we identify several relative ordering properties of the modified proportional
hazard rate and modified proportional reversed hazard rate models. For this purpose, we use two
well-known relative orderings, namely the relative hazard rate ordering and the relative reversed
hazard rate ordering. The investigation is to see how a relative ordering between two possible base
distributions for the response distributions in these models is preserved when the parameters of
the underlying models are changed. We will give some examples to illustrate the results and the
conditions under which they are obtained. Numerical simulation studies have also been provided to
examine the examples presented.
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1. Introduction

The parameters of a distribution are typically considered to be real or perhaps vector
values. In the literature, families of distributions are considered that are characterized
by having a parameter that is itself a distribution function. These families are called
semiparametric because they also contain a real parameter. Choosing the parameter that
is first a distribution function is one possible way to use a semiparametric model. The
underlying distribution is the formal name for this distribution function. In practice, the
selection of an underlying distribution leads to the selection of a parametric model, but
the selection is limited to families with the structure of the semiparametric model. Let F
be a cumulative distribution function (cdf) of a lifetime unit with random life length X0.
In the context of reliability and survival analysis, this random variable usually stands as
the random lifetime of a unit in a standard situation. Suppose that dθ : [0, 1] 7→ [0, 1] is a
non-decreasing function for which dθ(0) = 0, dθ(1) = 1 where θ = (θ1, . . . , θk) ∈ Θ is a
vector of unknown parameters, and Θ is the parameter space. Then, the random variable
X1 with the following cdf

F∗(t; θ) = dθ(F(t)). (1)

is said to have a semiparametric model where F is the baseline distribution. In reliability,
the random variable X1 denotes the random lifetime of a unit in a fresh environment. The
underlying distribution F might already have one or more parameters, in which case a
semiparametric family might provide a way to include a new parameter, extending the
family from which F originates. One can imagine that the standard families of the Gamma
and Weibull distributions are derived from the exponential distribution via semiparametric
families that include a second parameter. The Weibull and Gamma families can both be
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found as special cases of a three-parameter family using the same technique. The study
of semiparametric families is therefore advantageous for two reasons: it provides a new
understanding of traditional distribution families, and it offers strategies for extending
families to make data fitting more flexible (see, e.g., Marshall and Olkin [1]).

The concept of the hazard rate (hr) function and also the concept of the reversed
hazard rate (rhr) function play an important role in reliability and survival analysis. These
quantities measure the instantaneous risk of failure of an aging technical system from the
perspective of probability theory. Let X be the random lifetime of an aging technical system;
then let the hr function of X, denoted by hX , be defined as

hX(t) = lim
δ→0+

1
δ

P(X ≤ t + δ|X > t) =
fX(t)
F̄X(t)

, (2)

where fX is the probability density function (pdf) and F̄X is the survival function (sf)
associated with the random lifetime X. From (2) it can be seen that hX(t) measures the risk
of failure of a unit or a technical system (with lifetime X) of age t in a very short interval
in the immediate vicinity of the time t, for example, (t, t + δ], in which δ is very close to
zero. Therefore, the measure hX(t) as a function of t, the current age of a lifetime unit or
technical system, is able to quantify the instantaneous risk of failure of the unit or technical
system under consideration at any age (cf. Prentice and Kalbfleisch [2]). In some situations,
a situation with previous failures can also be taken into account. For example, the actual
inactivity time of a failed technical system at an inspection time t may not be known. In
such cases, the rhr function is a useful measure to quantify the risk of past failures. The rhr
of X, is denoted by h̃X , defined as

h̃X(t) = lim
δ→0+

1
δ

P(X > t− δ|X ≤ t) =
fX(t)
FX(t)

, (3)

where FX is the cdf of X. It follows from (3) that h̃X(t) measures the risk of failure of a
unit or technical system found to be inactive during an inspection at time t in a very short
interval before time t, i.e., (t− δ, t], so that δ is almost zero. Consequently, the quantity
h̃X(t) is a function of t, the time at which the unit or technical system is inactive, can be
used to measure the instantaneous risk of a past failure of the failed unit or technical system
(see, for instance, Block et al. [3]).

Stochastic orders of random variables have long been a useful tool for making com-
parisons between probability distributions (see Müller and Stoyan [4], Shaked and Shan-
thikumar [5], Belzunce et al. [6], and Li and Li [7]). Basically, a stochastic order is a rule
that defines the sense in which one stochastic variable is greater than or less than another.
Some researchers used stochastic orders comparing distributions in terms of the magnitude
of random variables to perform stochastic comparisons between semiparametric models,
including those presented in Equations (5), (9) and (13) in Section 2. To this end, we quantify
the effect of varying the parameters of the model on the variation of the response variables
and, furthermore, the effect of changing the underlying distribution on changing the distri-
bution of the response variables using several known stochastic orders. For example, in
the context of the proportional hazard rate (PHR) model for the case where λ is a random
variable (frailty), Gupta and Kirmani [8] and subsequently Xu and Li [9] identified some
stochastic ordering properties of the model. The PHR model has attracted the attention
of many researchers in applied probability and statistics, for instance, see Psarrakos and
Sordo [10], Sankaran and Kumar [11], Zhang et al. [12], Arnold et al. [13] and Kochar [14].
Considering the proportional reversed hazard rates (PRHR) model, Di Crescenzo [15] made
some stochastic comparisons between two candidate distributions of the model that differ
in their parameters. Kirmani and Gupta [16] derived some stochastic ordering results for
the proportional odds rates (POR) model.

Recently, however, many researchers have focused on stochastic orders that compare
lifetime distributions according to aging behavior, namely, the faster-aging stochastic orders.
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One of the key ideas in reliability theory and survival analysis is stochastic aging. It broadly
outlines the pattern of aging/degradation of a system over time. Three different notions of
aging are presented in the literature: positive aging, negative aging, and no aging. Positive
aging implies a stochastically decreasing remaining lifetime of the system. Negative aging
implies just the opposite. The system does not mature with time if there is no aging. To
study different characteristics of system aging, various aging classes have been presented
in the literature based on these three aging principles. The increasing failure rate (IFR),
decreasing failure rate (DFR), increasing failure rate on average (IFRA), decreasing failure
rate on average (DFRA), increasing likelihood ratio (ILR), and decreasing likelihood ratio
(DLR) are among the frequently applied aging classes. The reader can consult Barlow
and Proschan [17] and Lai and Xie [18] for further discussion on this topic. In addition to
these ideas about aging, relative aging is a useful concept to use when studying system
reliability. Relative aging is used to measure how a system changes over time relative to
another system.

In real life, there are many situations where we deal with multiple systems of the same
type (e.g., TVs from different manufacturers, CPUs from different brands, etc.). In these
circumstances, we often encounter the following problem: how can we determine whether
one system is aging faster than others over time? The idea of relative aging provides a
compelling answer to this problem. When dealing with the crossover hazards/medium
remaining life phenomena, another component of relative aging proves helpful. Many real-
life situations involve this type of circumstance. For example, Pocock et al. [19] examined
survival data on the effects of two different treatments on breast cancer patients and became
aware of the phenomenon of crossover hazards. In addition, Champlin et al. [20] described
several cases in which the superiority of one treatment over another lasted only for a short
period of time. The above considerations suggest that increasing/decreasing hazard ratio
models are a viable option in a variety of real-world scenarios. In fact, Kalashnikov and
Rachev [21] have developed a concept of relative aging based on the monotonicity of the
ratio of two hazard rate functions called the relative hazard rate order. This concept is
known as faster hazard rate aging. Sengupta and Deshpande [22] presented another idea
in a similar way based on the monotonicity of the ratio of two cumulative hazard rate
functions. Rezaei et al. [23] proposed a relative order based on the ratio of the reversed
hazard rates of two random lifetimes and called it the relative reversed hazard rate order.
We will utilize the relative hazard rate order and, further, the relative reversed hazard rate
order to compare models belonging to a recently introduced semiparametric model.

Let us assume that X0 and Y0 are two non-negative random variables with continuous
distribution functions (cdfs) F and G, respectively. Let X1 and Y1 be two non-negative
random variables whose cdfs are transformations of cdfs of X0 and Y0, respectively. In
view of (1), suppose that X1 and Y1 follow cdfs F∗(t; θ) = dθ(F(t)) and G∗(t; θ) = dθ(G(t)),
respectively. The function dθ is called the distortion function and the cdfs F∗(t; θ) and
G∗(t; θ) are called distorted distribution functions. These kinds of distributions, called also
semiparametric distributions, have attracted the attention of many researchers in statistics,
economics, actuarial studies and reliability (see, e.g., Navarro et al. [24], Navarro and
Águila [25], Lando and Bertoli-Barsotti [26], Kayid and Al-Shehri [27] and Navarro and
Pellerey [28]). From theoretical perspectives, the distribution of order statistics and the
distribution of record values arisen from a sample from F follows the foregoing semipara-
metric model (see, e.g., Izadkhah et al. [29]). In practical studies, the baseline cdfs F(t)
and G(t) represent two models in a population under a standard (reference) situation,
for example, the model of the lifetime of an item under a controlled environment. The
distorted distributions F∗(t; θ) and G∗(t; θ) then specify two altered models in a fresh
environment, for instance, the lifetime of an item in a critical situation. One of the problems
that has attracted the attention of researchers in applied probability is two study conditions
under which

X0 ≤o Y0 =⇒ X1 ≤o Y1, (4)
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where ≤o denotes a certain stochastic order. The preservation property given in (4) states
that a certain stochastic ordering relation between the baseline populations leads to the
same stochastic ordering relation between the altered populations. In the context of many
well-known semiparametric models, the implication in (4) has been studied in the literature
(see, e.g., Di Crescenzo [15], Kirmani and Gupta [16] and Gupta and Gupta [30]). However,
the studies conducted in this regard have so far only dealt with stochastic orders that take
into account the magnitude of the stochastic order. The considered semiparametric families
of distributions in the previously accomplished studies have also had a single parameter.

