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Abstract: Artificial Intelligence (AI) techniques are considered the most advanced approaches for
diagnosing faults in power transformers. Dissolved Gas Analysis (DGA) is the conventional approach
widely adopted for diagnosing incipient faults in power transformers. The IEC-599 standard Ratio
Method is an accurate method that evaluates the DGA. All the classical approaches have limitations
because they cannot diagnose all faults accurately. Precisely diagnosing defects in power transformers
is a significant challenge due to their extensive quantity and dispersed placement within the power
network. To deal with this concern and to improve the reliability and precision of fault diagnosis,
different Artificial Intelligence techniques are presented. In this manuscript, an artificial neural
network (ANN) is implemented to enhance the accuracy of the Rogers Ratio Method. On the other
hand, it should be noted that the complexity of an ANN demands a large amount of storage and
computing power. In order to address this issue, an optimization technique is implemented with the
objective of maximizing the accuracy and minimizing the architectural complexity of an ANN. All the
procedures are simulated using the MATLAB R2023a software. Firstly, the authors choose the most
effective classification model by automatically training five classifiers in the Classification Learner
app (CLA). After selecting the artificial neural network (ANN) as the sufficient classification model,
we trained 30 ANNs with different parameters and determined the 5 models with the best accuracy.
We then tested these five ANNs using the Experiment Manager app and ultimately selected the ANN
with the best performance. The network structure is determined to consist of three layers, taking into
consideration both diagnostic accuracy and computing efficiency. Ultimately, a (100-50-5) layered
ANN was selected to optimize its hyperparameters. As a result, following the implementation of
the optimization techniques, the suggested ANN exhibited a high level of accuracy, up to 90.7%.
The conclusion of the proposed model indicates that the optimization of hyperparameters and the
increase in the number of data samples enhance the accuracy while minimizing the complexity of the
ANN. The optimized ANN is simulated and tested in MATLAB R2023a—Deep Network Designer,
resulting in an accuracy of almost 90%. Moreover, compared to the Rogers Ratio Method, which
exhibits an accuracy rate of just 63.3%, this approach successfully addresses the constraints associated
with the conventional Rogers Ratio Method. So, the ANN has evolved a supremacy diagnostic
method in the realm of power transformer fault diagnosis.

Keywords: power transformers; fault diagnosis; DGA; ANN; MATLAB; neural network optimization

MSC: 68T07

1. Introduction

A power transformer (PT) is a device that transmits power energy through circuits
via electromagnetic induction. It is an integral component of the electrical power system
(EPS) and has the effect of increasing or decreasing the voltage of an alternating current
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power supply. Power transformers are essential in ensuring electrical energy is efficiently
and reliably transmitted over long distances. The fundamental idea behind transformer
theory is the utilization of a magnetic field generated by one coil to create an electromotive
force (EMF) in a second coil [1]. The electrical apparatus comprises windings made of
either copper or aluminum, a core composed of thin sheets of magnetic steel, and insulating
materials such as high-density paper and mineral oil [2]. The transformer is a very intricate
piece of equipment. Numerous forces are at play inside the tank, including phenomena
such as ageing, chemical processes, electric and magnetic fields, thermal expansion and
contraction, fluctuations in load, and the force of gravity. The transformer is subject to
several external factors, such as through-faults, significant ambient temperature variations,
voltage surges, and other forces like gravity and the Earth’s magnetic field. Transformers
are susceptible to a diverse range of problems [3].

The categorization of faults is as follows:

• Electrical: Partial Discharge, Corona, Arcing, Oil’s Breakdown Voltage;
• Thermal: Cellulose Overheating, Oil Overheating;
• Mechanical: Winding, Core Deformations.

The transformer transmits high voltage levels that create a strong electrical field. This
field causes strain on the insulation, and the rate at which it breaks down depends on
the current insulation and the surrounding situations. The assessment of the insulation
properties has significant implications for the longevity of a PT since it is strongly correlated
with the durability of the insulation material. Several important characteristics may be
assessed in relation to the insulating components of PTs. The frequently used methods are
Dissolved Gas Analysis (DGA) in the insulating oil, assessment of insulation resistance,
evaluation of partial discharges, and measurement of the power factor or tangent delta [2,3].
The DGA technique is a highly used approach in contemporary monitoring systems [4]. The
literature has presented many methodologies for evaluating the DGA method, including
the Key Gas, IEC ratio, Duval triangle, Doernenburg ratio, Rogers Ratio, and logarithmic
nomograph methods. The fault classification techniques use reference tables and charts
that have been developed based on the quantities or specific ratios of gases [5,6]. The issue
authors have to cope with is that conventional DGA has limits because it mainly relies
on empirical approaches and lacks mathematical formulations, hindering their ability to
analyze all types of faults effectively. Consequently, in several instances, an inaccurate or
unresolved diagnosis is seen. This occurs when more than one fault arises in a transformer
or when the concentration of gases is near the threshold. In order to address this issue and
improve the dependability of defect detection, the current research initiative employs an
artificial neural network (ANN) [7,8].

After conducting a literature review on power transformer fault diagnosis (PTFD)
employing DGA and artificial neural networks (ANNs), several research gaps and areas
for further investigation were identified [7]. From our point of view, the most crucial
research gap could be the limited study of model optimization techniques. Multiple studies
concentrate on applying ANNs to PTFD but often skip the specifics of optimizing the ANN
architecture and training process to improve the diagnostic precision. These issues can be
addressed using optimization algorithms, regularization techniques, and hyperparameter
tuning; all these will be further defined in Section 2.

To enhance the diagnostic precision of traditional DGA, an artificial neural network
(ANN) was developed to improve the diagnostic model’s resilience and accuracy. Moreover,
it was selected to combine the conventional DGA technique, Roger’s Ratio Method, with
an ANN, as this method is widely used in the literature and gives accurate predictions for
power transformer faults [7,8]. Furthermore, an optimization procedure is conducted to
maximize the accuracy and decrease the architectural complexity of the proposed network.
The optimization procedure is executed by adjusting the model’s hyperparameters. The
available literature on hyperparameter tuning is limited, with Machine Learning (ML)
algorithm developers only supplying brief descriptions of their functions [9]. While sci-
entific papers and online tutorials offer some additional information, there is a lack of
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more extensive studies that investigate significant inquiries, such as the extent to which a
model can be enhanced using tuning, the most effective tuning strategy, and the influence
of tuning a specific hyperparameter on different datasets. More research on these topics
would be beneficial in order to establish the best practices for hyperparameter tuning. This
study aims to address the research concerns previously indicated within the realm of PTFD.
Our goals are twofold:

1. Maximizing the Accuracy for PTFD.
2. Minimizing the Architectural Complexity of the ANN.

The present publication utilizes the MATLAB R2023a software to construct an opti-
mized Multi-Layer Feedforward Backpropagation Neural Network. The experiment is
conducted as follows: We train 30 NNs and then choose the top 5 models based on the
validation accuracy. In order to determine which of these five ANNs was the most effective,
we put them through a series of tests using the Experiment Management app.

Finally, we pick the optimal ANN to optimize its hyperparameters and, decisively,
to provide the model with the greatest accuracy. Three different automated methods
(a Bayesian optimizer, a random search, and a grid search), as well as three different
optimizers (Adam, SGDM, and RMSprop), are compared and contrasted to assist in the
hyperparameter selection for our ANN.

The performance and simulation of the optimized ANN are achieved by using MAT-
LAB R2023a software. The accuracy of the conventional Rogers Method and the ANN
method is calculated using the type (A) = (Total Samples Correctly Classified)/(Total
Samples).

2. Materials and Methods
2.1. Dissolved Gas Analysis

The use of DGA involves the utilization of oil samples extracted from an operational
PT to monitor the state of the transformer. DGA is an effective diagnostic tool used to
identify early stage problems in oil-filled transformers far in advance of their progression
into significant failures [10,11]. The insulation system used in an oil-filled transformer
comprises mineral oil as the liquid insulating medium and paper as the solid insulating
material [12]. The dependability of power transformers is contingent upon the efficiency
and effectiveness of the insulating system to endure several stressors, including thermal,
mechanical, and electrical ones [4,9].

The evolution of these stresses pertains to the chemical degradation of the dielectric
insulation’s oil or cellulose molecules. The primary byproducts of degradation consist of
gaseous compounds that exhibit solubility in the oil matrix, hence enabling their detection
using Gas Chromatography (GC). GC is a widely used method utilized to separate, identify,
and quantify gas mixtures [7,10]. The examination of these gaseous substances aids in the
identification of early-stage defect categories [13,14]. The DGA methodology encompasses
the processes of gas detection, quantification, and characterization [11,14].

The Rogers Ratio Method

The Rogers Ratio Method involves the examination of four gases that are produced in
the oil of a PT, serving as indications of faults [8]. The chemical compounds hydrogen (H2),
methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) are of interest in this
context [13,14].

