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Abstract: This paper studies the application of artificial intelligence to milling machines, focus-
ing specifically on identifying the inputs (features) required for predicting surface roughness.
Previous studies have extensively reviewed and presented useful features for surface roughness pre-
diction. However, applying research findings to actual operational factories can be challenging due to
the additional costs of sensor installations and the diverse environments present in each factory setting.
To address these issues, in this paper, we introduced effective features for predicting surface
roughness in situations where additional sensors are not installed in the existing environment.
These features include feed per tooth, Fz; material removal rate, Q; and the load information.
These features are suitable for use in highly constrained environments where separate sensor installa-
tion is not required, making it possible to apply the research findings in various factory environments.
Additionally, to efficiently select the optimal subset for surface roughness prediction among subsets
formed by available features, we apply causality to the feature selection method, proposing an
approach called causality-driven efficient feature selection. The experimental results demonstrate
that the features introduced in this paper are quite suitable for predicting surface roughness and
that the proposed feature selection approach is more effective and efficient compared to existing
selection methods.

Keywords: surface roughness; feature selection; deep learning; computer numerical control;
milling machine

MSC: 68T05

1. Introduction

In the manufacturing industry, many approaches have been taken to improve the
competitiveness of factories [1]. Some of them have shown good results, with automation
being particularly well utilized in factories. The milling machine, which is widely used
in the manufacturing industry and which produces products by cutting workpieces into
desired shapes, is a good example of the application of automation by computer numerical
control to improve productivity. In addition to improving productivity through the use of
automated milling machines, it is also essential to ensure the quality and reliability of the
product. In recent times, powered by artificial intelligence, the fourth industrial revolution
has had its impact on the manufacturing industry. Artificial intelligence is one of the most
powerful methods to improve the competitiveness of factories. Many studies have been
conducted to improve productivity more by applying deep learning. In particular, previous
studies [2–11] have extensively reviewed and presented features that can be used as inputs
to deep learning to predict surface roughness. Surface roughness is a significant index to
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evaluate product quality and an indicator of product characteristics that include surface
friction and fracture resistance.

Specifically, in recent studies [2,3], surface roughness was predicted using the oper-
ating parameters of a milling machine as inputs to deep learning. Study [2] used spindle
speed, feed rate, and depth of cut as inputs to the combined model, which was a response
surface methodology and genetic algorithm. This work was extended to use down-feed
as an additional input with the fully-connected (FC) model in [3]. Although these inputs
can be easily and directly obtained from the operating parameters, they are limited in
that they do not contain enough information to predict surface roughness. To address
these limitations, previous studies expanded and reviewed tools [4] and materials [5,6] as
additional inputs along with operating parameters. On the other hand, in works [7–11],
additional sensors were installed and used as inputs to acquire more informative data from
the milling operations. Works [7,8] installed vision sensors to acquire image data, which
were then converted to gray-scale levels to be used as inputs. In works [9–11], different
sensors (force, vibration, and acceleration, respectively) were included to acquire more
informative information.

Although works [2–11] presented and reviewed many of the available features, their re-
search findings are not easily applicable to the manufacturing industry (factories).
Utilizing the features examined in previous research, the problem of additional sensor costs
arises, which burdens manufacturing plants striving to improve productivity with this
extra expense. Furthermore, the diverse environments in factories pose limitations in repli-
cating the environment where the research findings were obtained into actual factory fields.
Even if the challenges related to sensor installation and diverse environments are ad-
dressed, the issue of selecting the optimal feature combination for predicting surface
roughness remains. The number of possible subsets increases exponentially with the num-
ber of all available features, and most of these subsets do not need to be reviewed [12].
Feature selection algorithms have three basic methods: filter, embedded, and wrapper.
Typically, the performance of the wrapper selection method is known to be better in the
machine learning field [12]. Even with the wrapper selection method, a large search space
is still required to determine the optimal subset.

Motivated by all of the aforementioned issues, in this paper we study the available
features and feature selection for surface roughness prediction. Specifically, we wish to
address two questions: (i) What are the features available without the need for installing
any additional sensors? and (ii) How can we reduce the search space when there are
many available features? In our design, a critical challenge is in reviewing all the available
features when using only the milling machine and comparing the number of searches with
the selection function of the wrapper approach. We effectively and efficiently address
this challenge by identifying causality among the features and applying it to the selection
function. The main contribution of our work is summarized as follows:

• We describe all the available features, in practical situations with no additional sensors
installed, that can be used for surface roughness prediction with deep learning.