The aim of this work is to perform stochastic comparisons of two newly defined
semiparametric models. Each of these models has two parameters. The stochastic orderings
we consider here are two recent stochastic orderings that focus on the relative aging of two
lifetime units, namely, the relative hazard rate ordering and the relative inverse hazard rate
ordering. In particular, we compare the modified proportional hazard rate model (MPHR)
and the modified proportional reversed hazard rate model (MPRHR), which correspond to
the relative hazard rate ordering and the relative reverse hazard rate ordering. Specifically,
the MPHR model is identified as a particular case of (1), such that θ = (α, λ), in which
α > 0, λ > 0 (ᾱ = 1− α) and

dθ(u) =
1− (1− u)λ

1− ᾱ(1− u)λ
.

The MPRHR model is also identified as a specific case of (1), so that θ = (α, β), where α > 0,
β > 0 and

dθ(u) =
αuβ

1− ᾱuβ
.

We consider random lifetimes X1 and Y1 with an MPHR distribution with hr functions hX1

and hY1 and show that
hX1(t)
hY1(t)

is non-decreasing in t ≥ 0,

which shows that the unit or technical system with random life X1 ages faster than the unit
or technical system with random life Y1. In parallel, we assume that if X1 and Y1 have an
MPRHR distribution with rhr functions h̃X1 and h̃Y1 , then under certain conditions,

h̃X1(t)

h̃Y1(t)
is non-increasing in t > 0,

indicating that the unit or technical system with random life X1 ages faster compared to
the unit or technical system with random life Y1.

The rest of the paper is organized as follows. In Section 2, we give some advanced
preliminary considerations and auxiliary results. In Section 3, we consider the modified
proportional hazard rate model for comparison in terms of the relative hazard rate order.
In this section, we further consider the modified proportional reversed hazard rate model
to give some ordering properties according to the relative reversed hazard rate order. In
Section 4, some examples with numerical simulation studies are provided to show that the
theorems are fulfilled. In Section 5, we conclude the paper with a more detailed summary
and provide an outlook on possible future studies. In Appendix A, we gather the proofs
of the main theorems of the paper and also insert four tables to report the results of the
simulation studies.

2. Preliminaries

In this section we give some mathematical definitions of the notions that will be utilized
in this paper. This section contains a description of well-known facts from probability
theory. For a detailed review on mathematical reliability theory, for example, the reader can
see Barlow and Proschan [31], Rykov et al. [32] and Rykov et al. [33]. In the literature, many
semiparametric families of distributions have been introduced and studied. Among these
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models, some of them find their applicability in the context of lifetime events. The Cox’s
PHR model is of the important and frequently used semiparametric family of distributions
(see Cox [34]). For a review of the PHR model we refer the reader to Kumar and Klefsjö [35].
Let us consider the parameter λ > 0, called the frailty parameter. Then the PHR model is
defined as

F̄(t; λ) = F̄λ(t), t ≥ 0, (5)

where F̄(·; λ) is the survival function (sf) of the response random variable and F̄(·) is the
baseline sf. Let X0 have an absolutely cdf F(·) with probability density function (pdf) f (·).
Then, the hr of X0, an important reliability quantity in survival analysis, measures the
instantaneous risk of failure of a device with lifetime X0 at a certain age (t, say). The hr of
X0 for all t ≥ 0 that fulfills F̄(t) > 0 is defined as follows:

h(t) := − d
dt

ln(F̄(t)) =
f (t)
F̄(t)

. (6)

It is well-known that h characterizes the underlying sf, F̄, as follows:

F̄(t) = exp{−
∫ t

0
h(x) dx}. (7)

Suppose that h(·; λ) is the hr function associated with the sf (5). Then, it is plainly seen that
for every t ≥ 0 for which min( ¯F(t), F̄(t; λ)) > 0,

h(t; λ) = λ× h(t). (8)

In contrast to the PHR model, the PRHR model was introduced by Gupta et al. [36]. We
refer the reader to Gupta and Gupta [30] for further descriptions of the PRHR model. In
the PRHR model, a positive parameter, β, called the resilience parameter, is considered.
The PRHR model is then defined as

F(t; β) = Fβ(t), t ≥ 0, (9)

in which F(·; β) is the cdf of the response random variable and F(·) is the baseline cdf or the
underlying distribution function of the model. The rhr of X0, another reliability quantity,
measures the risk of failure of a device (with original lifetime X0) in the past at a certain
time point t at which the device is found to be inactive. The rhr of X0 for all t ≥ 0 when
F(t) > 0 is derived via the following relation:

h̃(t) :=
d
dt

ln(F(t)) =
f (t)
F(t)

. (10)

It has been verified that h̃ characterizes the underlying cdf, F, as below:

F(t) = exp{−
∫ +∞

t
h̃(x) dx}. (11)

Let us now assume that h̃(·; β) is the rhr function of the distribution with the cdf (9). Then,
it is readily realized for all t ≥ 0 for which min{F(t), F(t; β)} > 0 that

h̃(t; β) = β× h̃(t). (12)

Another reputable semiparametric family of distributions is the POR model (see, e.g.,
Marshall and Olkin [37]). This model is defined with cdf

F(t; α) =
F(t)

1− ᾱF̄(t)
; t, α ∈ R+, ᾱ = 1− α, (13)
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In some situations the following model is alternatively utilized:

F(t; α) =
αF(t)

1− ᾱF(t)
; t, α ∈ R+, ᾱ = 1− α. (14)

The POR model, also known as the Marshall–Olkin model, has been considered by Rykov
et al. [33] in the context of sensitivity analysis. The odds rate function of X0 measures the
relative odds of the event {X0 > t} in terms of the event {X0 ≤ t}, where t is some point
in time. The odds rate function of X0 for all t ≥ 0 when F(t) > 0 is defined as follows:

OR0(t) :=
F̄(t)
F(t)

. (15)

We assume that OR(t; α) = F̄(t;α)
F(t;α) is the odds rate function of the distribution with the

cdf (13). Then, it is easily verified for all t ≥ 0 for which min{F(t), F(t; α)} > 0 that

OR(t; α) = α×OR0(t). (16)

Balakrishnan et al. [38] utilized the PHR (resp., PRHR) model as a baseline model
in (13) (resp., (14)) to propose two new models, referred to as the MPHR and MPRHR
models, respectively.

Suppose that X0 is a baseline random variable with survival function F̄. Let X11, · · · , X1n
be independent and identically distributed (i.i.d.) lifetimes of n components of a system
with a common distribution function F(·; α, λ). Then, X11, · · · , X1n are said to follow the
MPHR model with tilt parameter α, modified proportional hazard rate λ and baseline
survival function F̄ (denoted as MPHR(α; λ; F̄)) if and only if,

F(x; α, λ) =
1− F̄λ(x)

1− ᾱF̄λ(x)
; x, λ, α ∈ R+, ᾱ = 1− α. (17)

For the case of α = 1, (17) simply reduces to the PHR model. The MPHR model in (17)
includes some well-known distributions such as the extended exponential and extended
Weibull distributions (Marshall and Olkin [1]), extended Pareto distribution (Ghitany [39])
and extended Lomax distribution (Ghitany et al. [40]).

On the other hand, suppose X1, · · · , Xn are i.i.d. lifetimes of n components of a system
with a common distribution functions F. Then, X1, · · · , Xn are said to follow the MPRHR
model with tilt parameter α, modified proportional reversed hazard rate β and baseline
distribution function F (denoted as MPRHR (α; β; F)) if and only if

F(x; α, β) =
αFβ(x)

1− ᾱFβ(x)
; x, β, α ∈ R+, ᾱ = 1− α. (18)

Note that the PRHR model is a sub-model of (18) when α = 1. In Table 1, we shall give a
summary of the semiparametric models that are used in this paper together with the sf, the
cdf and the pdf of the models.

We assume that the random variables X and Y have distribution functions F and
G, survival functions F̄ = 1− F and Ḡ = 1− G, density functions f and g, hazard rate
functions hX = f /F̄ and hY = g/Ḡ and reversed hazard rate functions h̃X = f /F and
h̃Y = g/G, respectively. To compare the magnitude of random variables, some notions of
stochastic orders are introduced below.