Four gas ratios are derived from the concentrations calculated in parts per million
(ppm). The gas ratios MH, EM, EE, and AE are expressed as the following:

• MH = CH4/H2
• EM = C2H6/CH4
• EE = C2H4/C2H6
• AE = C2H2/C2H4

Each of these gas ratios is separated into ranges based on their respective values.
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PTFD is accomplished via the use of a coding system that is developed from the
boundaries of gas concentrations, expressed in ppm, as given in Table 1. Table 2 provides the
gas ratio code for each fault type, indicating the presence of 12 distinct fault categories [8,13].

Table 1. Rogers Ratio code [8,13].

Ratio Code Range Code

MH (CH4/H2)

x < 0.1
0.1 ≤ x ≤ 1.0
1.0 ≤ x ≤ 3.0

x > 3.0

5
0
1
2

EM (C2H6/CH4) x < 1.0
x ≥ 1.0

0
1

EE (C2H4/C2H6)
x < 1.0

1.0 ≤ x ≤ 3.0
x > 3.0

0
1
2

AE (C2H2/C2H4)
x < 0.1

0.1 ≤ x ≤ 3.0
x > 3.0

0
1
2

Table 2. Fault types according to the Rogers Ratio Method [8,13].

No. CH4/H2 C2H6/CH4 C2H4/C2H6 C2H2/C2H4 Fault Type

1 0 0 0 0 No Fault
2 1–2 0 0 0 <150 ◦C Thermal Fault
3 1–2 1 0 0 150–200 ◦C Thermal Fault
4 0 1 0 0 200–300 ◦C Thermal Fault
5 0 0 1 0 General Conductor Overheating
6 1 0 1 0 Winding Circulating Currents
7 1 0 2 0 Core and Tank Circulating Currents

Overheated Joints
8 5 0 0 0 Partial Discharge
9 5 0 0 1–2 Partial Discharge with Tracking

10 0 0 0 1 Flashover Without Power Follow-Through
11 0 0 1–2 1–2 Arc with Power Follow-Through
12 0 0 2 2 Continuous Sparking to Floating Potential

The 12 different types of faults are classified into five categories (F1, F2, F3, F4, F5) in
order to obtain only five outputs for the ANN. A reduced number of outputs makes the
network more functional and flexible in the MATLAB R2023a software. The numbers of
fault types according to the Rogers Ratio Method are included in parentheses.

The five different types of faults are:

• F1: No-Fault (1);
• F2: Low Energy Discharge (2), (12);
• F3: High Energy Discharge (9), (10), (11);
• F4: Low and Medium Thermal Faults (3), (4), (5), (7), (8);
• F5: High-Temperature Thermal Faults (6).

The data samples and transformer states were created utilizing the IEEE DGA datasets [15]
and the dataset from our previous work [8].

2.2. Artificial Neural Networks

Transformer fault estimation is a complex non-linear mapping problem due to the
fact that inputs and outputs are variables with no linear relationship [16,17]. Based on the
extant literature, this particular network configuration is widely used [18,19]. The ANN is
used to determine the transformer’s faults due to its precise and sufficient performance in
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classification issues. However, the ANN is prone to constraints such as weak convergence
and local optima. An optimization method is proposed to overcome these issues, maximize
the accuracy, and decrease the architectural complexity. According to this method, an
intensive search is performed for the finest training algorithm and its hyperparameters,
including the neurons, learning rate, activation functions, L2 regularization factor, and
momentum, that may provide the desired results.

In our prior research documented in article [9], a comprehensive approach was intro-
duced for assessing the efficiency of DGA using artificial neural networks (ANNs). The
four gas ratios are the inputs for the ANN, and the five transformer’s incipient faults are the
output targets. Due to the NN’s central role in this paper, a brief overview of the approach
and the primary description and influencing parameters is crucial.

ANNs are computational models comprising connected nodes, or “neurons,” that
operate together to process and explore information. These interconnected neurons allow
neural networks to tackle various tasks, from natural language processing to image and
speech recognition, and even autonomous driving. The ANN scheme is presented in
Figure 1 below:
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Backpropagation

The multi-layer network should be trained by operating a backpropagation algorithm,
which is also used as the learning rule of deep learning [20]. The method of backpropagation
allows the network to obtain knowledge from the training data by modifying the weights
of the neurons according to the error or loss experienced during the training process. This
method can be explained as follows [21,22]:

Forward-propagation: For each neuron in layer l, the weighted sum z is computed as:

z = Wl ∗ aprev + bl (1)

where Wl represents the weight matrix, aprev stands for the activation function from the
previous layer, and bl is the bias vector for layer l. Then, the output a of each neuron is
obtained by applying an activation function f, a = f(z).

• Loss function: The choice of the loss function depends on the specific problem. If we
denote the predicted output of the ANN as ŷ and the target output as y, then the loss
function L measures the discrepancy between ŷ and y, such as the mean squared error
for regression or cross-entropy for classification.

Backpropagation: For each neuron in the output layer, the partial derivative of the loss
function with respect to its output is computed:

δout =
∂L
∂ŷ

(2)
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Then, the gradient of the neuron’s output with respect to its input is computed by
multiplying δout by the derivative of the activation function f′(z):

δout = δout ∗ f(z) (3)

Weight update: The weights and biases are updated using the gradient descent
algorithm. For each weight connecting neuron j in layer l to neuron i in layer (l + 1), the
weight is computed as:

∆wij = −r ∗ δι ∗ aj (4)

where r is the learning rate, δι is the gradient error of neuron i, and aj is the activation
function of neuron j.

Backpropagation through hidden layers: In order to compute the error gradients for
the neurons in the hidden layers, the gradients from the subsequent layers are propagated
backward. For each neuron in layer l, the error gradient is computed as:

δl = f′(zl) ∗
[
WT ∗ δl+1

]
(5)

where WT is the transpose of the weight matrix connecting layer l to layer (l + 1).

2.3. Model’s Parameters and Hyperparameters

Before designing an artificial neural network, we need to consider many issues related
to modeling the network because these affect its performance. More specifically, we must
define the model’s parameters and hyperparameters [23–25].

The model’s parameters are evaluated by the algorithm. Algorithm determines how
to operate the input data to obtain the desired output, and they are obtained during the
training process. These are typically the weights.

The hyperparameters of an ANN are variables that define the network’s architecture
and establish how the network is trained. They are specified before the training process.
We can classify them as follows [26,27]:

1. Hyperparameters that define the neural network structure:

• The quantity of hidden layers;
• The quantity of nodes in each layer;
• The kind of activation function.

2. Hyperparameters determine the way the network training and directly control the
training process:

• Learning Rule Optimizer type;
• Weight initialization methods;
• Type of loss (or cost) function;
• Learning rate;
• Batch size;
• Number of epochs;
• Training steps.

3. Hyperparameters that operate the regularization effect and directly control the overfitting:

• Regularization parameters;
• Lambda-λ in L1 and L2 regularization;
• Dropout rate during the dropout regularization.

Figure 2 illustrates the hyperparameters’ classification.
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2.4. The Hyperparameter Optimization

Hyperparameter optimization is the procedure of detecting the hyperparameter com-
bination to reach the highest performance and effectiveness of the mode and is really
a function optimization problem. The general formation for optimization issues is as
follows [27,28]:

min l(w) =
1
n

n

∑
i=1

li(h(xi; w), yi) (6)

where:

• (xi, yi) with i = 1, 2, . . ., n—the training data;
• w—the model’s weights;
• h—prediction function;
• li—loss function.

The complexity of an ANN demands a large amount of storage and computing power;
our goal is to build models that have a minimal level of complexity.

In the first phase of our model, the training procedure aims to determine the appropri-
ate quantity of neurons and layers. The second phase of training aspires to develop the
model’s accuracy further.

2.4.1. Optimization of the Hyperparameters That Define the Neural Network Structure

A usual ANN includes three layers: the input, the hidden, and the output. The
number of nodes in the input layer is similar to the number of input features. The number
of neurons at the output layer equals the quantity of output variables [29,30].

The steps to follow to build a multi-layer network are as follows:

• The determination of input nodes;
• The identification of hidden layers and nodes;
• The determination of output nodes;
• The activation function.

The activation function is the final hyperparameter that determines the network
structure. The goal of the activation function is to orient non-linearities into the network
and is utilized in the layers of neural networks.
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No activation function is needed for the input layer. The kind of activation function to
be employed in the hidden layers and the output layer is determined by the problem we
aim to solve.

