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Abstract: As engineering systems become increasingly complex, reliability-based design optimization
(RBDO) has been extensively studied in recent years and has made great progress. In order to achieve
better optimization results, the mathematical model used needs to consider a large number of uncer-
tain factors. Especially when considering mixed uncertainty factors, the contradiction between the
large computational cost and the efficiency of the optimization algorithm becomes increasingly fierce.
How to quickly find the optimal most probable point (MPP) will be an important research direction
of RBDO. To solve this problem, this paper constructs a new RBDO method framework by combining
an improved particle swarm algorithm (PSO) with excellent global optimization capabilities and a
decoupling strategy using a simulated annealing algorithm (SA). This study improves the efficiency
of the RBDO solution by quickly solving MPP points and decoupling optimization strategies. At
the same time, the accuracy of RBDO results is ensured by enhancing global optimization capa-
bilities. Finally, this article illustrates the superiority and feasibility of this method through three
calculation examples.

Keywords: reliability-based design and optimization; particle swarm optimization algorithm; simulated
annealing algorithm; most probable point

MSC: 60C05; 65Y04; 65Y20; 62D05

1. Introduction

The construction of engineering systems will inevitably be affected by complex un-
certain factors [1–3]. Especially with the increasing complexity of engineering systems,
various uncertainties will be mixed and difficult to distinguish [4]. If these factors cannot be
analyzed accurately, the reliability and security of the engineering system cannot be guar-
anteed [5–8]. At present, the Reliability-Based Design Optimization (RBDO) method has
been widely used to improve the reliability and safety of complex mechanical systems [9].
However, with the growth of social demand, new technology should be introduced con-
stantly to improve the development level of reliability optimization design and meet the
needs of economic development for engineering [10].

RBDO takes into account the inevitable random factors in engineering systems [11–14].
It ensures that the reliability of the object system is within an acceptable range by optimizing
the objective function [15]. It is an extension of deterministic optimization methods and
is used to solve complex uncertain engineering system optimization problems [16,17]. In
recent years, RBDO has been discussed and studied by a large number of scholars. Many
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algorithms and models have been developed to solve the RBDO problem. Liao et al. [18]
adopted an improved double-loop calculation method to improve the computational
efficiency of the RBDO model. In this method, RBDO is divided into two layers and is
calculated step by step through reliability analysis (RA) and deterministic optimization
(DO). The optimization strategy of this double-loop method usually has a low optimization
rate. Wang et al. [19] proposed an improved Modified Conjugate Gradient Approach
(MCGA) to improve the RBDO efficiency of nonlinear function functions. This method uses
the improved conjugate gradient method (CGA) to search the most probable point (MPP)
point direction, which improves the efficiency of RBDO. At the same time, unlike gradient
algorithms, metaheuristic algorithms are widely used in RBDO methods. Safaeian et al.
used the particle swarm algorithm (PSO) [20] combined with a weighted simulation-based
design method for design optimization, which improved the accuracy of the RBDO method
and the ability to solve general RBDO problems. However, this method uses a double-loop
method to solve the problem, which is less efficient. Zhong et al. used a Harris Hawks
Optimization algorithm [21], which has a higher efficiency in solving the global optimal
solution. Since the derivative of the limit state function is not required, this method has a
higher calculation speed, but its accuracy still has room for improvement. Jafar et al. [22]
improved the previous Harris Hawks Optimization algorithm and transformed the problem
of solving unit vectors with a highly nonlinear performance function into a constrained
optimization problem, which greatly improved the solution efficiency of this method.