Definition 1. Suppose that X and Y are two non-negative random variables that denote the lifetime
of two systems. The random variable X is then said to be smaller than the random variable Y in the

(i) usual stochastic order (denoted by X �st Y) if

F̄(x) ≤ Ḡ(x) for all x ≥ 0;
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(ii) hazard rate order (denoted by X �hr Y ) if

Ḡ(x)
F̄(x)

is non-decreasing in x ≥ 0,

or equivalently, if hX(x) ≥ hY(x) for all x ≥ 0;
(iii) reversed hazard rate order (denoted by X �rh Y) if

G(x)
F(x)

is non-decreasing in x > 0,

or equivalently, if h̃X(x) ≤ h̃Y(x) for all x > 0;
(iv) likelihood ratio order (denoted by X �lr Y) if

g(x)/ f (x) is non-decreasing in x ≥ 0;

(v) relative hazard rate order (denoted by X �c Y) if

hX(x)
hY(x)

is non-decreasing in x ≥ 0;

(vi) relative reversed hazard rate order (denoted by X �b Y) if

h̃X(x)
h̃Y(x)

is non-increasing in x ≥ 0.

Some stochastic orders in Definition 1 are connected to each other. In this regard,
X �lr Y implies X �hr Y and X �lr Y also implies X �rh Y. Furthermore, X �hr Y gives
X �st Y and X �rh Y yields X �st Y. For further relations and properties of the stochastic
orders �lr,�hr,�rh and �st, we refer the reader to Shaked and Shanthikumar [5]. For more
descriptions of the relative order �c, we refer the reader to Kalashnikov and Rachev [21]
and Sengupta and Deshpande [22]. For further properties of the relative order �b, the
reader can see Rezaei et al. [23].

Table 1. Summary of semiparametric models with their distributional characteristics.

Model sf cdf pdf

POR αF̄(t)
1− ᾱF̄(t)

F(t)
1− ᾱF̄(t)

α f (t)
(1− ᾱF̄(t))2

PHR F̄λ(t) 1− F̄λ(t) λF̄λ−1(t) f (t)

PRHR 1− Fβ(t) Fβ(t) βFβ−1(t) f (t)

MPHR αF̄λ(t)
1− ᾱF̄λ(t)

1− F̄λ(t)
1− ᾱF̄λ(t)

λαF̄λ−1(t)
(1− ᾱF̄λ(t))2 f (t)

MPRHR 1− Fβ(t)
1− ᾱFβ(t)

αFβ(t)
1− ᾱFβ(t)

βαFβ−1(t)
(1− ᾱFβ(t))2

f (t)

3. Main Results

In this section, we present the main results of the paper, which include two main
preservation properties. The preservation property of the relative hazard rate order under
the setting of the MPHR model is studied. The preservation property of the relative reversed
hazard rate order under the setting of the MPRHR model is also investigated. The proofs
of the main theorems are moved to Appendix A.
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3.1. Results on Relative Orderings of MPHR Distributions

In this section, we obtain a relative ordering property in the MPHR model according
to the relative hazard rate order. We will consider the MPHR model in two settings where
two sets of parameters α = (α1, α2) and λ = (λ1, λ2), which are possibly different, are
assigned and the possibly different baseline sfs F̄ and Ḡ are also taken into account. Finding
conditions on α and β and also conditions on F̄ and Ḡ to establish the preservation of
the relative hazard rate ordering property in the MPHR model is the main objective of
this section.

Before stating the next result we introduce some notation. Let X0 and Y0 have pdfs f and
g and sfs F̄ and Ḡ, respectively, and, further, X1∼MPHR(α1; λ1; F̄) and Y1∼MPHR(α2; λ2; Ḡ).
Then, using (17), the sfs of X1 and Y1, which are denoted by F̄(x; α1, λ1) and Ḡ(x; α2, λ2),
respectively, can be written as follows:

F̄(x; α1, λ1) =
α1 × F̄λ1(x)

1− ᾱ1 F̄λ1(x)
and Ḡ(x; α2, λ2) =

α2 × Ḡλ2(x)
1− ᾱ2Ḡλ2(x)

. (19)

Now, let us denote by f (·; α1, λ1) and g(·; α2, λ2) the pdfs of X1 and Y1, which can be
obtained by taking derivatives of the cdfs in (19) as follows:

f (x; α1, λ1) =
λ1α1 F̄λ1−1(x)
(1− ᾱ1 F̄λ1(x))2 f (x) and g(x; α2, λ2) =

λ2α2Ḡλ2−1(x)
(1− ᾱ2Ḡλ2(x))2 g(x). (20)

Appealing to (19) together with (20), the hazard rate function of X1 and the hazard rate
function of Y1 are acquired as:

h(x; α1, λ1) =
h(x)

Φ(F̄(x); α1, λ1)
and s(x; α2, λ2) =

s(x)
Φ(Ḡ(x); α2, λ2)

(21)

where h(·) and s(·) are the hazard rate functions of X0 and Y0, respectively, and the function
Φ(u; α, λ) is given by

Φ(u; α, λ) =
1
λ
(1− ᾱuλ), u ∈ [0, 1].

We define here two measures of the relative hazard rates of Y0 and X0 with hazard
rate functions s(·) and h(·), respectively. Let us denote two limiting points of the hazard
rate ratio s(t)

h(t) as follows:

η0 := lim
t→0+

s(t)
h(t)

and η1 := lim
t→+∞

s(t)
h(t)

.

Theorem 1. Let X0 and Y0 have sfs F̄ and Ḡ, respectively. Let X1∼MPHR(α1; λ1; F̄) and
Y1∼MPHR(α2; λ2; Ḡ), where αi ∈ [0, 1] and λi > 0 for every i = 1, 2. Let M(α, λ, η0) ≥ 0 be a
function of α = (α1, α2), λ = (λ1, λ2) and η0, such that

M(α, λ, η0) := sup
u∈[0,1]

(
u−λ2η0 − ᾱ2

u−λ1 − ᾱ1

)
.

If
ᾱ2

ᾱ1
.
λ2

λ1
η1 ≥ M(α, λ, η0)

then
X0 �c Y0 ⇒ X1 �c Y1. (22)
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Remark 1. In the context of Theorem 1, the obtained result is immediately followed when α2 ≤ 1
and α1 ≥ 1. To prove this claim, note that if α2 ≤ 1 and α1 ≥ 1, then, for all t ≥ 0 and for every
λi > 0, i = 1, 2, one has

Ḡ(t)
Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
≤ 0 and F̄(t)

Φ′(F̄(t); α1, λ1)

Φ(F̄(t); α1, λ1)
≥ 0.

Therefore, the parenthetical statement on the right-hand side of the inequality given in (A1) is
non-positive. Thus, it is straightforward that if α2 ≤ 1, α1 ≥ 1 and X0 �c Y0, then X1 �c Y1. In
this case, the additional supremum condition in Theorem 1 can be omitted.

The following theorem states another setting for the parameters of two MPHR distri-
butions so that the result of Theorem 1 is obtained under a different condition.

Theorem 2. Let X0 and Y0 have sfs F̄ and Ḡ, respectively. Let X1∼MPHR(α1; λ1; F̄) and
Y1∼MPHR(α2; λ2; Ḡ), where αi ∈ (1,+∞) and λi > 0 for every i = 1, 2. Let m(α, λ, η1) ≥ 0
be a function of α = (α1, α2), λ = (λ1, λ2) and also η1 such that

m(α, λ, η1) := inf
u∈[0,1]

(
u−λ2η1 − ᾱ2

u−λ1 − ᾱ1

)
.

If
α2 − 1
α1 − 1

.
λ2

λ1
η0 ≤ m(α, λ, η1)

then
X0 �c Y0 ⇒ X1 �c Y1. (23)

3.2. Results on Relative Orderings of MPRHR Distributions

In this section, we investigate the relative reversed hazard rate ordering property in
two MPRHR models with possibly different sets of parameters (α, β), where α = (α1, α2)
and β = (β1, β2), and also under possibly different baseline distributions F and G.

We start by introducing some notation. Let X0 and Y0 have pdfs f and g with
underlying cdfs F and G, respectively. Let us assume that X?

1∼MPRHR(α1; β1; F) and
Y?

1∼MPRHR(α2; β2; G) and denote them by F?(·; α1, β1) and G?(·; α2, β2). Then, using (18),
we have

F?(x; α1, β1) =
α1 × Fβ1(x)

1− ᾱ1Fβ1(x)
and G?(x; α2, β2) =

α2 × Gβ2(x)
1− ᾱ2Gβ2(x)

. (24)

Using (24), the pdfs of X?
1 and Y?

1 (signified by f ?(·; α1, β1) and g?(·; α2, β2)) are ac-
quired as below:

f ?(x; α1, β1) =
β1 × α1 × Fβ1−1(x)
(1− ᾱ1Fβ1(x))2 f (x) and g?(x; α2, β2) =

β2 × α2 × Gβ2−1(x)
(1− ᾱ2Gβ2(x))2 g(x). (25)

By dividing the pdfs in (25) into the cdfs given in (24), the reversed hazard rate function
of X1 and the reversed hazard rate function of Y1 are derived as follows:

h̃(x; α1, β1) =
h̃(x)

Ψ(F(x); α1, β1)
and s̃(x; α2, β2) =

s̃(x)
Ψ(G(x); α2, β2)

(26)

where h̃(·) and s̃(·) are the reversed hazard rate functions of X0 and Y0, respectively, and
further, the function Ψ(u; α, β) is defined as

Ψ(u; α, β) =
1
β
(1− ᾱuβ), u ∈ [0, 1].
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Now, let us define two measures of relative reversed hazard rates of Y0 and X0 having
reverenced hazard rate functions s̃(·) and h̃(·), respectively. The limiting points of the

reversed hazard rate ratio h̃(t)
s̃(t) is as follows:

η?
0 := lim

t→0+

h̃(t)
s̃(t)

and η?
1 := lim

t→+∞

h̃(t)
s̃(t)

.