Although there are many approaches to finding the optimal ANN architecture, none
can guarantee the optimal solution for all real prediction problems. More than one hidden
layer can comprise each ANN. Kolmogorov’s theorem states that ‘an ANN with one hidden
layer could be selected if someone chooses a suitable quantity of neurons in the hidden
layer’ [30]. Moreover, the basic empirical principle of machine learning, Ockham’s Razor,
states that ‘The best models are simple models that fit the data well’. The complexity of
an ANN demands a large amount of storage and computing power, so we try to construct
models with low complexity [23].

• The bias–variance dilemma [31,32].

Bias: The bias is the error between the prediction of the values by the network and the
right value. Bias defines the model’s capability to learn from the training data. A high-bias
network causes a large error in the training and testing data. An algorithm should be
low-bias to keep away from the problem of underfitting.

Variance: The difference between the training accuracy and testing accuracy. The
variance defines how well a network can generalize to the test data.

The bias–variance tradeoff appears as it is complicated to minimize bias and variance
simultaneously. When the complexity of an ANN increases, its bias decreases, and its
variance increases. Contrarily, when the complexity of an ANN decreases, its bias increases,
and its variance decreases. The optimum complexity of an ANN relies on the available
dataset and the specific model [33].

2.4.2. Optimization of Hyperparameters That Determine the State of the Network Training
and Directly Control the Training Process

The hyperparameters that define the way the network training and directly control
the training process are [26,34,35]:

Learning rule—the optimizer type: Reveals the algorithm employed for the network
training. There are various types of optimizers commonly used in ANNs. Some of them are
gradient descent (backpropagation) [36], stochastic gradient descent (SGD) [36], Stochastic
Gradient Descent with Momentum (SGDM), the Levenberg–Marquardt algorithm [23],
Bayesian regularization [23], RMSprop (Root Mean Square Propagation) and Adam (Adap-
tive Moment Estimation) [37]. Choosing an optimizer often relies on the specific issue,
architecture, and dataset; in our project, we use a trial-and-error method to find the finest
one for the PTFD.

Weight initialization methods: Weight initialization refers to arranging the initial
values of the weights in an ANN. Appropriate initialization is essential because it can
affect an ANN’s convergence speed and performance. Some standard weight initialization
methods include random initialization, Xavier initialization, and He initialization. These
methods aim to set the initial weights to balance the activation values and gradients
during training.

Type of loss (or cost) function: The cost function estimates the difference between the
forecasted output of an ANN and the real output. It quantifies the error of the model’s
predictions and is operated to direct the learning process. The selection of the loss function
depends on the model type and the data’s nature. Standard loss functions are the mean
squared error (MSE), Huber Loss, and categorical cross-entropy.

Learning rate: This hyperparameter controls the step size at which the model updates
its weights during training.

Batch size: It defines the amount of training data that is processed before the model’s
weights are updated. Employing a larger batch size during training can result in a shorter
training time but may demand more memory. Shorter batch sizes can supply more stochas-
ticity and better generalization, but they take longer to converge.
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Number of epochs: An epoch represents a full pass through the complete training
dataset during the training process of an ANN. The number of epochs determines how
frequently the model passes and learns from the complete dataset. When the number of
epochs rises, the model’s performance is enhanced, but it also poses a risk of overfitting.
The optimum number of epochs relies on the problem’s complexity and the sample’s size;
moreover, it is usually defined using experimentation.

Training steps: Training steps refer to the iterations or updates made to the model’s
parameters during the training process. Each training step involves feeding a batch of
training examples to the model, computing the loss, and updating the weights based on the
gradients. The number of training steps depends on factors such as the batch size, training
dataset size, and convergence criteria. The number of epochs and the size of each epoch
determine it.

2.4.3. Optimization of Hyperparameters That Operate Regularization Effect and Directly
Control the Overfitting

• Techniques to prevent overfitting

Overfitting in machine learning refers to a phenomenon where a model becomes
excessively specialized in capturing the patterns and noise present in the training data to
the extent that it fails to generalize well to new, unseen data. Overfitting often arises when
a model is overly complex compared to the available data, causing the model to memorize
the training examples rather than learn the underlying relationships. Consequently, the
model may demonstrate high accuracy on the training data but perform poorly when
presented with new data, rendering it unreliable and limited in practical applications.
Overcoming overfitting is a significant challenge in machine learning, which requires
careful consideration of various aspects such as model selection, feature engineering,
regularization techniques, and appropriate validation strategies [32]. These measures aim
to mitigate the effects of overfitting and foster robust generalization, ensuring that the
model can effectively apply its learned knowledge to new, unseen data [33,35]. The most
common methods for overcoming overfitting are:

• L1 regularization
• L2 regularization
• Early Stopping

L1 regularization: Also referred to as Lasso regularization, this is a technique employed
in neural networks to combat overfitting and encourage sparsity in the learned weights. It
achieves this by incorporating a regularization term into the loss function, which penalizes
the presence of large weight values. To be more specific, this approach involves adding the
sum of the absolute values of the weights (denoted as R) to the loss function. Assuming
the weights of the neural network are represented as W, the modified loss function can be
expressed as follows:

R = λ∗∑|W| (7)

where λ is the regularization parameter that controls the strength of the process. Thus, we
have the regularized loss function (RGF), which is obtained by adding the L1 regularization
term to the loss function:

Lreg = L + R (8)

In this method, the weight update is slightly different from the standard backprop-
agation algorithm. The derivate of the regularized loss function concerning the weights
is calculated and then employed to modify the weights. The gradient of the RGF is com-
puted as:

∂Lreg

∂W
=

∂L
∂W

+ λ∗sign(W) (9)

where ∂L
∂W is the gradient of the original loss function with respect to the weights and

sign(W) represents the sign of each weight element (positive, negative, or zero). For each
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weight connecting neuron j in layer l to neuron i in (l + 1) layer, the weight update is
computed as:

∆wij = −r∗
[

∂L
∂wij

+ λ∗sign
(
wij
)]

(10)

where r is the learning rate.
L2 regularization: Also known as Ridge regularization, this is another commonly used

technique in neural networks for preventing overfitting. In this regularization method, the
regularization term is of the form:

R = λ∗∑ W2 (11)

where λ once again controls the strength of the process. The regularized loss function has
the same form as Equation (5). The gradient of the regularized loss function with respect to
the weights is computed as:

∂Lreg

∂W
=

∂L
∂W

+ 2∗λ∗W (12)

For each weight wij connecting neuron j in layer l to neuron i in layer (l + 1), the
weight update is computed as:

∆wij = −r∗
(

∂L
∂wij

+ 2∗λ∗wij

)
(13)

By incorporating the L1 and L2 regularization terms into the loss function and ad-
justing the weight update rule, we can attain sparsity in the learned weights. This can
be advantageous in reducing the ANN’s complexity and enhancing its knowledge to
generalize well to unseen data.

Lambda parameter—λ in L1 and L2 regularization
The λ factor assumes a significant role in determining the degree of L1 and L2

regularization.
Different values of λ correspond to different levels of regularization:

• When λ equals 0, no regularization is applied;
• When λ equals 1, complete regularization comes into effect;
• The default setting for Keras is λ = 0.01.

The differences between L1 and L2 are presented in Table 3.

Table 3. The differences between L1 and L2.

L1 Regularization L2 Regularization

Shrinks weights magnitudes toward 0 Shrinks weights magnitudes to be small but not precisely 0

Penalizes the sum of the absolute values of the weights Penalizes the sum of the square values of the weights

The cost of outliers current in the data raises linearly The cost of outliers current in the data raises exponentially

Preferable when the model is simple Preferable when the model is complex

In our methodology, we present a training procedure with L2 regularization, which
includes two steps, in order to construct the final network.

First step: Define the proper number of neurons and layers.
Second step: Upgrade the model’s accuracy.

2.5. Visualize and Estimate the Performance of a Classifier in the Classification Learner App (CLA)

The experiment is executed in MATLAB R2023a in the Classification Learner app [38].
After training an ANN, the CLA automatically creates the confusion matrix (CM) and the
receiver operating characteristic (ROC) curve of the model.
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2.5.1. ROC Curves

The ROC curve [39,40] is widely employed in the realm of machine learning for
classification tasks. In the context of a multi-class issue, it is possible to develop multiple
ROC curves, each comparing the classifier’s performance for one class against all the other
classes. This is achieved by identifying each class as the “positive” class and calculating
the ROC curve for that binary classification task. It provides a graphical representation of
the performance of a classifier as the discrimination threshold varies. The ROC curve is
formed by graphing the true positive rate (TPR) compared to the false positive rate (FPR)
at different levels of threshold. The TPR, often referred to as sensitivity or recall, is the
ratio of positive cases that were properly marked as positive. The false positive rate (FPR),
conversely, is the ratio of negative events that are inaccurately identified as positive.