• Considering causality among the features, we also propose a new and efficient feature
selection approach for surface roughness prediction. This scheme reduces the search
steps and maintains or improves the accuracy of surface roughness prediction, even
when there are many features available.

• Experimental results are presented to demonstrate the superiority and effectiveness of
the proposed scheme in terms of selection compared to several baseline selections.

2. Available Features for Deep-Learning-Based Surface Roughness Prediction

In this section, we describe two different sets of available features for surface roughness
prediction with deep learning: one set involves the conventional features typically used in
the previous studies, and the other set involves the new features introduced in this paper
for better learning.
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2.1. Conventional Features: Cutting Parameters Less Relevant to Surface Roughness Prediction

In practice, a number of factors (such as tool, workpiece, cutting parameters, tempera-
ture, coolant, etc.) affect the surface roughness in milling machines in a very complicated
way [13]. Thus, a naive and natural approach is to extract the features for surface roughness
prediction by considering as many measurable factors as possible. This approach has been
taken in the previous studies [2,3]. Specifically, in [2,3], the major operating parameters of
computer-aided manufacturing (CAM), usually used to generate work orders (G-code),
were adopted as input features for the deep learning algorithms as follows:

• Feed rate F (in mm/min): This feature specifies the tool’s moving speed in the cutting
direction.

• Spindle speed S (in r/min): This feature specifies the rotation speed of the spindle
motor.

• Depth D or width W of cut (in mm): This feature specifies depth or width of the
material cut per pass of the tool.

Although these conventional features (i.e., the set of F, S, D, and W) can be directly
obtained from the CAM, use of only these features has several major limitations on surface
roughness prediction with deep learning. First of all, the ability to predict the surface
roughness with the conventional features is very poor (regardless of using the state-of-
the-art techniques such as deep learning) because such features were heuristically and
empirically chosen. Even in theory, these features are less relevant and only indirectly
affect to the surface roughness prediction. To address this critical issue, therefore, the
conventional features should be used together with other features that can lead to better
learning or prediction performance (this will be explained in the next section in detail).

The second critical issue is that, the feature extraction approach of the previous studies
requires installation of several devices (such as sensors) on the milling machines, which
is costly and also inconvenient in practice. Additionally, the variances of the extracted
features would be very high due to the inherent randomness in the state of the machines,
and this would unavoidably lead to unstable prediction results.

2.2. New Features for Better Learning: Load Information and Cutting Parameters More Relevant to
Surface Roughness Prediction

In order to address all the critical issues resulting from using only the conventional
features, in this paper, we introduce new effective features that result in much better predic-
tion performance with deep learning, particularly when combined with the conventional
features. Detailed explanations are given as follows.

2.2.1. Cutting Parameters More Relevant to Surface Roughness Prediction

According to the metal cutting theory, there are features that are more direct and
relevant to the surface roughness prediction. Inspired by this, in this paper, such features
are additionally exploited for surface roughness prediction with deep learning, which are
as follows [13]:

• Feed per tooth Fz (in mm/tooth): This feature specifies the cutting speed on the tooth
of the tool and is given by Fz = FS−1z−1, where z is the number of teeth of the tool.

• Material removal rate Q (in mm3/min): This feature specifies the rate of material
removal and is given by Q = FDW.

The proposed cutting parameter (more relevant) differs from conventional cutting
parameters (less relevant) in that it encompasses features related to the motion of rotation,
direction of movement, and material removal of the cutting tool. Surface roughness is
an indicator that evaluates the structures generated during the interaction between the
cutting tool and the workpiece in the cutting process. Thus, these parameters are more
intuitively associated with the surface roughness resulting from the relative motion of the
tool and workpiece; therefore, they assist in better learning for predicting surface roughness.
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Interestingly, it turns out that the features being more relevant to the surface roughness
prediction are actually given by combinations of the conventional features.