Theorem 3. Let X0 and Y0 have cdfs F and G, respectively. Let X?
1∼MPRHR(α1; β1; F) and

Y?
1∼MPRHR(α2; β2; G), where αi ∈ [0, 1] and βi > 0 for every i = 1, 2. Suppose that

m?(α, β, η?
1 ), which is a non-negative function of (α, β, η?

1 ) is defined as

m?(α, β, η?
1 ) := inf

u∈[0,1]

u
− β1

η?1 − ᾱ1

u−β2 − ᾱ2

.

If
ᾱ1

ᾱ2
× β1

β2
× η?

0 ≤ m?(α, β, η?
1 )

then
X0 �b Y0 ⇒ X?

1 �b Y?
1 . (27)

Remark 2. In the setting of Theorem 3, the derived result can be acquired when α2 ≤ 1 and α1 ≥ 1.
To verify this claim, one needs to observe that if α2 ≤ 1 and α1 ≥ 1, then, for all t > 0 and for
βi > 0, i = 1, 2, we have

F(t)
Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
≥ 0 and G(t)

Ψ′(G(t); α2, β2)

Ψ(G(t); α2, β2)
≤ 0.

Thus, the parenthetical statement on the right-hand side of the inequality given in (A7) is clearly
non-negative. Hence, it is not hard to see that if α2 ≤ 1, α1 ≥ 1 and X0 �b Y0, then X∗1 �b Y∗1 . In
this setting, the additional infimum condition in Theorem 3 can be removed.

In the next theorem, we obtain the result of Theorem 3 under different conditions.

Theorem 4. Let X0 and Y0 follow cdfs F and G, respectively. Suppose that X?
1∼MPRHR(α1; β1; F)

and Y?
1∼MPRHR(α2; β2; G), where αi ∈ (1,+∞) and βi > 0 for every i = 1, 2. Consider

M?(α, β, η?
0 ) as a non-negative function of (α, β, η?

0 ) defined as

M?(α, β, η?
0 ) := sup

u∈[0,1]

(
u−β1×η?0 − ᾱ1

u−β2 − ᾱ2

)
.

If
α1 − 1
α2 − 1

× β1

β2
× η?

1 ≥ M?(α, β, η?
0 )

then
X0 �b Y0 ⇒ X?

1 �b Y?
1 . (28)

4. Examples and Simulation Analysis

In this section, we provide examples to show that the results of Theorems 1–4 are
fulfilled. We also present some numerical studies to verify that the theorems and examples
are valid, as shown in a simulation analysis. The numerical computations are moved to
Appendix A.

In the following example, we show that the result of Theorem 1 is applicable.
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Example 1. Let us write X∼W(c, d) when X follows the Weibull distribution with shape parameter
c and scale parameter d, with c, d > 0, having sf F̄X(t) = exp(−(dt)c), t ≥ 0. Suppose that
X0∼W(3, 1) and Y0∼W(3, 2). Assume that X1∼MPHR(α1; λ1; F̄) and Y1∼MPHR(α2; λ2; Ḡ)
with α1 = 0.8, α2 = 0.1, λ1 = 10 and λ2 = 1 and, further, F̄(t) = exp(−t3) and Ḡ(t) =
exp(−8t3). We can observe that X0 and Y0 have hrs h(t) = 3t2 and s(t) = 24t2. Therefore,

s(t)
h(t)

= 8, η0 = η1 = 8.

Hence, X0 �c Y0. We can observe that

M(α, λ, η0) := sup
u∈[0,1]

(
u−8 − 0.9
u−10 − 0.2

)
= 0.56812,

and, on the other hand, we can see that

ᾱ2

ᾱ1
.
λ2

λ1
η1 = 3.6.

Thus, obviously, ᾱ2
ᾱ1

. λ2
λ1

> M(α, λ, η0), and using Theorem 1 we conclude that X1 �c Y1. In

Figure 1, the graph of s(t;α2,λ2)
s(t;α1,λ1)

is plotted to exhibit that it is non-increasing in t ∈ (0, 4).
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Figure 1. Plot of the hazard rate ratio s(t;α2,λ2)
h(t;α1,λ1)

in Example 1 for α1 = 0.8, α2 = 0.1, λ1 = 10 and λ2 = 1
when t ∈ (0, 4).

We conduct here a simulation study to empirically ascertain that the result of Theorem 1
is valid. The parameters of the MPHR distributions are chosen exactly as in Example 1, i.e.,
(α1, λ1) = (0.8, 10) and (α2, λ2) = (0.1, 1), to fulfill the ordering result from the perspective of
simulation analysis. We suppose that X0 ∼W(3, 1) and Y0∼W(3, 2), exactly as in Example 1.
We assume X and Y follow MPHR distributions with cdfs F(t; α1, λ1) and G(t; α2, λ2) and
right inverse functions F−1(u; α1, λ1) and G−1(u; α2, λ2), respectively. We also denote by
F−1 and G−1, the right inverse functions associated with F and G, the cdfs of X0 and Y0,
respectively. On applying the runif function in R, we generate u1, u2, . . . , un∼U(0, 1), where
U(0, 1) denotes the uniform distribution on (0, 1). We utilize the inverse transform technique
to produce xi as
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xi = F−1(ui; α1, λ1)

= F−1

(
1− λ1

√
1− ui

α1 + uiᾱ1

)

= 3

√
− 1

λ1
× ln

(
1− ui

α1 + uiᾱ1

)
, i = 1, 2, . . . , n,

by which n samples from F(t; α1, λ1) are generated when (α1, λ1) = (0.8, 10), i.e., xi∼MPHR
(0.8; 10; F̄) with F̄(t) = exp(−t3). In a similar manner, one can produce yi as

yi = G−1(ui; α2, λ2)

= G−1

(
1− λ2

√
1− ui

α2 + uiᾱ2

)

= 3

√
− 8

λ2
× ln

(
1− ui

α2 + uiᾱ2

)
, i = 1, 2, . . . , n,

which provides n samples from G(t; α2, λ2) where (α2, λ2) = (0.1, 1), i.e., yi∼MPHR(0.1; 1; Ḡ)
in which Ḡ(t) = exp(−8t3). Using the produced samples, we estimate (α1, λ1) and (α2, λ2)
using the maximum likelihood method to obtain a maximum likelihood estimation (MLE) of
(αi, λi), which is denoted by (α̂i, λ̂i), i = 1, 2. The estimations will be acquired by solving the
likelihood equations. The MLE (α̂1, λ̂1) is derived by solving the next system of equations in
terms of (α1, λ1) : 

n
λ1
−

n

∑
i=1

x3
i − 2ᾱ1

n

∑
i=1

x3
i e−λ1x3

i

(1− ᾱ1 × e−λ1x3
i )

= 0,

n
α1
− 2

n

∑
i=1

e−λ1x3
i

(1− ᾱ1 × e−λ1x3
i )

= 0.

(29)

The MLE (α̂2, λ̂2) is also obtained by solving the equations based on (α2, λ2):
n
λ2
− 8

n

∑
i=1

y3
i − 16ᾱ2

n

∑
i=1

y3
i e−8λ2y3

i

(1− ᾱ2 × e−8λ2y3
i )

= 0,

n
α2
− 2

n

∑
i=1

e−8λ2y3
i

(1− ᾱ2 × e−8λ2y3
i )

= 0.

(30)

To solve the systems of equations given in (29) and in (30), we used the package nleqslv in
R. In Table A1 in Appendix A, we report the MLEs of the parameters of the MPHR model
numerically under different sample sizes and also derive the amounts of MLE of s(t;α2,λ2)

h(t;α1,λ1)

for different selected ages t. It is shown that the estimated hazard rate ratio for the two
choices made in Example 1 is non-increasing in t, as was expected.

The following example provides a situation where the result of Theorem 2 is applicable.

Example 2. Suppose that X0 follows a gamma distribution with sf F̄(t) = (1+ 3t) exp(−3t), t ≥
0 and Y0 has sf Ḡ(t) = (1 + 3t)2 exp(−6t), t ≥ 0. It is easily seen that the hrs of X0 and Y0 are
h(t) = 9t

1+3t and s(t) = 18t
1+3t , respectively. Therefore,

η0 = η1 =
s(t)
h(t)

= 2.
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Now, since s(t)
h(t) is non-increasing in t, then X0 �c Y0. We assume that X1∼MPHR(α1; λ1; F̄) and

Y1∼MPHR(α2; λ2; Ḡ) with α1 = 10, α2 = 3, λ1 = 4 and λ2 = 2. It is observable that

m(α, λ, η1) := inf
u∈[0,1]

(
u−4 + 2
u−4 + 9

)
= 0.3,

and, in parallel, it is seen that
α2 − 1
α1 − 1

× λ2

λ1
η0 =

2
9

.