2.5.2. Confusion Matrix

The CM [39,40] is an essential tool in the realm of machine learning for estimating the
performance of classification models. It helps to understand how well a model performs
in terms of its predictions for different classes. The confusion matrix is especially useful
when dealing with problems where you have multiple classes that your model is trying
to classify instances into. For a classification problem with N classes, the CM is an N × N
matrix that summarizes the performance of a classification model shown in Figure 3.
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Mathematically, these values can be expressed as follows:

• True positives (TP): The number of occurrences where the actual class is positive
(actually positive) and the model predicted it as positive;

• True negatives (TN): The number of occurrences where the actual class is negative
(actually negative), and the model predicted it as negative. This is often more relevant
in binary classification;

• False positives (FP): The number of occurrences where the actual class is negative
(actually negative), but the model predicted it as positive;

• False negatives (FN): The number of occurrences where the actual class is positive
(actually positive), but the model predicted it as negative.

Using these values, various metrics can be calculated to assess the performance of the
ANN [41,42], such as:

• Accuracy: (TP + TN)/(TP + TN + FP + FN);
• Precision: TP/(TP + FP);
• Recall = TP/(TP + FN);
• F1 Score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall);
• Specificity = TN/(TN + FP).

Recall concentrates on the model’s capability to determine positive instances correctly.
F1 Score balances precision and recall, which is valid when evaluating both false

positives and false negatives.
Specificity calculates the model’s ability to accurately specify negative instances, which

is essential in procedures where false positives are inappropriate.

• These metrics provide different perspectives on the performance of the ANN. The
confusion matrix and the derived show where the model is making correct predictions
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and where it is making mistakes, which is essential for improving the model or
choosing the right model for a given task.

2.6. Experiment

In this manuscript, the MATLAB R2023a software is applied to develop an optimized
Multi-Layer Feedforward Backpropagation Neural Network. In a few words, the experi-
ment is carried out as follows: After training 30 NNs, we select the five models with the
highest validation accuracy. We then conduct tests on these five ANNs using the Experi-
ment Manager app and ultimately select the neural network with the best performance.

Finally, the best ANN is selected to optimize the hyperparameters and, conclusively,
to present the model with the best accuracy. In this task, we examine three automated
techniques, Bayesian optimizer, random search, and grid search, and three optimizers,
Adam, SGDM, and RMSprop, to assist the hyperparameter selection for our ANN. The
workflow of our method is as follows:

Flowchart:

1. Data extraction;
2. Load data in the Classification Learner app;
3. Select classifier options;
4. Train classifiers;
5. Choose the best classifier type (ANN);
6. Train 30 ANNs with different parameters;
7. Select the five most accurate networks;
8. Train and test 5 ANNs and select the most accurate model;
9. ANN hyperparameter optimization;
10. Visualize and assess the ANN’s performance;
11. Select the ANN with the best accuracy for PTFD.

2.6.1. First Experiment—Selecting the Best Classifier Type

In this experiment, the most effective classification model is chosen by automatically
training six classifiers and comparing their validation results (Table 1).

From the Statistics and Machine Learning Toolbox, we select the Classification Learner
app (CLA) [39]. This app conducts supervised machine learning in order to classify data
by training various types of models. For training a model, a known set of data (the four
gas ratios) called observation is provided as the input. We provide as output the known
responses to the input data called labels or classes (the five transformer’s incipient faults).
The Classification Learner training consists of two stages [39,40]:

Model validation: Train a model using a validation scheme (that is applied to monitor
the state of the training stage and to fine-tune the performance of the ANN). By default,
the application employs cross-validation to prevent overfitting.

Full model: A model based on complete data without validation. The application
synchronously trains the full model and the validated model.

An important issue for the CLA is that it does not use test data for training the model.
So, it displays the validated model’s results. The diagnostic criteria, for example, the model
accuracy and visualizations, such as the confusion matrix, represent the validated model’s
outcomes. The CLA employs Bayesian optimization by default to tune the hyperparameters.

The CLA offers classifier performance indicators, including:

• Validation accuracy: Percentage of properly identified observations;
• Total cost: Misclassification cost;
• Prediction speed: Estimated speed for test data, founded on the prediction timings

for the validation data. This speed may be impacted by background operations both
within and outside of the app; therefore, we train models in equal states for more
accurate comparisons;

• Training time: Duration of the model’s training (train models in equal states for more
accurate comparisons);
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• Model size: the model’s size if it were exported with no training data.

Experiment settings:

1. Data extraction.

The four gas ratios are the inputs (predictors), and the output classes (response) are
the five transformer’s incipient faults. The total number of data samples is 400.

2. Load data in the Classification Learner app.

The predictor data are combined into a table (350 × 5), and the other 50 samples
constitute the test data, where the first four columns consist of the gas ratios and the last
column comprises the five classes. Each row of the table indicates one observation, so we
have 350 observations for the train set and 50 observations for the test set (Table 4).

Table 4. Dataset size.

Number of Predictors Number of Observations Number of Classes Response

4 350 5 Faults

3. Select classifier options.

By default, the CLA uses the cross-validation method. According to this scheme,
consider that there are no data for the testing process. The authors have selected to train
the following classification models, as they are the most popular in the literature [39].

• Decision trees;
• Naive Bayes classifiers;
• Support Vector Machines (SVMs);
• Kernel;
• ANN.

The summary of our experimental results is presented in Table 5:

Table 5. Experiment summary regarding different classifiers.

Classifiers Classifier Type Accuracy%
(Validation)

Cost
(Validation)

Prediction
Speed (obj/s)

Training
Time

(s)

Model Size
(KB)

Decision trees

Fine Tree 78 77 6388.3 6.37 11.991

Medium Tree 78 77 21,522.5 0.87 11.991
11.991

Coarse Tree 67.4 77 20,652.2 0.37 5.011

SVM

Quadratic
Cubic

Fine Gaussian
Medium G.
Coarse G.

77.7
80.9
81.1
80.6
72.0

78
67
66
68
98

9763.7
10,405.0
9530.5

10,127.4
10,758.9

0.7
0.6
0.7
0.6
0.5

60.282
58.026
65.810
65.042
76.082

KNN

Fine 80.3
80.3

69
69

7547.1
7547.1

0.7
0.7

28.934
28.934

Medium 77.4
77.4 79 9726.3 0.4 28.934

Cubic 76.9 81 10,022.9 0.4 28.934
Weighted 81.4 65 10,189.9 0.4 28.952

ANN

Narrow
Medium

Wide
Bilayered
Trilayered

81.4
82.9
81.1
82.0
81.7

65
60
66
63
64

13,372.7
21,741.1
20,582.1
22,651.2
21,268.2

3.8
2.5
2.8
3.6
4.6

6.143
7.343

13.343
7.943
9.743

Naïve Bayes Kernel 70.0 105 6570.1 1.1 92.444
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Experimentation outcomes: As illustrated in Table 5, the ANN is the classifier with
the highest performance metrics. It maintains the highest accuracy, the lowest total cost,
the fastest prediction speed, the shortest training time, and a competent model size in Kb.

2.6.2. Second Experiment—Finding the ANN with the Best Performance

In this experiment, we train 30 ANNs with different parameters in the Experiment
Manager app [39,40,43]. The Experiment Manager app (ExpM) facilitates building deep
learning experiments for training ANNs under different initial states and evaluating the
outcomes. The experiment is conducted as follows [39]:

• Finding the best possible training choices using Bayesian optimization;
• Operating the trainNetwork built-in function or designing a unique training function;
• Evaluating the performance of various network topologies by comparing the outcomes

of utilizing distinct datasets.

In the Experiment Manager app, we train 30 NNs with the following parameters:
Number of layers: The ExpM quests among one, two, or three fully connected layers.
Layer size: The ExpM quests in the content of 1 to 300.
Activation functions: Tanh, ReLU, Sigmoid, none.
Regularization strength (L): The ExpM quests among the content {1× 10−5/n, 1× 10−5/n},

where n = 350, and states the number of observations.
Iteration limit: 1000.
Experimentation outcomes: Based on the findings collected from the previous training,

we chose and presented the five models with the highest validation accuracy. The outcomes
are illustrated in Table 6.

Table 6. The five ANNs with the best accuracy.

NumLayers Activation
Function Layer 1 Size Layer 2 Size Layer 3 Size Validation

Accuracy

1 Sigmoid 240 5 0 75.0
3 Tanh 200 100 5 80.1
3 ReLu 300 200 5 80.2

3 ReLu 100 5 0 80.2
80.2

3 Tanh 100 50 5 80.9

We then conducted tests on these five ANNs using the ExpM app. We manually trained
and tested them and ultimately selected the neural network with the best performance. We
selected the ANN with the following parameters (Table 7) to optimize its hyperparameters
and, conclusively, to present the model with the best accuracy.

Table 7. ANN parameters.