The above algorithm does not consider mixed uncertainties. However, studies have
long found that mixed uncertainty also has a great impact on the analysis of engineering
systems [23]. In recent years, engineering problems considering mixed uncertainties have
been extensively studied. Such problems containing multiple uncertainties pose challenges
to the optimization efficiency and difficulty of RBDO. Zhang et al. [24] proposed a hybrid
uncertainty analysis method based on probability and evidence theory, which improved
the efficiency of RBDO analysis. Wang et al. [25] proposed an RBDO solution strategy that
relies on conditioning processing and convexity theorem. This method uses an improved
genetic algorithm and has a relatively good application effect on optimization tasks that
consider time-varying and time-invariant mixed variables. However, this method is only
suitable for time-related RBDO problems. Thu et al. [26] used the PSO algorithm combined
with the Gaussian process to propose a new reliability design optimization method. This
method utilizes the excellent global optimization capabilities of the PSO method, but its
optimization capabilities for engineering problems that consider uncertainty are yet to
be discussed. As shown in Figure 1, the methods used in past studies are demonstrated.
Due to space limitations, only typical algorithm strategies are selected to demonstrate the
development process.

After the literature research, it was found that the PSO method can better solve
the problem of local convergence in the analysis process than other heuristic algorithms.
Compared with the double-loop method with huge computational cost and the single-loop
method optimization algorithm with difficulty in ensuring the optimization accuracy of
high-dimensional nonlinear problems, the decoupled optimization strategy combined with
the computationally efficient simulated annealing (SA) algorithm has a higher solution
speed. This study combines these two optimization algorithms and proposes a new RBDO
method. It is used to solve the RBDO problem of high-dimensional nonlinear engineering
structures considering mixed uncertainties. This method is dedicated to solving the purpose
of improving the accuracy and computational efficiency of optimization results during the
optimization process.

The rest of the parts of this paper include: Section 2 summarizes the PSO algo-
rithm and SA algorithm; Section 3 illustrates the idea of combining the two algorithms.
Section 4 verifies and compares with other methods through examples; Section 5 provides
a summary and future work.
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2. Two Algorithms for Optimizing the Problem
2.1. Particle Swarm Optimization
2.1.1. Definition of Particle Swarm Optimization

PSO also known as the foraging algorithm, is a widely used meta-heuristic algorithm,
which is derived from the study of bird predation behavior [27,28]. The algorithm is
originally a simplified model based on swarm intelligence inspired by the regularity of bird
swarm activity. Based on the observation of the activity behavior of animal clusters, the
PSO algorithm makes use of the information sharing of each individual in the group, so that
the movement of the whole group can evolve from disorder to order in the problem-solving
space [29,30]. Finally, it can obtain the optimal solution successfully.

In PSO, the optimal solution is generated by reducing the distance between each
search individual and the target point [31]. Under this goal, the position of the particle
varies depending on two factors: the velocity of the particle and the current position of
the particle. During the search for the optimal solution, the velocity of the particle and the
current position of the particle are constantly changing. The value of velocity is determined
by the particle with the optimal current position and the particle with the optimal global
position. Its mathematical expression is{

Vk+1 = wVk + c1r1(pbest − Xk) + c2r2(gbest − Xk)
Xk+1 = Xk + Vk+1

(1)

where Vk represents the particle velocity of k iterations; Xk represents the particle position
of k iterations; w represents inertia weight; pbest represents the optimal value of the particle
at its current position; gbest represents the global optimal value; c1, c2, respectively represent
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individual learning coefficient and global learning coefficient; r is a random value between
0 and 1, called the learning rate.

In the process of iteration, speed boundary detection should be carried out after each
speed update, that is, whether the maximum speed limit is exceeded. Generally, adopting
v(v > vmax) = vmax, so as the location. The common termination conditions are reaching
the set number of iterations and keeping the fitness for n times without changing [32].

2.1.2. Optimization of PSO Algorithm

Equation (1), w describes the “inertia” of particles. In the early stage of iteration, the
value of w should be larger to ensure the independent flight of each particle and to search
the space as fully as possible. In the later stage of iteration, the value of w should be smaller
and more “learned” from other particles. Similarly, c1 and c2 are the maximum flight steps
toward individual and global extremes, respectively. c1 should be larger in the early stage,
while c2 should be larger in the late stage, to balance the local search ability and global
search ability of particles. In the PSO algorithm, the parameters w, c, and r jointly affect the
search direction of particles. So even if other particles find a better solution, the inertia of
the current particles is too large to fly to a better position quickly.