Therefore, clearly, α2−1
α1−1 ×

λ2
λ1

η0 < m(α, λ, η1), and thus, an application of Theorem 2 concludes that

X1 �c Y1. In Figure 2, the graph of s(t;α2,λ2)
s(t;α1,λ1)

is plotted to indicate that this ratio is non-increasing
in t ∈ (0, 4).
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Figure 2. Plot of the hazard rate ratio s(t;α2,λ2)
h(t;α1,λ1)

in Example 2 for α1 = 10, α2 = 3, λ1 = 4 and λ2 = 2
when t ∈ (0, 4).

As reported in Table A2 in Appendix A, the values of the MLEs of (αi, λi) are
available under different sample sizes by simulating data from MPHR(α1; λ1; F̄) and
MPHR(α2; λ2; Ḡ), with (αi, λi), i = 1, 2 and F̄ and Ḡ exactly as chosen in Example 2. We
additionally report the values of the MLE of s(t;α2,λ2)

h(t;α1,λ1)
for some selected ages t. It is indi-

cated that, for the two candidate models in Example 2, the estimated hazard rate ratio is
non-increasing in t, as was claimed.

Next, we make use of Theorem 3 to show that the result is fulfilled.

Example 3. Let us assume X ∼ IW(c, d) whenever X has an inverse Weibull distribution with
shape parameter c and scale parameter d, where c > 0 and also d > 0. Then, X has cdf FX(t) =

exp(−
(

d
t

)c
) for t > 0. We assume that X0∼IW(2, 1) and Y0∼IW(2, 3). Further, we suppose

that X∗1∼MPRHR(α1; β1; F) and Y∗1∼MPRHR(α2; β2; G) with α1 = 0.25, α2 = 0.5, β1 = 2

and β2 = 18 so that F(t) = exp(−
( 3

t
)2
) is the cdf of X0 and G(t) = exp(−

(
1
t

)2
). It can be

readily shown that X0 and Y0 have rhrs h̃(t) = 2
t3 and s̃(t) = 18

t3 , respectively. Thus,

h̃(t)
s̃(t)

=
1
9

, η?
0 = η?

1 =
1
9

.

Consequently, X0 �b Y0. One can easily check that

m∗(α, β, η?
1 ) := inf

u∈[0,1]

(
u−18 − 0.75
u−18 − 0.5

)
= 0.5,
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and, simultaneously, one has
ᾱ1

ᾱ2
× β1

β2
η∗0 ' 0.00823.

Therefore, one realizes that ᾱ1
ᾱ2
× β1

β2
η∗0 < m∗(α, β, η?

1 ), and using Theorem 3, we deduce that

X?
1 �b Y?

1 . In Figure 3, the graph of s̃(t;α2,β2)

h̃(t;α1,β1)
is exhibited to indicate that it is non-decreasing in

t ∈ (0, 4).
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Figure 3. Plot of the reversed hazard rate ratio s̃(t;α2,β2)

h̃(t;α1,β1)
in Example 3 for α1 = 0.25, α2 = 0.5, β1 = 2

and β2 = 18 when t ∈ (0, 4).

We proceed now with another simulation study to examine the correctness of the
result of Theorem 3. The parameters of the MPRHR distributions are selected as (α1, β1) =
(0.25, 2) and (α2, β2) = (0.5, 18) and also assume that X0 ∼ IW(2, 1) and Y0∼IW(2, 3), ex-
actly as in Example 3. It is supposed that X and Y follow cdfs F?(t; α1, β1) and G?(t; α2, β2)
and denote their right inverse functions by F?,−1(u; α1, β1) and G?,−1(u; α2, β2), respectively.
We generate u1, u2, . . . , un∼U(0, 1). The inverse transform technique is implemented to
simulate xi as

xi = F?,−1(ui; α1, β1)

= F−1
(
−β1

√
α1

u
+ ᾱ1

)
=

√
9β1

ln
( α1

u + ᾱ1
) , i = 1, 2, . . . , n,

from which one obtains n samples from F?(t; α1, λ1) so that (α1, β1) = (0.25, 2), that is,
xi∼MPRHR(0.25; 2; F) with F(t) = exp(− 9

t2 ). Analogously, to produce yi, one has

yi = G?,−1(ui; α2, β2)

= G−1
(
−β2

√
α2

u
+ ᾱ2

)
=

√
β1

ln
( α1

u + ᾱ1
) , i = 1, 2, . . . , n,

through which n samples from G?(t; α2, β2) are simulated in which (α2, β2) = (0.5, 18), i.e.,
yi∼MPRHR(0.5; 18; G), where G(t) = exp(− 1

t2 ). On the basis of the simulated samples,
we want to find the MLEs of (α1, β1) and (α2, β2), which are denoted by (α̂i, β̂i), i = 1, 2.
The MLE (α̂1, β̂1) is derived by solving, with respect to (α1, β1), the system of equations:
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

n
β1
− 9

n

∑
i=1

1
x2

i
− 18ᾱ1

n

∑
i=1

e
− 9β1

x2
i

(1− ᾱ1 × e
− 9β1

x2
i )

= 0,

n
α1
− 2

n

∑
i=1

e
− 9β1

x2
i

(1− ᾱ1 × e
− 9β1

x2
i )

= 0.

(31)

The MLE (α̂2, β̂2) is also acquired by solving, in terms of (α2, β2), the equations:

n
β2
−

n

∑
i=1

1
y2

i
− 2ᾱ2

n

∑
i=1

e
− β2

y2
i

(1− ᾱ2 × e
− β2

y2
i )

= 0,

n
α2
− 2

n

∑
i=1

e
− 9β2

y2
i

(1− ᾱ2 × e
− β2

y2
i )

= 0.

(32)

We gathered in Table A3 in Appendix A the values of the MLEs of the parameters of the
MPRHR models under different sample sizes, and also obtain the MLE of s̃(t;α2,β2)

h̃(t;α1,β1)
for

some t. It is acknowledged that the estimated reversed hazard rate ratio in the context of
Example 3 is non-decreasing in t, as shown theoretically.

The following example is provided to examine the result of Theorem 4.

Example 4. Let X0 have cdf F(t) = (1− exp(−θ.t))
1
3 , t ≥ 0 and let Y0 have an exponential

distribution with cdf G(t) = 1− exp(−θ.t), t ≥ 0, where θ > 0 is a common parameter in F and
G. Note that h̃(t) = 1

3 .s̃(t) for all t > 0, where h̃ is the rhr of X0 and s̃ is the rhr of Y0, respectively.
Hence, η?

0 = η∗1 = 1
3 , and also, clearly, X0 �b Y0. Suppose that X∗1∼MPRHR(α1, β1, F) and

Y∗1∼MPRHR(α2, β2, G) such that α1 = 5, α2 = 2, β1 = 5 and β2 = 2. In view of the notations
and definitions in Theorem 4, we have

M∗(α, β, η∗0 ) := sup
u∈[0,1]

(
u−

5
3 + 4

u−2 + 1

)
= 2.5,

and on the other hand, one has
α1 − 1
α2 − 1

× β1

β2
× η∗1 =

10
3

.

Thus, it is obvious that α1−1
α2−1 ×

β1
β2
× η∗1 > M∗(α, β, η∗0 ). Therefore, Theorem 4 is applicable, which

provides that X∗1 �b Y∗1 . In Figure 4, the curve of s̃(t;α2,β2)

h̃(t;α1,β1)
when θ = 2, is plotted to verify that it

is non-decreasing in t ∈ (0, 4).

We have listed in Table A4 in Appendix A the values of the MLEs of (αi, βi), i = 1, 2 under
various sample sizes. We simulated data from MPRHR(α1; β1; F) and MPRHR(α2; β2; G) so
that the parameters (αi, βi), i = 1, 2 together with the baseline cdfs F and G are chosen exactly
as in Example 4. Further, we report the values of the MLE of s̃(t;α2,β2)

h̃(t;α1,β1)
for some selected times

t. It is deduced that the estimated reversed hazard rate ratio of the two MPRHR distributions
in Example 4 is non-decreasing in t. This proves the result of Theorem 4.
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Figure 4. Plot of the reversed hazard rate ratio s̃(t;α2,β2)

h̃(t;α1,β1)
in Example 4 for α1 = 5, α2 = 2, β1 = 5,

β2 = 2 and θ = 2 when t ∈ (0, 4).

Remark 3. The examples presented in this section show that the results obtained apply exclusively
to exponential laws. The exponential family of distributions is a very important class of distributions.
For example, in Bayesian statistics a prior distribution is multiplied by a likelihood function and
then normalised to produce a posterior distribution. In the case of a likelihood that belongs to an
exponential family, there exists a conjugate prior, which is often also in an exponential family. There
are many standard lifetime distributions that belong to this family of distributions. And, in general,
the move to semiparametric models is nothing new in statistics (see, for example, Bayesian methods,
which can provide more fundamental results in reliability theory from this point of view). However,
the two semiparametric models, namely, the MPHR model and MPRHR model, introduced by
Balakrishnan et al. [38], have been found to be applied in different contexts, including reliability and
survival analysis. This is because these models encompass three reputable classes of models, namely,
the Marshall–Olkin or POR model, the PHR model and the PRHR model. These models have so
many applications in reliability and survival analysis (see, e.g., Carree [41]).