Num. of
Layers

Activation
Function Layer 1 Size Layer 2 Size Layer 3 Size Validation

Accuracy (%)

3 Tanh 100 50 5 80.9

2.6.3. Third Experiment—ANN Hyperparameter Optimization

In the CLA, the last experiment is conducted with the prefinal ANN.

• Firstly, we systematically explore various values for each hyperparameter using the
grid, random, and Bayesian search approaches to identify the optimal combination
of hyperparameters that maximizes the performance on the validation set (search
strategy).

• Secondly, we tune the hyperparameters for the three optimizers according to the
optimal combination of hyperparameters we find with the previous search strategy.
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1. Hyperparameter Tuning Approaches

Various searching strategies are used to assess the performance of the models on the
validation dataset [25,38]. We employ the subsequent search techniques that have been
extensively discussed in the academic literature: manual search, grid search, random search,
and Bayesian optimization [39,43].

In grid search (Model 4 for our experiment), various models are formed based on
a grid of data prior to the searching process, whereas other methods specify the models
repeatedly based on a specific approach during the searching process. The process includes
the establishment of a grid with various hyperparameter values, followed by a compre-
hensive exploration of all potential combinations. This approach may be computationally
demanding. The objective is to identify the optimal combination of hyperparameters for a
certain model, and the performance of each combination is assessed using cross-validation.

The random search method (Model 8) involves the specification of a distribution or
range for each hyperparameter, followed by the random sampling of values from these
specified distributions or ranges. Every combination of hyperparameters that is sampled is
assessed using either cross-validation or a distinct validation set in order to determine its
performance. The efficiency of the hyperparameter optimization process may be enhanced
by assigning varying degrees of importance to different hyperparameters.

Bayesian optimization (Model 12) is a cutting-edge approach to optimizing costly
black-box functions globally. It comprises two fundamental elements: a probabilistic surro-
gate model and an acquisition function [25]. In general, Bayesian optimization is a robust
and adaptable optimization model that has shown success in the realm of hyperparameter
optimization as well as other optimization challenges. The algorithm effectively examines
the whole range of possible solutions, adjusts its approach based on the observed values of
the objective function, and ultimately reaches optimal performance.

Manual search or trial-and-error method (Model 2) is an approach where machine
learning and deep learning methods are configured manually by users based on their own
experience and trial and error. In this approach, users rely on their expertise and knowledge
of the data, methods, and parameters to determine reasonable hyperparameter values.

Experiment 3A
In the CLA, we determine our experiment in the subsequent stages. We train the

neural network for each hyperparameter setting and assess its performance by measuring
the validation accuracy and loss. Furthermore, the model’s performance was evaluated
using the confusion matrix, the ROC curve, and the minimum classification error plot of
the different search methods.

1. Define the Hyperparameters: Identify the tuning hyperparameters: learning rate (LR),
regularization strength (L2), momentum (M), and batch size (BS).

2. Define the Search Space: Determine the range of values that each hyperparameter
can take:

• LR search space between 0.001 and 0.1;
• L2 search space between 0.00001 and 0.1;
• M search space between 0.5 and 0.99;
• BS search space between 32 and 4096.

3. Choosing a Search Strategy: Random search, Bayesian optimizer, grid search, ran-
dom search.

4. Train and Evaluate: For each hyperparameter setting, we train the neural network
and assess its performance by measuring the validation accuracy and loss.

Various search strategies are used to assess the performance of models on the val-
idation dataset, ultimately selecting the most optimal one. In Table 8 are presented the
validation accuracy, the test accuracy, and the L2 norm for each algorithm. Experimentation
outcomes:
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Table 8. Automated optimization.

Algorithm Validation Accuracy Test Accuracy L2

Random search (Model 8) 82 85 0.001
Bayesian optimizer (Model 12) 82.86 83.1 0.00002

Grid search (Model 4) 84.57 86 0.00002
Manual search (Model 2) 80.9 85 0.01

This experiment’s results are illustrated in the following figures: Figures 4–11. We
present the confusion matrix and the ROC curve for each model. Model 12 (Bayesian opti-
mizer) and Model 4 (grid search) stand out as the most significant models in Table 8 because
of their high validation and test accuracy. Their significance indicates their importance
in the analysis, so we present a summary of the experimental process and the minimum
classification error plot only for these two models.

Figure 4 reveals an overview of the training and test results according to the perfor-
mance indicators for Model 4 and Model 12, as reported by the MATLAB R2023a software.
These CLA classifier performance indicators have been described in Section 2.6.1.
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From Figure 5, the minimum classification error plot (this plot was created automat-
ically by the MATLAB R2023a software) for Bayesian optimization, we can observe the
following, very important for our experiment, outcomes:

• The estimated minimal classification error is represented by each light blue point. This
estimation is obtained using the optimization procedure, which takes into account all
the combinations of hyperparameter values that have been estimated, involving the
present iteration.

• The observed minimal classification error is represented in the graph by every dark blue
point, which refers to the calculated error obtained during the optimization procedure.

• The optimized hyperparameters are represented by the red square, representing the
iteration with the best performance. As we can see from Figure, the best point hyper-
parameter is the L2 with value 0.00000287, and the observed min classification error
is 0.172 in the eighth iteration. The optimized hyperparameters may not consistently
provide the reported minimal classification error. Here, we can also mention that the
application employs Bayesian optimization for hyperparameter tuning. It selects a
combination of hyperparameter metrics that eliminates the upper confidence range
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of the objective model’s classification error instead of minimizing the classification
error itself.

• The hyperparameters that result in the smallest classification error are represented by
the yellow point, indicating the corresponding iteration. Here, we observed that the
L2 regularization with value 0.00000286 resulted in the min classification error 0.172
in the 6th iteration.
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From Figure 6, for the grid search model, we can perceive that:

• The best point hyperparameter is the L2 regularization with value 0.00006155, the
observed min classification error is 0.152 in the 55th iteration, and the L2 regularization
with value 0.0000369 resulted when the min classification error occurs with value 0.152
in the 29th iteration. According to these two diagrams, we can conclude that grid
search results in a more nominal classification error. Hence, it has better accuracy than
Bayesian, as we have noticed from the confusion matrix and ROC curve. However,
the minimum classification error plots indicate that Bayesian has a higher coverage
speed as it reaches the minimum error in the sixth iteration.

Figures 7a, 8a, 9a and 10a illustrate the confusion matrix (CM) that summarizes the
performance of each model. CM is a 5 × 5 matrix, as we have five classes for prediction
in our ANNs. There is a general description of the CM in paragraph 2.5.2. and a precise
description in articles [41,42].

The diagonal features (from top-left to bottom-right) define the correct predictions for
each class, while the non-diagonal features denote misclassifications (incorrect prediction
for each class). The rows designate the true (actual) classes, and the columns designate the
predicted classes. The different colors in every orthogon are used to visually emphasize the
various categories in the confusion matrix, making it easier to interpret the performance
of the model at a glance. The choice of colors can differ based on the visualization tool or
software being used. We will describe in detail the CM of Model 4 (Grid search) due to its
superior validation and test accuracy performance.
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In the confusion matrix provided in Figure 7a, let us focus on the row corresponding
to the actual Class 1 (or fault type 1). This row indicates the performance of the ANN in
classifying instances where the true class is 1. The following is an explanation of the value
of each element inside the given row:

• The first numerical value (83.1%) states that the neural network correctly predicted
83.1% of fault types as fault type 1. So, the true positives (TP) for Class 1 are 83.1%
(blue orthogon).

• The second numerical value, denoted as 0, states that the neural network has not
mispredicted type 1 as fault type 2. So, the false negatives (FN) for Class 1 are 0%
(white orthogon).

• The third number (1.4%) states that the neural network incorrectly predicted type 1 as
fault type 3 at a rate of 1.4%. The false negatives (FN) for Class 1 are 1.4% (light yellow
orthogon).

• The fourth numerical value (8.5%) states that the neural network incorrectly predicted
type 1 as fault type 4 at a rate of 8.5%. Here, the false negatives (FN) for Class 1 are 8.5
(orange orthogon).

• The fifth numerical value (7.0%) states that the neural network incorrectly predicted
type 1 as fault type 5 at the rate of 7.0%. Here, the false negatives (FN) for Class 1 are
7.0% (orange orthogon).

• So, TP = 0.831, TN = 4.1, FP = 0.211, and FN = 0.169 for Class 1 in Figure 7a.

Therefore, the following metrics can be calculated to assess the performance of the
ANN. The metrics for Class 1 are:

• Accuracy: (TP + TN)/(TP + TN + FP + FN) = 0.92;
• Precision: TP/(TP + FP) = 0.797;
• Recall = TP/(TP + FN) = 0.831;
• F1 Score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) = 0.813;
• Specificity = TN/(TN + FP) = 0.95.

The two columns, TPR and FNR, on the right of the CM show each class’s total
percentage rate of true positives (correctly classified) and the total percentage rate of false
negatives (misclassified as other classes).