2.2.2. Load Information

From the milling machine, we can also extract further useful information, called
the load information, about the load resistance that occurs during cutting. The load
information is given in the form of time series, for which statistics (i.e., a more abstract
and compact version of the load information) are typically used for surface roughness
prediction. Inspired by this, in this paper, we also propose to use such statistics as part
of the input features for the deep learning algorithms. Specifically, let us denote the load
information by x(n) ∈ RL for n = 1, · · · , N. We can extract the following eight useful
statistics about the load information as features:

(1) The load information itself: x(n)
(2) Average value: Vavg = 1

N ∑N
n=1 x(n)

(3) Maximum value: Vmax = max
n=1,··· ,N

{x(n)}

(4) Minimum value: Vmin = min
n=1,··· ,N

{x(n)}

(5) Variance: Vvar =
N ∑N

n=1 x2(n)−(∑N
n=1 x(n))

2

N(N−1)

(6) Skewness: Vskew = N
(N−1)(N−2) ∑N

n=1

(
x(n)−Vavg√

Vvar

)3

(7) Kurtosis: Vkur =
∑N

n=1(x(n)−Vmean)
4

n×Vvar
2

(8) Coefficient variation: Vcv =
√

Vvar
Vavg

One big practical advantage of using the load information is that there is no need
to additionally install sensors on the machines. This is in sharp contrast to the case of
learning solely with the conventional features. In order to achieve the best prediction
performance and draw useful engineering insights into which features critically affect the
prediction performance, the remaining question is how to select the best combination across
the conventional and newly introduced features. This important question is answered in
the next section.

3. Causality-Driven Efficient Feature Selection for Deep-Learning-Based Surface
Roughness Prediction in Milling Machines

The exhaustive selection approach of the wrapper selection method is adopted natu-
rally and simply to select the best feature set. This search guarantees the selection of the
best feature set. However, it is a very difficult task because it requires a large search space
due to all possible subsets of the features. All possible subsets can be easily calculated as
2m, where m represents all available features. In our case, since empty sets are not allowed
in deep learning, there are 16,383 possible subsets calculated using 2m − 1. However, there
are many subsets that do not need to be evaluated as they are relatively less important.
Thus, it is essential to reduce the number of searches [12].

Typically, in order to address this issue, many studies have heuristically organized
the subsets [2–11]. However, these approaches lead to other problems, such as bias due to
unfounded standards. Thus, to address these issues and effectively reduce the number of
searches, we present the causality-driven efficient feature Selection for deep learning-based
surface roughness prediction in milling machines in Algorithm 1.
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Algorithm 1: Proposed causality-driven efficient feature selection for deep-
learning-based surface roughness prediction in milling machines.

Input: All of available subsets pre-categorized C, V , and X
Output: Sub-optimal set of features X∗, and Predict accuracy ϕ∗

begin
Function Selection(X1, X2):

initialization X3 = {φ}, ϕ3 = 0
while True do

/* Forward step */
if X3 = {φ} then

X1′ = X1
else

X1′ = X1 − X3
end
for i = 1 to |X1′ | do

Xa−i = (xi ∈ X1′ ) ∪ X2 ∪ X3
end
XA = [Xa−1, · · · , Xa−i ]
XA∗ = argmax

x∈XA

(Evaluation(x, M))

ϕA∗ = Evaluation(XA∗, M)
Xa∗ = XA∗ − X2
if ϕA∗ > ϕ3 then

ϕ3 = ϕA∗
X3 = Xa∗

else
if ϕA∗ < ϕ3 then

ϕ3 = ϕ3
X3 = X3

else
if ϕA∗ = ϕ3 then

return X2 ∪ X3, ϕ3
end

end
end
/* Backward step */
if 1 6= |Xa∗| then

for j = 1 to (|Xa∗|) do
Xb−j = Xa∗ −

(
xj ∈ Xa∗

)
Xb−j = Xb−j ∪ X2 ∪ X3

end
XB =

[
Xb−1, · · · , Xb−j

]
XB∗ = argmax

x∈XB

(Evaluation(x, M))

ϕB∗ = Evaluation(XB∗, M)
Xb∗ = XB∗ − X2
if ϕB∗ > ϕ3 then

ϕ3 = ϕB∗
X3 = Xb∗

else
if ϕB∗ < ϕ3 then

ϕ3 = ϕ3
X3 = X3

else
if ϕB∗ = ϕ3 then

return X2 ∪ X3, ϕ3
end

end
end

end
end

end
C ′ = Selection(C, φ)
V ′ = Selection(V , C ′)
X ′ = C ′ ∪ X
Xsub−opt = {C ′, V ′, X ′}
X∗ = argmax

x∈Xsub−set

(Evaluation(x, M))