5. Concluding Remarks

In this paper, we have examined two recently proposed semiparametric models,
namely, the MPHR model and the MPRHR model. As shown by Balakrishnan et al. [38],
these models include as special cases three important models in the literature, namely,
the proportional hazard rate model, the proportional reversed hazard rate model and the
proportional odds ratio model. Because these three models have found many applications in
the literature so far and because they are available to the two newly defined semiparametric
models, an analytical study of the latter models is needed because they cover and generalize
the previous studies. The study of stochastic orderings for model comparisons has been
carried out in the literature in various contexts, including reliability theory, survival analysis,
actuarial analysis, risk theory, biostatistics and many other areas. Stochastic orderings
are very useful potential tools for model analysis. For example, stochastic orders are very
useful for detecting underestimation and overestimation problems in models. Stochastic
orderings are usually recognized as tools for making inferences about models without data.
The ordering properties of probability distributions reveal other aspects of the distribution
or a family of distributions that can be used for various purposes.

The study conducted in this paper addresses situations in which there is a relative
ordering property between two candidates from the MPHR family and, moreover, two
candidates from the MPRHR family of semiparametric distributions. In general, the base
distributions were assumed to be unknown but to satisfy a relative ordering property
according to either the relative hazard rate order (�c) or the relative reversed hazard
rate order (�b). It was assumed that the external parameters of the candidate models
were generally different. Sufficient conditions were established for the conservation of the
relative hazard rate order in the MPHR model and also for the conservation of the relative
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reversed hazard rate order in the MPRHR model. In the literature, for the preservation of
the stochastic order in some scenarios, some stochastic orders are set as assumptions, which
is a very strong condition. However, the conditions we found and presented in our work
involve comparisons between two numbers, one of which is the supremum or infimum of
a function and the other a function of the parameters of the models. With some examples
we have shown that even very well-known standard statistical distributions that belong to
the exponential family of distributions, such as the Weibull, Gamma or reversed Weibull
distributions, can be used as the basic distribution in the MPHR and MPRHR model.

In many studies, different reliability models are considered with different intensities
or hazard rate (reversed hazard rate) functions; moreover, there are even studies with
compound and generalized intensities that have a discontinuity and atoms, as well as
lattice distributions (see, for example, Kalimulina and Zverkina [42] and Kalimulina and
Zverkina [43]). As can be seen from the graphs, the intensities considered in this paper are
only continuous functions. This is a well-studied class of models (essentially exponential,
generally a Weibull distribution). However, generalization of the results of this paper for
more complicated intensities can be considered in future work.

In a future study, we can also consider stochastic comparisons in the MPHR and
MPRHR models according to other stochastic orders, such as the likelihood ratio order
(�lr), hazard rate order (�hr), reversed hazard rate order (�rh) and the usual stochastic
order (�st). In the context of the MPHR model, in view of (20), when X1 and Y1 follow the
pdfs f (x; α1, λ1) and g(x; α2, λ2), respectively, then X0 �lr Y0 implies X1 �lr Y1 if

Φ1(Ḡ(t); α2, λ2)

Φ1(F̄(t); α1, λ1)
is non-decreasing in t ≥ 0,

where Φ1(u; α, λ) := λ.α.uλ−1

(1−ᾱ.uλ)2 . In addition, in the context of the MPHR model, when

X1 and Y1 follow the sfs F̄(x; α1, λ1) and Ḡ(x; α2, λ2), respectively, as given in (19), then
X0 �st Y0 implies X1 �st Y1 if

Φ2(u; α1, λ1) ≤ Φ2(u; α2, λ2), for all u ∈ [0, 1],

where Φ2(u; α, λ) = α.uλ

1−ᾱ.uλ . In parallel, when the MPHR model is under consideration,
as X1 and Y1 have hrs h(x; α1, λ1) and s(x; α2, λ2), respectively, as formulated in (21), then
X0 �hr Y0 yields X1 �hr Y1 if

inf
t≥0

(
Φ(Ḡ(t); α2, λ2)

Φ(F̄(t); α1, λ1)

)
≥ 1,

where Φ is defined as in (21). On the other hand, concerning the MPRHR model, by
appealing to (25) and assuming that X∗1 and Y∗1 have pdfs f ?(x; α1, β1) and g∗(x; α2, β2),
respectively, then X0 �lr Y0 implies X∗1 �lr Y∗1 if

Ψ1(G(t); α2, β2)

Ψ1(F(t); α1, β1)
is non-decreasing in t ≥ 0,

where Ψ1(u; α, β) := β.α.uβ−1

(1−ᾱ.uβ)2 . Moreover, by considering the MPRHR model, as X∗1 and Y∗1
follow cdfs F∗(x; α1, β1) and G∗(x; α2, β2), respectively, as provided in (24), then X0 �st Y0
implies X∗1 �st Y∗1 if

Ψ2(u; α1, β1) ≥ Ψ2(u; α2, β2), for all u ∈ [0, 1],

where Ψ2(u; α, β) = α.uβ

1−ᾱ.uβ . Furthermore, when the MPRHR model is regarded, so that X?
1

and Y∗1 have rhrs h̃(x; α1, β1) and s̃(x; α2, β2), respectively, as written in (26), then X0 �rh Y0
yields X∗1 �rh Y∗1 if
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sup
t≥0

(
Ψ(G(t); α2, β2)

Ψ(F(t); α1, β1)

)
≥ 1,

in which Ψ is defined earlier in equations (26). The analogous study can also be carried
out in the context of other stochastic orders such as the dispersive order, star order and
super-additive order.
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Appendix A

Proof of Theorem 1. It suffices to prove that s(t;α2,λ2)
h(t;α1,λ1)

is non-increasing in t ≥ 0. Since

s(t; α2, λ2)

h(t; α1, λ1)
=

s(t)
h(t)
× Φ(F̄(t); α1, λ1)

Φ(Ḡ(t); α2, λ2)

and, by assumption, s(t)
h(t) is non-increasing in t ≥ 0, it is sufficient to show that Φ(F̄(t);α1,λ1)

Φ(Ḡ(t);α2,λ2)

is non-increasing in t ≥ 0, which holds if and only if,

∂

∂t
ln
(

Φ(F̄(t); α1, λ1)

Φ(Ḡ(t); α2, λ2)

)
≤ 0, for all t ≥ 0.

Denote Φ′(u; α, λ) = ∂
∂u Φ(u; α, λ). We have:

∂

∂t
ln
(

Φ(F̄(t); α1, λ1)

Φ(Ḡ(t); α2, λ2)

)
= g(t)× Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
− f (t)× Φ′(F̄(t); α1, λ1)

Φ(F̄(t); α1, λ1)

= s(t)Ḡ(t)
Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
− h(t)F̄(t)

Φ′(F̄(t); α1, λ1)

Φ(F̄(t); α1, λ1)

≤ h(t)×
(

η1 × Ḡ(t)
Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
− F̄(t)

Φ′(F̄(t); α1, λ1)

Φ(F̄(t); α1, λ1)

)
, (A1)

where the last inequality follows from the fact that, for αi ∈ [0, 1] and λi > 0,

Ḡ(t)
Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
≤ 0, for all t ≥ 0,

and that X0 �c Y0 yields
s(t)
h(t)

≥ lim
t→+∞

s(t)
h(t)

= η1,

as it implies that s(t) ≥ η1 × h(t) for all t ≥ 0. The right-hand side of the inequality in (A1)
is negative if and only if,

η1 ≥
γ(F̄(t); α1, λ1)

γ(Ḡ(t); α2, λ2)
for all t ≥ 0, (A2)
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in which

γ(u; α, λ) :=
uΦ′(u; α, λ)

Φ(u; α, λ)

=
(α− 1)× λ

u−λ − ᾱ
, for all u ∈ [0, 1].

The inequality in (A2) is satisfied if

η1 ≥ sup
t≥0

(
γ(F̄(t); α1, λ1)

γ(Ḡ(t); α2, λ2)

)

= sup
t≥0

 (α1−1).λ1
F̄−λ1 (t)−ᾱ1
(α2−1)×λ2
Ḡ−λ2 (t)−ᾱ2


=

ᾱ1

ᾱ2
× λ1

λ2
× sup

t≥0

(
Ḡ−λ2(t)− ᾱ2

F̄−λ1(t)− ᾱ1

)
. (A3)

On the other hand, since X0 �c Y0 further implies that

s(t)
h(t)

≤ lim
t→0+

s(t)
h(t)

= η0;

thus, s(t) ≤ η0h(t), for all t ≥ 0. Hence, using (7),

Ḡ(t) = exp{−
∫ t

0
s(x)dx}

≥ exp{−η0

∫ t

0
h(x)dx} = F̄η0(t).