Figure 7b illustrates the ROC curves of Model 4. There is a general description of the
ROC curves in paragraph 2.5.1. We are considering each class as the positive class and the
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remaining classes are regarded as the negative class. We can perceive that the blue curve
refers to Class 1, the red refers to Class 2, the yellow refers to Class 3, the purple refers to
Class 4, and the green refers to Class 5. The operating point of each class indicates the TRP
of the class. For example, the blue point of Class 1 has a value of 0.831, and each class have
the same TRP value as in the CM.

The area under the curve (AUC) measures the classifier’s total performance. Class
2 has an AUC = 0.9994, and Class 5 has an AUC = 0.825. AUC values vary from 0 to 1; a
greater AUC value is indicative of superior performance.
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2. Adaptive Learning Rate Method

The impact of the stochastic gradient descent (SGD) approach is significantly influ-
enced by the manually controlled learning rate. Setting a suitable value for the learning
rate is a difficult challenge. The learning rate may be automatically adjusted using sev-
eral adaptive approaches [38,39]. These techniques do not need parameter adjustments,
converge quickly, and often provide good outcomes. In this section, we examine three of
them: Adaptive Moment Estimation (Adam), Mean Square Propagation (RMSprop), and
Stochastic Gradient Descent with Momentum (SGDM).

Adam [37]: An improved SGD approach incorporating an adjustable learning rate
for every parameter. Moreover, it combines the techniques of adjustable learning rate and
momentum. The purpose of this architecture is to effectively modify the parameters of a
model as it is being trained.

RMSprop: The fundamental concept behind RMSprop is to dynamically modify the
learning rate assigned to each variable, by considering the size of the gradients. This
concept is accomplished by continuously updating and calculating the average of the
squared gradients for each parameter. The running average serves as a means of adjusting
the learning rate, enabling it to be increased for parameters with lower gradients and
decreased for values with higher gradients.

SGDM algorithm: In the conventional SGD approach, the model parameters are
updated by considering the gradient of the loss function estimated on an individual
training sample at each iteration. Noisy updates and weak convergence may occur, mainly
when there is a substantial variation in the gradients. This problem is effectively addressed
by introducing a momentum factor into the SGDM algorithm. The momentum term refers
to a computed value representing the average of the gradients obtained from previous
iterations. This approach facilitates the reduction of update irregularities and enables the
ongoing progression of the optimization process in a desirable position, even amongst
variations in the gradients. The update rule of SGDM has two primary elements: the
present gradient and the momentum term. The existing gradient is scaled using a learning
rate, which handles the magnitude of the update stage. The momentum term is multiplied
by a coefficient that regulates the impact of past gradients on the present update. The
model parameters are updated by combining these two components.
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Experiment 3B.
In this section, we test the three optimizers, as mentioned above, in order to compare

their classification accuracy. To achieve this, we adjust the hyperparameters (the learning
rate, momentum, L2 regularization, and batch size) following a ‘trial-and-error’ process and
notice which ones work best for the network [43,44]. There are specific hyperparameters
for each optimizer that can be changed to improve the training performance. We will refer
to them in the next paragraph. The momentum term and the learning rate are dynamically
adjusted to improve the convergence speed. The L2 regularization term is adjusted to
prevent over-fitting. Moreover, a proper batch size helps converge faster.

Adjustment of L2 regularization.
First, the standard cross-entropy function with the L2 regularization term is formed

to prevent over-fitting. When the regularization parameter is set to zero, it poses the
risk of overfitting and decreases the network’s capacity to generalize. The regularization
parameter is modified in order not to have an impact on the other precisely adjusted
parameters inside the model. However, the consequences of it may be detected during the
convergence of the loss function. The regularization parameter is often chosen from a set of
commonly used values that are logarithmically distributed within the range of 0 to 0.1. We
will adjust the L2 term as 0.1, 0.001, 0.00001.

After, we employ the same parameter initialization for comparing the three optimiza-
tion algorithms. Finally, optimal values for the hyperparameters, such as the momentum
and learning rate, are determined using exhaustive grid searching, and the resulting pre-
dictions are reported.

In the editor of MATLAB, we write the code for training and testing the three optimiz-
ers. We present an example of the code that processes the data for training the models in
Box 1.

Box 1. Code for training.

InputTable = trainingData;
Predictor Names = {‘INPUT1’, ‘INPUT2’, ‘INPUT3’, ‘INPUT4’};
predictors = inputTable(:, predictorNames);
response = inputTable.FAULT;
isCategoricalPredictor = [false, false, false, false];
classNames = [1; 2; 3; 4; 5];

A. Adam solver

We train the ANN using the Adam solver and set its properties.
The adjustable hyperparameters are:

• Squared Gradient Decay Factor;
• Learning rate;
• Gradient Decay Factor (controls the strength of L2 regularization factor);
• Epsilon (ε): A tiny value which is added to the denominator to prevent division by

zero, usually in the range of 1 × 10−7 or 1 × 10−8. Machine learning usually encoun-
ters Epsilon when computing ratios, gradients, or other mathematical procedures
involving division. Adding Epsilon guarantees that the division stays defined even if
the denominator is near zero and that the computation does not result in numerical
instability or errors.

Set ‘Gradient Threshold’ as 1.
Experimentation outcomes:
Following an intensive search based on the various criteria discussed above (paragraph

2. Adaptive Learning Rate Method), we have determined the following magnitudes of
parameters provide the optimal results, as illustrated below:

The results obtained by employing the Adam optimizer are:

• Best validation accuracy: 90.4%
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• Best test accuracy: 0.907
• Gradient Decay Factor: 0.999
• Learning rate: 0.001

We can observe the progress of the network’s training validating and testing in
Figures 11 and 12a and the confusion matrix in Figure 12b.
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Figure 11 illustrates the training progress diagram, which displays various training
metrics at each iteration. The diagram provides information on the training time, training
cycle, and other parameters, which are displayed on the right side. The shaded backdrop
serves as a visual representation of each training epoch (a full pass across the whole of
the dataset).

The classification accuracy on each specific mini-batch is presented using a light blue
curve; however, the program gives a smoothed version of the training accuracy (blue curve).
We have provided a validation set, so the black curve shows the classification accuracy
on the complete validation set. We set the validation frequency to 50 for estimating the
ANN on the validation data every 50 iterations and the maximum quantity of epochs to
30. Moreover, we set the iterations to 450; every iteration comprises the estimate of the
gradient and the subsequent updating of the network parameters. After the end of the
training process, the figure displays the ultimate validation accuracy and the rationale for
the termination of training, which is the completion of the maximum number of epochs
(30). After this training process, the validation accuracy reaches 90.38% in the 10th epoch
after 150 iterations.

The loss function or cross-entropy loss diagram illustrates the loss received on every
mini-batch. Both the actual curve and its smoothed form are observable. Furthermore, we
can see the loss curve on the validation dataset. The cross-entropy loss reaches 0.38 in the
27th epoch after 400 iterations.

Figure 12a exhibits a table created by the MATLAB software when we use the ‘trainNet-
work’ function. It displays various training metrics every 50 iterations until 450 iterations
according to the progress of the network’s training. The max validation accuracy is 90.38%
in the 10th epoch after 150 iterations and at the fourth second of elapsed time.

The minimum validation loss is 0.3830 in the 27th epoch after 400 iterations and at the
sixth second of elapsed time. Moreover, the test accuracy reaches 0.907.
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Figure 12b presents the CM for the test data. The dataset used for testing consists
of 54 instances. Out of these, the correctly predicted classes are 49, and the misclassified
classes are 5.

• We carry out an identical process for both the SGDM optimizer and the RMSprop opt.
The findings are presented in the following tables and figures.

B. SGDM optimization

After conducting a thorough investigation using a range of criteria as previously
described, we have identified the magnitudes of parameters that result in the most favor-
able results.

The adjustable hyperparameters are:
Momentum
Learning rate
The results obtained by employing SGDM optimizer are:

• Best validation accuracy: 82.7%
• Best test accuracy: 81%
• Momentum: 0.9
• Learning rate: 0.00008

Experimentation outcomes:
The magnitudes of the parameters that provide the optimum results are summarized

in Table 9.

Table 9. Training option parameters for Adam, SGDM, and RMSprop.