ϕ∗ = Evaluation(X∗, M)

end
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3.1. Proposed Algorithm

Before drawing the algorithm, we organize all available features into C, V , and X
according to the data source and type. A summary of the available features mentioned
earlier is as follows:

• C = {F, S, D, W, Fz, Q}
• V =

{
Vavg, Vmax, Vmin, Vvar, Vskew, Vkur, Vcv

}
• X = {x(n) : n = 1, · · · , N}

The organized features can be divided into cause (C) and effect (V ,X ) based on the
conditions of data acquisition, which allows for the definition of causality. The causality
established from this division is used in the proposed algorithm to effectively reduce
the search steps and eliminate relatively irrelevant, redundant, and noisy subsets in the
prediction of surface roughness. The proposed scheme for applying causality consists of
two parts: (i) selection function and (ii) selection strategy. A detailed explanation of each
part follows.

3.1.1. The Selection Function in the Proposed Algorithm

In the selection function, we employed a step-wise selection approach with two steps
(forward and backward) in the wrapper selection method. This approach requires more
searches than other approaches with one step; however, previous studies have shown that
a near-optimal subset can be selected using this approach [12]. In order to take together
the organized features with different causalities, the selection function in the proposed
algorithm takes two types of inputs: the set of variables X1 and the set of constants X2,
where X1 consists of the features that need to be selected and X2 consists of the fixed or
previously selected features.

In detail, during the forward step, each feature of X1 is added to X2 to generate the
forward candidate subset XA. The components of XA are then used separately as inputs to
the deep learning model to determine the valid subset Xa∗, which has the most effective
features at each forward step. Afterward, in the backward step, all possible subsets that can
be created by removing one element from Xa∗ are added to X2 to generate the backward
candidate subset XB. The components of XB are also used separately as inputs to the deep
learning model, just as in the forward step, and valid subset Xb∗ is determined at each
backward step. The two steps are repeated, retaining the effective feature subset X3 at each
step, until there is no improvement in the accuracy ϕ3 of surface roughness prediction.

The selection function presented faces a problem when generating XB during the first
repeat, and that needs to be resolved. As there is only one valid element determined from
the forward step on the first repeat, the backward step cannot create an appropriate XB.
To address this issue, the selection function does not implement the backward step during
the first repeat but only implements it when there are two or more valid elements selected
from the forward step.

3.1.2. The Selection Strategy of the Proposed Algorithm

In the selection strategy, we select a combination of features by taking the organized
feature sets (i.e., C, V , and X ) sequentially as inputs with the aim of applying causality.
The selection function initially takes C and the empty set as inputs and determines C ′,
which is a valid feature in C. Here, C is considered as the set of variables X1, and the empty
set is considered as the set of constants X2. Then, V ′ and X ′ are determined by sequentially
taking the remaining organized features (V and X ) as X1. At this time, the previously
selected C ′ is taken into X2 to apply causality. Finally, to select the sub-optimal set of
features X∗ from the derived features (C ′, V ′, and X ′), we use a function with arguments of
the maxima as follows:

X∗ = argmax
x∈Xsub−opt

(Evaluation(x, M)) (1)
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where M is the deep learning model for surface roughness prediction and Xsub−opt contains
the candidate set of sub-optimal C ′, V ′, and X ′. This selection strategy has the advantage
of being able to prioritize and control the organized features.

4. Experimental Verification

In this section, we describe the materials and experimental results used to verify the
newly introduced features and the proposed algorithm.

4.1. Materials
4.1.1. Benchmark Datasets

To validate the effectiveness of the proposed features in improving the accuracy of sur-
face roughness prediction, we employed two different benchmark datasets.
(i) Alam et al. (2023) [2] obtained the material by using a high-speed milling machine
to process titanium (Ti-6Al-4V) with four flutes and 2 mm uncoated carbide tools to con-
duct experiments for predicting and optimizing surface roughness. The machining was
conducted with 20 experimental runs in a straight-line configuration, varying the values
of S, F, and D. Surface roughness measurements were taken using the Surftest SJ-201
(Mitutoyo, Kanagawa, Japan), and an average of three readings was obtained. (ii) Dubey
et al. (2022) [6] obtained experimental data using a CNC lathe to machine Al7075 with
Widia’s CNMG120408 (Widia, Koenigsee-Rottenbach, Germany) Tungsten Carbide insert
tools for surface roughness prediction using machine learning approaches. They conducted
27 experimental runs, varying the conditions of S, F, and D into three categories each
for machining. Surface roughness was measured using the Surftest SJ-201 (Mitutoyo,
Kanagawa, Japan) and the results were provided.