Thus, Ḡ−λ2(t) ≤ F̄−λ2η0(t) for all t ≥ 0, which further implies that

Ḡ−λ2(t)− ᾱ2

F̄−λ1(t)− ᾱ1
≤ F̄−λ2η0(t)− ᾱ2

F̄−λ1(t)− ᾱ1
, for all t ≥ 0.

Therefore, the inequality in (A3) is satisfied if

η1 ≥
ᾱ1

ᾱ2
× λ1

λ2
× sup

t≥0

(
F̄−λ2η0(t)− ᾱ2

F̄−λ1(t)− ᾱ1

)
=

ᾱ1

ᾱ2
× λ1

λ2
×M(α, λ, η0),

or equivalently if
ᾱ2

ᾱ1
× λ2

λ1
× η1 ≥ M(α, λ, η0).

Proof of Theorem 2. Similarly, as in the proof of Theorem 1, we need to demonstrate that
Φ(F̄(t);α1,λ1)
Φ(Ḡ(t);α2,λ2)

is non-increasing in t ≥ 0, which holds if and only if,

∂

∂t
ln
(

Φ(F̄(t); α1, λ1)

Φ(Ḡ(t); α2, λ2)

)
≤ 0, for all t ≥ 0.
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Analogously, as in the proof of Theorem 1, one has

∂

∂t
ln
(

Φ(F̄(t); α1, λ1)

Φ(Ḡ(t); α2, λ2)

)
= s(t)Ḡ(t)

Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
− h(t)F̄(t)

Φ′(F̄(t); α1, λ1)

Φ(F̄(t); α1, λ1)

≤ h(t)×
(

η0 × Ḡ(t)
Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
− F̄(t)

Φ′(F̄(t); α1, λ1)

Φ(F̄(t); α1, λ1)

)
, (A4)

in which the last inequality follows because, for αi > 1 and λi > 0,

Ḡ(t)
Φ′(Ḡ(t); α2, λ2)

Φ(Ḡ(t); α2, λ2)
≥ 0, for all t ≥ 0,

and, moreover, X0 �c Y0 gives

s(t)
h(t)

≤ lim
t→0+

s(t)
h(t)

= η0,

which implies that s(t) ≤ η0.h(t) for all t ≥ 0. The right-hand side of the inequality in (A4)
is negative if and only if

η0 ≤
γ(F̄(t); α1, λ1)

γ(Ḡ(t); α2, λ2)
for all t ≥ 0, (A5)

in which γ(u; α, λ) = (α−1)×λ

u−λ−ᾱ
. The inequality in (A5) stands valid if

η0 ≤ inf
t≥0

(
γ(F̄(t); α1, λ1)

γ(Ḡ(t); α2, λ2)

)
=

α1 − 1
α2 − 1

× λ1

λ2
× inf

(
Ḡ−λ2(t)− ᾱ2

F̄−λ1(t)− ᾱ1

)
. (A6)

Moreover, since X0 �c Y0 provides that

s(t)
h(t)

≥ lim
t→+∞

s(t)
h(t)

= η1,

then, consequently, s(t) ≥ η1.h(t) for all t ≥ 0. Therefore, using (7), we obtain

Ḡ(t) = exp{−
∫ t

0
s(x)dx}

≤ exp{−η1

∫ t

0
h(x)dx} = F̄η1(t).

Thus, Ḡ−λ2(t) ≥ F̄−λ2η1(t), which in turn gives

Ḡ−λ2(t)− ᾱ2

F̄−λ1(t)− ᾱ1
≥ F̄−λ2η1(t)− ᾱ2

F̄−λ1(t)− ᾱ1
, for all t ≥ 0.

Therefore, the inequality in (A6) is fulfilled if

η0 ≤
α1 − 1
α2 − 1

× λ1

λ2
× inf

t≥0

(
F̄−λ2η1(t)− ᾱ2

F̄−λ1(t)− ᾱ1

)
=

α1 − 1
α2 − 1

× λ1

λ2
×m(α, λ, η1),
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which holds if and only if

α2 − 1
α1 − 1

× λ2

λ1
× η0 ≤ m(α, λ, η1).

Proof of Theorem 3. To prove (27), it is sufficient to establish that s̃(t;α2,β2)

h̃(t;α1,β1)
is non-decreasing

in t > 0. Following Equations (26), one has:

s̃(t; α2, β2)

h̃(t; α1, β1)
=

s̃(t)
h̃(t)
× Ψ(F(t); α1, β1)

Ψ(G(t); α2, β2)

and, due to assumption, s̃(t)
h̃(t)

is non-decreasing in t > 0. Thus, it is enough to prove that
Ψ(F(t);α1,β1)
Ψ(G(t);α2,β2)

is non-decreasing in t > 0. The latter statement is valid if and only if

∂

∂t
ln
(

Ψ(F(t); α1, β1)

Ψ(G(t); α2, β2)

)
≥ 0, for all t > 0.

We use the notation Ψ′(u; α, β) := ∂
∂u Ψ(u; α, β). We obtain

∂

∂t
ln
(

Ψ(F(t); α1, β1)

Ψ(G(t); α2, β2)

)
= f (t)× Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
− g(t)× Ψ′(G(t); α2, β2)

Ψ(G(t); α2, β2)

= h̃(t)F(t)
Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
− s̃(t)G(t)

Ψ′(G(t); α2, β2)

Ψ(G(t); α2, β2)

≥ s̃(t)×
(

η?
0 × F(t)

Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
− G(t)

Ψ′(G(t); α2, β2)

Ψ(G(t); α2, β2)

)
, (A7)

in which the last inequality is due to the fact that, for αi ∈ [0, 1] and βi > 0, whenever
i = 1, 2,

F(t)
Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
≤ 0, for all t > 0,

and, further, that X0 �b Y0 provides that

h̃(t)
s̃(t)

≤ lim
t→0+

h̃(t)
s̃(t)

= η+
0 ,

which further implies that h̃(t) ≤ η?
0 .s̃(t) for all t > 0. Note that the right-hand side in (A7)

is non-negative if and only if

η?
0 ≤

γ?(G(t); α2, β2)

γ?(F(t); α1, β1)
for all t > 0, (A8)

where the function γ?(·; α, β) is defined as below:

γ?(u; α, β) :=
uΨ′(u; α, β)

Ψ(u; α, β)

=
(α− 1)× β

u−β − ᾱ
, for all u ∈ [0, 1].
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Now, it is sufficient to observe that the inequality in (A8) is fulfilled if

η?
0 ≤ inf

t≥0

(
γ?(G(t); α2, β2)

γ?(F(t); α1, β1)

)

= inf
t≥0

 (α2−1)×β2
G−β2 (t)−ᾱ2

(α1−1)×β1
F−β1 (t)−ᾱ1


=

ᾱ2

ᾱ1
× β2

β1
× inf

t≥0

(
F−β1(t)− ᾱ1

G−β2(t)− ᾱ2

)
. (A9)

Note that, since X0 �b Y0 yields

s̃(t)
h̃(t)

≤ lim
t→+∞

s̃(t)
h̃(t)

= η?
1 ,

hence, s̃(t) ≤ η?
1 × h̃(t), for all t > 0. Consequently, for all t > 0, using the characterization

relation (11), one obtains:

F(t) = exp{−
∫ +∞

t
h̃(x)dx}

≤ exp{− 1
η?

1
×
∫ +∞

t
s̃(x)dx} = G

1
η?1 (t).

Thus, F−β1(t) ≥ G
− β1

η?1 (t) for all t > 0, which leads to

F−β1(t)− ᾱ1

G−β2(t)− ᾱ2
≥ G

− β1
η?1 (t)− ᾱ1

G−β2(t)− ᾱ2
for all t > 0.

As a result, the inequality in (A9) stands valid if

η?
0 ≤

ᾱ2

ᾱ1
× β2

β1
× inf

t≥0

G
− β1

η?1 (t)− ᾱ1

G−β2(t)− ᾱ2


=

ᾱ2

ᾱ1
× β2

β1
×m?(α, β, η?

1 ),

or, equivalently, if
ᾱ1

ᾱ2
× β1

β2
× η?

0 ≤ m?(α, β, η?
1 ).

Proof of Theorem 4. In order to verify the implication in (28), as in the proof of Theorem 3,
it suffices to show that

∂

∂t
ln
(

Ψ(F(t); α1, β1)

Ψ(G(t); α2, β2)

)
≥ 0, for all t > 0.