Adam Training Options SGDM Training Options RMSprop Training Options

Gradient Decay Factor: 0.999 Momentum: 0.900 Squared Gradient Decay Factor: 0.990
Squared Gradient Decay Factor: 0.999 Initial Learning Rate: 0.0100 Epsilon: 1.0000 × 10−8

Epsilon: 1.0000 × 10−8 Learning Rate Schedule: ‘piecewise’ Initial Learning Rate: 3.0000 × 10−4

Initial Learning Rate: 1.0000 × 10−3 Learning Rate Drop Factor: 0.2000 Learning Rate Schedule: ‘none’
Learn Rate Schedule: ‘none’ Learning Rate Drop Period: 5 Learning Rate Drop Factor: 0.1000

Learning Rate Drop Factor: 0.1000 L2 Regularization: 1.0000 × 10−4 Learning Rate Drop Period: 10
Learning Rate Drop Period: 10 Gradient Threshold Method: ‘l2norm’ L2 Regularization: 1.0000 × 10−4

L2 Regularization: 1.0000 × 10−4 Gradient Threshold: Inf Gradient Threshold Method: ‘l2norm’
Gradient Threshold Method: ‘l2norm’ Mini-Batch Size: 64 Gradient Threshold: Inf

Gradient Threshold: Inf Max Epochs: 100 Mini-Batch Size: 64
Mini-Batch Size: 64 Max Epochs: 20

Max Epochs: 30

We can monitor the progress of the network’s training validating and testing in
Figures 13 and 14a and the confusion matrix in Figure 14b.

The max validation accuracy is 82.69% in the 17th epoch after 50 iterations and at the
third second of elapsed time.

The minimum validation loss is 0.5371 in the 34th epoch after 100 iterations and at the
third second of elapsed time. Moreover, the test accuracy reaches the 0.814.

Figure 14b presents the CM for the test data. The dataset used for testing consists
of 54 instances. Out of these, the correctly predicted classes are 44, and the misclassified
classes are 10.
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C. RMSprop

We train the ANN using the RMSprop solver and set its properties.
The adjustable hyperparameters are:
Squared Gradient Decay Factor
Learning rate
Gradient Decay Factor (controls the strength of the L2 regularization factor)
Epsilon (ε): A very small value added to prevent dividing by zero when updating the

parameters; typically, values are 1 × 10−7 or 1 × 10−8.
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Experimentation outcomes:
At the first training of the model, we observe an overfitting with these values:

• Validation accuracy: 67.31%
• Test accuracy: 0.75
• Momentum: 0.99
• Learning rate: 0.0003

In order to prevent overfitting, we adjust the momentum and learning rate hyper-
parameters. Firstly, we change the Gradient Decay Factor that controls the strength of
L2 regularization to the value 0.999. After many training procedures with different sets
of hyperparameters, we select those that provide the best accuracy to the model. The
magnitudes of the parameters that provide the optimum results are illustrated in Table 9.

The best results obtained by employing the RMSprop optimizer are:

• Best validation accuracy: 86%
• Best test accuracy: 83%
• Momentum: 0.999
• Learning rate: 0.001

We can observe the progress of the network’s training validating and testing in
Figures 15 and 16a and the confusion matrix in Figure 16b.
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The max validation accuracy is 86.54% in the 17th epoch after 50 iterations and at the
fourth second of elapsed time.

The minimum validation loss is 0.5198 in the 17th epoch after 50 iterations and at the
fourth second of elapsed time. Moreover, the test accuracy reaches 0.814.

Figure 16b presents the CM for the test data. The dataset used for testing consists
of 54 instances. Out of these, the correctly predicted classes are 45, and the misclassified
classes are 9.
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Table 10 illustrates the validation and testing accuracy of the Adam, SGDM, and
RMSprop algorithms.

Table 10. Validation and training accuracy for Adam, SGDM, and RMSprop.

Algorithm Validation Accuracy Testing Accuracy

Adam 90.4% 0.907
SGDM 82% 0.814

RMSprop 86% 0.833

3. Results and Analysis

This manuscript proposes a method to achieve a MLNN with the lowest architectural
complexity while indicating a high prediction accuracy for PTFD. The MATLAB R2023a
software is applied to develop this model.

Firstly, the authors train five classifiers in the CLA to choose the most effective classifi-
cation model. Table 5 employs the results from the CLA; it shows that ANN is the classifier
with the highest performance metrics. It preserves the highest accuracy, the lowest total
cost, the fastest prediction speed, the shortest training time, and the most competent model
size in Kb. The ANN was expected to be the best classifier due to the simplicity of our
classification problem and the limited size of the dataset, including the transformer gases
that we have provided.

Secondly, we conducted an experiment using ExpM, training 30 ANNs under different
initial states. Based on the ExpM result table, we selected the five models with the most
increased validation accuracy. We then executed tests on these five ANNs using the ExpM
pp, manually training and ultimately selecting the ANN with the best performance. As we
can observe from Table 2, the model with the best accuracy has the following parameters:

• Number of layers: 3;
• Layers size: 100, 50, 5;
• Activation function: Tanh.

The next step is to tune the hyperparameters. The literature provides minimal infor-
mation on the optimal tuning of hyperparameters. First, we systematically examine various
values for each hyperparameter using the grid, random, and Bayesian search techniques to
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identify the optimal combination of hyperparameters that maximizes the performance on
the validation set (search strategy). In the CLA, we determine the range of values that each
hyperparameter can take. For each hyperparameter setting, we train the neural network
and assess its performance by measuring the validation accuracy and loss. Furthermore,
the ANN’s performance was assessed by employing an ROC curve, a confusion matrix,
and a minimum classification error plot of the different search methods. As we can observe
from these diagrams and from Table 5, the most accurate method is grid search, with a
validation accuracy of 84.57% and test accuracy of 86%.

According to Figures 6 and 7, we can conclude that grid search results in a more
nominal classification error. Hence, it has better accuracy than Bayesian optimization,
as we have noticed from the confusion matrix and ROC curve. However, the minimum
classification error plots indicate that Bayesian has a higher coverage speed as it reaches
the minimum error in the sixth iteration. The grid search method is well acknowledged
for its simplicity and efficacy in small datasets. Random search and Bayesian optimization
have almost the same values of validation accuracy, 82%. Random search proves to be
very advantageous in the exploration of innovative hyperparameter values. Bayesian
optimization is a very efficient methodology for addressing complex and expansive search
domains. Manual search has the lowest accuracy of 80%. It is time-consuming for users
and introduces bias due to incorrect assumptions.

In the last section, we analyze Adam, SGDM, and RMSProp. We tune the hyperpa-
rameters for the three optimizers according to the best combination of hyperparameters we
find with the previous search strategy. From the diagram of the training progress for each
optimizer, we can observe the progress of the network’s training, validation, and testing.

The outcomes of the Adaptive Learning Rate Method experiment are presented below:
The goal of comparing those three optimizers is to determine which optimization

algorithm works best for our problem. The selection of the number of epochs is a part
of hyperparameter tuning, combined with other hyperparameters like learning rate and
batch size. It is a hyperparameter that is tuned using experimentation and validation to
find the optimal value for each algorithm. The Adam, SGDM, and RMSprop algorithms
have different convergence rates and dynamics. They update the model’s parameters
differently, affecting how fast they converge to an optimal solution. Adam converges faster
with 20 epochs; similarly, RMSprop converges faster with 30 epochs, while SGDM requires
100 epochs to reach a similar level of performance. Comparing the algorithms under an
equal number of epochs might not indicate their actual capabilities and may lead to an
unfair evaluation.

A larger batch size can provide a more stable estimate of the gradient but may require
more memory. On the other hand, a smaller batch size can introduce more noise but may
converge faster.

When starting with a large learning rate of 0.9, the weights associated with each
hidden unit will tend to converge toward extremely large positive or very large negative
values. The derivatives of the error with regard to the hidden units will approach zero,
resulting in no reduction in the error. We try different learning rates with low magnitudes
to minimize the stochastic variations in the error caused by the varying gradients across
distinct mini-batches.

At the first training of the RMSprop model, we observed an overfitting. In order to
prevent overfitting, we adjust the momentum and learning rate hyperparameters. First,
we change the Gradient Decay Factor to the value 0.999 to control the strength of L2
regularization. After many training procedures with different values or the momentum
and learning rate, we select those that provide the best accuracy to the model. Comparing
all the figures, we conclude that Adam introduces the best validation and test accuracy.
The results obtained by employing the Adam optimizer are the following:

Best validation accuracy: 90.4%, best test accuracy: 0.907, Gradient Decay Factor = 0.999,
learning rate = 0.001.
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Based on the outcomes obtained from our experimentation, it can be inferred that
the Adam optimization method has several benefits in comparison to other optimization
techniques. The technique demonstrates computational efficiency, demands less memory
compared to different approaches, and has shown quicker convergence in several instances.
Additionally, the model exhibits robustness in selecting hyperparameters and demonstrates
satisfactory performance when using default values. Consequently, the final model of our
optimization approach is an ANN with the subsequent values:

• Number of layers: 3
• Layers size: 100, 50, 5
• Activation function: Tanh
• Best validation accuracy: 90.4%,
• Best test accuracy: 90.7%

Finally, in our model, we start with a validation accuracy of 80.9% with a test accuracy
of 79%, and after the optimization method, the validation accuracy reaches 90.4% with a
test accuracy of 90.7%. So, the optimized ANN with 90.7% accuracy is a superior method
for PTFD.