4.1.2. Experimental Data

A medium-sized milling machine with aluminum and end-mill tools, a configura-
tion widely used in the manufacturing industry, is selected for the trials. Specifically,
the milling machine model is Mynx 5400 (DN Solutions, Changwon-si, Republic of Ko-
rea) from DN Solutions. Al6061 is chosen as the workpiece material, and Alu-cut 8 mm
from YG-1 is chosen as the end mill. The tool path for the machining operation is a
straight line and is implemented through 260 different work orders consisting of com-
binations of components in C. During the operation, the load information is acquired
using the FANUC Open CNC API Specifications library (FOCAS) and Open Platform
Communications Unified Architecture (OPC-UA) [14]. After each operation, the surface
roughness is measured using the MITUTOYO SJ-210 surface roughness tester, and the aver-
age value is calculated based on four to five measurements taken at different locations on
the workpiece. This is performed to prevent observation errors and ensure the accuracy of
the measurement.

4.1.3. Model

The deep learning model for predicting surface roughness has been developed using
the environment of Python (version 3.8) and Tensorflow (version 2.5). To select the feature
set with the highest accuracy of surface roughness prediction in the proposed algorithm,
two models were used depending on the type of data: one was a fully connected (FC)
model with five hidden layers, each containing 150 nodes; the other was a combined model,
consisting of an FC model with five hidden layers and a recurrent neural network (RNN)
with four hidden layers. In the combined model, the RNN was concatenated after the
fourth hidden layer of the FC model. For general experimental results, the hyperparameters
of deep learning were determined using techniques widely used for similar problems: (i) a
rectified linear unit (ReLu) at each layer and a linear unit at the last layer; (ii) optimizer: root
mean square propagation (RMSprop); (iii) k-fold where k was 10; (iv) normalization [15];
and (v) loss function: mean squared error (MSE).
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4.2. Result and Discussion

In order to better evaluate and understand the effectiveness and performance of the
proposed scheme, we compared it with the following four baselines of wrapper selec-
tion [12]:

• Baseline 1: A sequential selection approach that used only forward steps starting with
an empty state.

• Baseline 2: A recursive selection approach that used only backward steps, starting
with a full consideration of the features.

• Baseline 3: A step-wise selection approach that was a combination of the above two
selected approaches and was the basis of our algorithm.

• Exhaustive Search: An exhaustive selection approach that used all the possible subsets
of the features.

To ensure a fair and unbiased comparison of our proposed method across various
datasets, we apply each dataset to two evaluations: (i) The effect of the cutting parameters
(more relevant) for benchmark data and experimental data. (ii) The efficiency of the
proposed algorithm and the effect of load information for experimental data. Since the
benchmark data cannot provide load information, it is solely used for evaluating the effect of
cutting parameters.

4.2.1. The Effect of the Proposed More Relevant Cutting Parameters

Figures 1 and 2 show the results of conventional feature selections (baselines) for
benchmark data, and Figure 3 shows the results for experimental data. For Figure 1,
all conventional feature selections select the optimal subset (Q, Fz, S, D) for the highest
surface roughness prediction, achieving a prediction accuracy of 96.36%. In particular, the
results show that Baselines 1 and 3 prioritize the selection of Q and Fz in the forward steps
to improve the accuracy of surface roughness prediction. In the case of Figure 2, most
conventional feature selection methods achieve optimal results, whereas Baseline 1 does
not. The optimal subset of this case is Fz, D, and F, with a prediction accuracy of 91.62%. In
this case, which uses a different dataset from the case in Figure 1, Q and Fz are also selected
as the most important features in the forward steps of Baselines 1 and 3 to improve the
prediction accuracy of surface roughness. This finding is consistent with the results of the
case in Figure 1. In the case in Figure 3, most conventional feature selection methods still
achieve optimal results, but recursive feature selection does not. The optimal subset of this
case is Fz, W, D and Q, with a prediction accuracy of 84.91%. In this case, Fz is selected
as the most important feature in the forward steps of Baselines 1 and 3 to improve the
prediction accuracy of surface roughness.