Analogously, as in the proof of Theorem 3, we can obtain

∂

∂t
ln
(

Ψ(F(t); α1, β1)

Ψ(G(t); α2, β2)

)
= h̃(t)F(t)

Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
− s̃(t)G(t)

Ψ′(G(t); α2, β2)

Ψ(G(t); α2, β2)

≥ s̃(t)×
(

η?
1 × F(t)

Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
− G(t)

Ψ′(G(t); α2, β2)

Ψ(G(t); α2, β2)

)
, (A10)
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where the last inequality is due to the fact that, for αi > 1 and βi > 0 for every i = 1, 2,

F(t)
Ψ′(F(t); α1, β1)

Ψ(F(t); α1, β1)
≥ 0, for all t > 0,

and, moreover, because X0 �b Y0,

h̃(t)
s̃(t)

≥ lim
t→+∞

h̃(t)
s̃(t)

= η+
1 ,

from which one obtains h̃(t) ≥ η?
1 × s̃(t) for all t > 0. Now, one can see that the right-hand

side in (A10) is non-negative if and only if

η?
1 ≥

γ?(G(t); α2, β2)

γ?(F(t); α1, β1)
for all t > 0, (A11)

where the function γ∗(·; α, β) is as defined in the proof of Theorem 3. It is now enough to
see that the inequality in (A11) is satisfied when

η?
1 ≥ sup

t≥0

(
γ?(G(t); α2, β2)

γ?(F(t); α1, β1)

)
=

α2 − 1
α1 − 1

× β2

β1
× sup

t≥0

(
F−β1(t)− ᾱ1

G−β2(t)− ᾱ2

)
. (A12)

Now observe that X0 �b Y0 gives

s̃(t)
h̃(t)

≥ lim
t→0+

s̃(t)
h̃(t)

=
1

η?
0

.

Therefore, s̃(t) ≥ (η?
0 )
−1 × h̃(t) for all t > 0. Hence, for all t > 0, by appealing to

relationship (11) we can write:

F(t) = exp{−
∫ +∞

t
h̃(x)dx}

≥ exp{−η?
0 ×

∫ +∞

t
s̃(x)dx} = Gη?0 (t).

As a result, F−β1(t) ≤ G−η?0 β1(t) for all t > 0, providing that

F−β1(t)− ᾱ1

G−β2(t)− ᾱ2
≤ G−η?0×β1(t)− ᾱ1

G−β2(t)− ᾱ2
, for all t > 0.

The inequality in (A12) is, therefore, fulfilled if

η?
1 ≥

α2 − 1
α1 − 1

× β2

β1
× sup

t≥0

(
G−η?0 β1(t)− ᾱ1

G−β2(t)− ᾱ2

)

=
α2 − 1
α1 − 1

× β2

β1
×M?(α, β, η?

0 ),

or, equivalently, when
α1 − 1
α2 − 1

× β1

β2
× η?

1 ≥ M?(α, β, η?
0 ).
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Table A1. The MLE of the hazard rate ratio of the MPHR distributions in Example 1 for different
sample sizes n = 5, 10, 30, 50, 100, 200 and different ages t = 0.05, 0.1, 0.3, 0.6, 0.8, 1.

n (α1, λ1) (α2, λ2) (α̂1, λ̂1) (α̂2, λ̂2) t s(t;α̂2,λ̂2)

h(t;α̂1,λ̂1)

5 (0.8,10) (0.1,1) (0.723,9.455) (0.123,0.875) 0.05 6.2539
0.1 5.0954
0.3 3.8754
0.6 0.9874
0.8 0.5466
1 0.4658

10 (0.8,10) (0.1,1) (0.744,9.522) (0.114,0.922) 0.05 6.2986
0.1 5.1215
0.3 3.9574
0.6 0.9899
0.8 0.5878
1 0.4955

30 (0.8,10) (0.1,1) (0.759,9.665) (0.112,0.937) 0.05 6.3344
0.1 5.5514
0.3 4.0128
0.6 1.0236
0.8 0.5991
1 0.5033

50 (0.8,10) (0.1,1) (0.779,9.858) (0.108,0.968) 0.05 6.4111
0.1 5.8101
0.3 4.1003
0.6 1.2231
0.8 0.6021
1 0.5395

100 (0.8,10) (0.1,1) (0.791,9.911) (0.103,0.986) 0.05 6.5499
0.1 5.9888
0.3 4.1099
0.6 1.4268
0.8 0.6411
1 0.5895

200 (0.8,10) (0.1,1) (0.799,9.989) (0.101,0.993) 0.05 6.5533
0.1 5.9899
0.3 4.1101
0.6 1.4298
0.8 0.6471
1 0.5929

Table A2. The MLE of the hazard rate ratio of the MPHR distributions in Example 2 for sample sizes
n = 5, 10, 30, 50, 100, 200 and ages t = 0.05, 0.1, 0.3, 0.6, 0.8, 1.

n (α1, λ1) (α2, λ2) (α̂1, λ̂1) (α̂2, λ̂2) t s(t;α̂2,λ̂2)

h(t;α̂1,λ̂1)

5 (10,4) (3,2) (9.232,4.452) (2.185,3.111) 0.05 2.4978
0.1 2.1305
0.3 1.3858
0.6 0.9022
0.8 0.8914
1 0.5778

10 (10,4) (3,2) (9.389,4.472) (2.231,2.998) 0.05 2.6017
0.1 2.2764
0.3 1.4111
0.6 0.9954
0.8 0.9517
1 0.6012
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Table A2. Cont.

n (α1, λ1) (α2, λ2) (α̂1, λ̂1) (α̂2, λ̂2) t s(t;α̂2,λ̂2)

h(t;α̂1,λ̂1)

30 (10,4) (3,2) (9.589,4.325) (2.541,2.6578) 0.05 2.7507
0.1 2.3520
0.3 1.5210
0.6 1.1123
0.8 0.9512
1 0.7898

50 (10,4) (3,2) (9.698,4.239) (2.661,2.451) 0.05 2.8514
0.1 2.5012
0.3 1.7102
0.6 1.2054
0.8 1.0021
1 0.8395

100 (10,4) (3,2) (9.9614,4.0750) (2.845,2.201) 0.05 2.9995
0.1 2.8112
0.3 1.9958
0.6 1.3798
0.8 1.2211
1 0.9823

200 (10,4) (3,2) (9.9919,4.004) (2.899,2.014) 0.05 3.3134
0.1 2.9891
0.3 2.1192
0.6 1.4776
0.8 1.2345
1 1.0000

Table A3. The MLE of the reversed hazard rate ratio of the MPRHR distributions in Example 3 under
different sample sizes n = 5, 10, 30, 50, 100, 200 for t = 2, 2.5, 3, 3.5, 3.8, 4.

n (α1, β1) (α2, β2) (α̂1, β̂1) (α̂2, β̂2) t s̃(t;α̂2,β̂2)

h̃(t;α̂1,β̂1)

5 (0.25,2) (0.5,18) (0.195,1.871) (0.411,16.466) 2 0.6312
2.5 0.6512
3 0.7019

3.5 0.8127
3.8 0.8511
4 0.8145

10 (0.25,2) (0.5,18) (0.204,1.912) (0.429,17.012) 2 0.6987
2.5 0.7018
3 0.7155

3.5 0.8321
3.8 0.8843
4 0.9181

30 (0.25,2) (0.5,18) (0.216,1.942) (0.438,17.268) 2 0.8119
2.5 0.8211
3 0.8455

3.5 0.8772
3.8 0.9211
4 0.9441

50 (0.25,2) (0.5,18) (0.224,1.956) (0.459,17.611) 2 0.9655
2.5 0.8845
3 1.0145

3.5 1.0349
3.8 1.0011
4 1.0097
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Table A3. Cont.

n (α1, β1) (α2, β2) (α̂1, β̂1) (α̂2, β̂2) t s̃(t;α̂2,β̂2)

h̃(t;α̂1,β̂1)

100 (0.25,2) (0.5,18) (0.244,1.989) (0.485,17.891) 2 0.9721
2.5 0.9811
3 1.0399

3.5 1.0413
3.8 1.0901
4 1.1001

200 (0.25,2) (0.5,18) (0.249,1.991) (0.491,17.992) 2 1.0041
2.5 1.0138
3 1.0415

3.5 1.0719
3.8 1.0989
4 1.1014

Table A4. The MLE of the reversed hazard rate ratio of the MPRHR distributions in Example 4 with
sample sizes n = 5, 10, 30, 50, 100, 200 and time points t = 2, 2.5, 3, 3.5, 3.8, 4, 1.

n (α1, β1) (α2, β2) (α̂1, β̂1) (α̂2, β̂2) t s̃(t;α̂2,β̂2)

h̃(t;α̂1,β̂1)

5 (5,5) (2,2) (4.111,4.231) (1.671,1.523) 2 2.901
2.5 2.921
3 2.9267

3.5 2.9453
3.8 2.9566
4 2.9667

10 (5,5) (2,2) (4.129,4.361) (1.675,1.536) 2 2.9111
2.5 2.9252
3 2.9410

3.5 2.9555
3.8 2.9661
4 2.9746

30 (5,5) (2,2) (4.392,4.436) (1.749,1.666) 2 2.9231
2.5 2.9351
3 2.9448

3.5 2.9655
3.8 2.9742
4 2.9814

50 (5,5) (2,2) (4.601,4.635) (1.891,1.798) 2 2.9612
2.5 2.9732
3 2.9774

3.5 2.9796
3.8 2.9799
4 2.9831

100 (5,5) (2,2) (4.892,4.895) (1.946,1.992) 2 2.9712
2.5 2.9832
3 2.9875

3.5 2.9890
3.8 2.9893
4 2.9897

200 (5,5) (2,2) (4.912,4.992) (1.999,2) 2 2.9812
2.5 2.9932
3 2.9975

3.5 2.9990
3.8 2.9994
4 2.9996
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