This optimization of ANNs in a mathematical way is inspected to overcome the
limitations of the IEC-599 standard, the Rogers Ratio Method. The optimized ANN is
simulated and tested in MATLAB R2023a—Deep Network Designer. The dataset used in
this study consisted of 60 data samples obtained from the IEEE DGA datasets [15] and the
dataset used in our previous work [8].

The results are illustrated in Table 11. The accuracy of each approach is calculated
using the formula (A) = (Total Samples Correctly Classified)/(Total Samples). Column (1)
is given the serial number of every sample. Columns (2) to (6) indicate the concentrations
of the gases in ppm. The real faults of the transformers under examination are provided in
column (7).

Table 11. Results.

(1)
S.N

(2)
H2

(3)
CH4

(4)
C2H6

(5)
C2H4

(6)
C2H2

(7)
Real
Fault

(8)
Rogers

(9)
Agr.

(10)
ANN

(11)
Agr.

1 13 138 83 16 0 F4 F4
√

F4
√

2 762 93 38 54 126 F3 F3
√

F3
√

3 43 116 65 139 0 F4 F4
√

F4
√

4 179 306 73 579 0 F4 F4
√

F4
√

5 57 141 38 51 0 F4 F4
√

F4
√

6 40 8 34 15 0 F4 F4
√

F4
√

7 35 283 121 222 0 F4 U.F —– F4
√

8 15 159 29 87 0 F4 U.F —– F5 —–
9 55 159 114 493 0 F4 F4

√
F4

√

10 37 123 67 52 0 F4 F4
√

F4
√

11 723 191 110 293 288 F3 F3
√

F3
√

12 7 15 78 58 0 F4 F4
√

F4
√

13 30 51 12 54 0 F4 F4
√

F4
√

14 31 56 33 77 0 F4 F4
√

F4
√

15 109 226 68 192 0 F4 F4
√

F4
√

16 137 279 66 505 0 F4 F4
√

F4
√

17 59 119 36 70 0 F4 F4
√

F4
√

18 151 242 68 232 0 F4 F4
√

F4
√

19 870 77 73 54 14 F2 F2
√

F2
√

20 376 575 146 1092 0 F4 F4
√

F4
√

21 269 1081 347 1725 25 F5 U.F —– F5
√

22 10 10 8 1 0.01 F4 F4
√

F4
√

23 30 22 14 4.10 0.1 F1 F1
√

F1
√

24 2.90 2 2 0.3 0.1 F1 F1
√

F1
√

25 4 99 82 4 0.1 F4 F4
√

F4
√
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Table 11. Cont.

(1)
S.N

(2)
H2

(3)
CH4

(4)
C2H6

(5)
C2H4

(6)
C2H2

(7)
Real
Fault

(8)
Rogers

(9)
Agr.

(10)
ANN

(11)
Agr.

26 21 34 5 47 62 F3 U.F —– F3
√

27 50 100 51 305 9 F4 F4
√

F4
√

28 120 17 32 4 23 F1 U.F —– F1
√

29 980 73 58 12 0.01 F2 F2
√

F2
√

30 1607 615 80 916 1294 F3 U.F —– F3
√

31 14.7 3.7 10.5 2.7 0.2 F4 U.F —– F5 —–
32 181 262 41 28 0.01 F4 U.F —– F4

√

33 173 334 172 812.5 33.7 F4 F4
√

F4
√

34 127 107 11 154 224 F3 F4 —– F3
√

35 60 40 6.9 110 70 F3 F4 —– F3
√

36 980 73 58 12 0.01 F2 F3 —– F2
√

37 86 187 136 363 0.01 F4 F3 —– F5 —–
38 10 24 372 24 0.01 F4 U.F —– F4

√

39 260 3 18 2 0.01 F2 F2
√

F2
√

40 586 19 77 6 0.01 F2 F4 —– F2
√

41 20 175 92 14 0.02 F4 F4
√

F4
√

42 801 87 45 62 150 F3 F3
√

F3
√

43 51 99 75 150 0.03 F4 F4
√

F4
√

44 200 298 69 602 0.05 F5 F4 —– F4 —–
45 60 154 41 49 0 F4 F4

√
F4

√

46 40 8 34 15 0.2 F1 F4 —– F4 —–
47 45 283 158 199 0 F4 U.F —– F4

√

48 21 159 22 91 0.02 F4 U.F —– F4
√

49 55 159 128 502 0 F5 F4 —– F5
√

50 41 223 71 52 0 F3 F4
√

F4 —–
51 689 203 129 301 362 F2 F3

√
F2

√

52 10 24 95 45 0.02 F4 F4
√

F4
√

53 45 69 7 45 0.003 F5 F4 —– F5
√

54 45 59 45 89 0.01 F4 F4
√

F4
√

55 98 198 70 201 0.04 F4 F4
√

F4
√

56 204 302 57 495 0 F5 F4 —– F5
√

57 45 125 48 82 0 F4 F4
√

F4
√

58 201 256 54 224 0 F4 F4
√

F4
√

59 905 83 81 63 12 F2 F2
√

F2
√

60 402 604 99 998 0.02 F5 F4 —– F5
√

Key: UF = Unidentified fault,
√

= fault type diagnosed correctly, —– = fault type not diagnosed correctly, Agr. =
agreement with real fault.

In columns (9) and (11), the outcomes of each method are contrasted with the actual
faults. In column (8), the faults are obtained using the conventional Rogers Ratio Method.
This method cannot predict 11 faults (the primary limitation of the Rogers Method), and
there are also 11 incorrect estimations, as we can notice in column (9).

The Rogers Ratio Method’s accuracy is 63.3%, which is relatively low.
Column (10) depicts the output of the ANN. The ANN model can accurately predict

38 faults and incorrectly predict 6 instances, as seen in column (11). The level of precision
the ANN shows is remarkably high; it obtains 90%. The aforementioned experiments
proved that the test accuracy was nearly 90.7%, which is extremely close to 90%.

So, the ANN method’s accuracy is 90%, which is remarkably high.

4. Conclusions

This research introduces an approach to improve the diagnostic precision of identifying
power transformer faults by employing an optimized ANN. The selection of an optimizer
is contingent upon the particular problem, the dataset, and the network’s architecture; it
often requires experimentation to find the most suitable one. Moreover, the parameters of
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an ANN do not have definitive optimum values. The primary objective of ANN designers
is to identify a proper learning algorithm that may enhance the generalization capability
of an ANN model. Given this context, an intensive search is performed for the best
training algorithm and its hyperparameters, including the neurons, learning rate, activation
functions, L2 regularization factor, and momentum that may provide the desired results.
As we can observe from the confusion matrices and ROC curves of all search methods,
the class with the best predicted score (100%) is Class 2, Low Energy Discharge faults. As
we can notice from the data samples, the majority of the samples are from Low Energy
Discharge defects. Considering this point, we can determine that an increase in the number
of samples within a given dataset leads to a higher classification accuracy. The number of
samples in our project is 400 gas ratios, but achieving higher accuracies (observable from
the literature and confirmed by our experimental findings) requires a sufficient number
of training samples. However, obtaining a large amount of data is difficult in the field of
PTFD. The limited data availability limits the generalizability of the results in PTFD using
ANNs. There is a necessity for more extensive and diverse datasets to train and validate
ANN models effectively.

Samples must be taken in order to accomplish better classification accuracy and
reduce architectural complexity. Moreover, research focusing on enhancing data quality
and managing inconsistencies is crucial for accurate fault diagnosis. Data consistency and
the quality of DGA can differ significantly depending on the sensor station and maintenance
operations. Another issue which is crucial for future work is multi-fault diagnosis. In this
work (and most current studies), we concentrate on single-fault diagnosis, such as detecting
a distinct fault type, e.g., a thermal fault. It would be valuable to design ANN-based models
competent in diagnosing multiple faults that occur simultaneously or complicated faults.

It can be confirmed that hyperparameters have an essential role in controlling the
learning process of a model. Furthermore, the specific values assigned to these hyperpa-
rameters have a significant impact on the overall performance of the model. Likewise,
the optimization of hyperparameters and the augmentation of data samples are essential
factors in improving the accuracy and reducing the complexity of the ANN.

Furthermore, the optimized ANN model is systematically compared to the Rogers
Ratio Method, which has an accuracy of only 63.3%. In contrast, the ANN model demon-
strated remarkable precision, yielding an accuracy of 90%. Conclusively, these findings
highlight the potential of our optimized ANN model as an advanced and accurate solution
for transformer health assessment and maintenance, effectively overcoming the limitations
associated with the conventional DGA technique, the Rogers Ratio Method.
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