In all of datasets prepared, our proposed cutting parameters (Q and Fz) are prioritized
over other features to improve the prediction accuracy of surface roughness. This discovery
validates the effectiveness of our proposed features in improving the accuracy of predicting
surface roughness.
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Figure 1. The Results of feature selection using benchmark data [2], where bold numbers indicate the
highest prediction accuracy with the best subset: (a) Baseline 1 (Sequential), (b) Baseline 2 (Recursive),
(c) Baseline 3 (Step-wise), and (d) Exhaustive.
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Figure 2. The results of feature selection using benchmark data [6], where bold numbers indicate the
highest prediction accuracy with the best subset : (a) Baseline 1 (Sequential), (b) Baseline 2 (Recursive),
(c) Baseline 3 (Step-wise), and (d) Exhaustive.
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Figure 3. The results of feature selection using experimental data, where bold numbers indicate the
highest prediction accuracy with the best subset: (a) Baseline 1 (Sequential), (b) Baseline 2 (Recursive),
(c) Baseline 3 (Step-wise), and (d) Exhaustive.

4.2.2. The Efficiency of Proposed Scheme and the Effect of Load Information

To verify the efficiency of our selection algorithm, we organized the experimental data
in a causality and applied them to the proposed algorithm. Since V and X are different
forms of load information, we evaluated the efficiency of our algorithm in two scenarios:
scenario 1 (using C and V) and scenario 2 (using C, V , and X , considering all of them).

Figure 4 illustrates the efficiency of our proposed causality-driven efficient feature
selection algorithm. Baseline 2 is generally the preferred selection method because it is
the fastest. However, as demonstrated by our experimental results (in Figures 3 and 4),
Baseline 2 does not guarantee the optimality of the selected subset. In comparison, our
proposed selection algorithm can achieve at least as good or even better feature selection
results than Baseline 3, even with fewer search steps. Furthermore, our proposed selection
can achieve better results with fewer search steps compared to Baseline 1, which exclusively
uses forward steps. The improvement effect of load information on surface roughness
prediction accuracy can be verified by using Figures 3 and 4. Utilizing statistical features
of load information increases the surface roughness prediction accuracy by 2.54% (from
84.91% to 87.45%), whereas employing raw data improves the accuracy by 6.93% (from
84.91% to 91.84%). Interestingly, accuracy is higher on most occasions when using the load
information in its raw form compared to its statistical form. The highest accuracy of 91.84%
was achieved when using the subsets D, W, Fz, Q, and X as inputs to predict surface
roughness. The highest accuracy of 91.84% is achieved when utilizing a subset (features: D,
W, Fz, Q, and X ) for predicting surface roughness. Our experimental results demonstrate
that load information can be used as an effective feature to improve the accuracy of surface
roughness prediction in situations where sensor installation is limited.
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Figure 4. The feature selection results of experimental data with causality applied, where bold
numbers indicate the highest prediction accuracy with the best subset: (a) Utilized organized features
C, V , where all possible subsets are 8191. (b) Utilized organized features C, V , and X , where all
possible subsets are 16,384.

5. Conclusions and Future Work

In this paper, we introduced new, effective features that resulted in much better
prediction of surface roughness using deep learning and proposed causality-driven efficient
feature selection for deep-learning-based surface roughness prediction in milling machines.
Experimental results using both benchmark data and our data showed that our proposed
method was more effective and efficient than the conventional method.

Our research aims to develop an algorithm that accurately predicts surface roughness
under various machining conditions and selects the most important features that contribute
to the surface roughness prediction. One limitation of our research is that the load infor-
mation can be different even if the machining conditions do not change (e.g., machine
aging, tool and material mismatch, etc.). In this situation, cutting parameters cannot be
used to predict surface roughness, so it is difficult to directly apply our research results.
In future works, two main directions are suggested. One is to develop a method to predict
surface roughness using only load information, considering the situations mentioned earlier.
The other is to propose machining conditions that maintain the surface roughness standard
of the workpiece using load information, as well as predicting surface roughness using
load information.
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