Against the deficiency of standard particle swarm algorithm, through the introduction
of new mechanism and parameter optimization of adaptive changes of PSO algorithm [33].
Firstly, the parameter optimization of the PSO algorithm. As mentioned above, the inertia
weight w should be larger in the early stage of search and smaller in the late stage, so that
particles can search the entire design space as much as possible in the early stage and more
carefully in the late stage. For this optimization strategy, the inertia weight w is adjusted as
follows [30]:

wk = wmin +
ger− k

ger
(wmax − wmin), (2)

where wk represents the inertia weight at each iteration; wmin and wmax, respectively, denote
the lower and upper bounds of the inertia weight; k represents the number of current
iterations; ger represents the total number of iterations; as can be seen from the expression
of wk, the value of inertia weight wk decreases monotonically, realizing the function of
decreasing gradually with the process of search. Similarly, the same optimization strategy
is adopted for the learning coefficient c. The expression of the optimized c1 and c2 is shown
as follows: {

ck1 = cmin + ger−k
ger (cmax − cmin)

ck2 = cmax − ger−k
ger (cmax − cmin)

, (3)

where ck1 represents the individual learning coefficient in each iteration; ck2 represents the
global learning coefficient of each iteration. In addition, the learning rate r is no longer
a random value between 0 and 1, but a random variable subject to the standard normal
distribution, namely r ∼ (0, 1).

Secondly, to make the search process avoid falling into local optima and focus more
on global optima, an additional method of updating particle position X and velocity V are
used for reference here. The method is as follows:

Xk+1 = Xk + VE
k+1

VE
k+1 = r3(gbest − Xk) + Normrand(0, 1)× γk

γk =
√

1− k/ger
, (4)

where the new position is calculated by the global optimal value and the random number
obeying the normal distribution. r3 is a random number between 0 and 1; Normrand(0, 1)
is a randomly generated vector conforming to the standard normal distribution; γk is an
adaptively variable step that changes the size of the random value.

As can be seen from the expression of VE
k+1, since a random value is introduced, the

probability of falling into a local optimal when updating the position can be reduced.
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However, the efficiency of the search will decrease accordingly in the meantime. In order
to balance the two results, a new decision mechanism is introduced here:

Xk+1 =

{
Xk + VE

k+1, r ≤ Pk
Xk + Vk+1, r > Pk

, (5)

where r is a random number between 0 and 1; Pk represents the probability of the particle
choosing two position updating modes. The expression is

Pk = 0.2 + 0.8
√

k/ger. (6)

As can be seen from the expression of Pk, with the progress of iteration, the value
of Pk keeps increasing, which makes the probability of using VE

k+1 to update the speed of
V correspondingly increase.

This mechanism for updating particle positions ensures that the particle is more
focused on the global optimal value later in the search process. This improves the efficiency
to some extent and reduces the probability of falling into local optimal.

2.2. Simulated Annealing Algorithm
2.2.1. Definition of Simulated Annealing Algorithm

The annealing process of a metal involves heating the metal to a sufficiently high
temperature and then letting it slowly cool down to give the metal some properties it
did not have before [34–36]. When the temperature increases, the particles inside the
solid become disordered as the temperature increases. An increase in internal energy then
occurs and the particles become unstable. The particles gradually become orderly when
slowly cooled. As the energy decreases, the particles become stable [37]. The simulated
annealing algorithm starts from a higher initial temperature. With the continuous decline
of temperature parameters, the algorithm combines the probability jump characteristics to
randomly find the global optimal solution of the objective function in the solution space.

2.2.2. Simulated Annealing Algorithm

The SA mechanism can avoid falling into local optimum to some extent. Different
from many intelligent optimization algorithms, the SA algorithm will jump to the solution
with a certain probability. Even if it finds a worse solution than the current solution in the
process of local search, it can avoid falling into the local optimal [38]. This way of updating
solutions requires an important judgment criterion called the Metropolis criterion:

P =

{
1, Et+1 < Et

e
−(Et+1−Et)

kT , Et+1 ≥ Et
(7)

where P is the probability of accepting the new solution; Et is the system energy correspond-
ing to the current solution Xt (objective function); k is the temperature drop coefficient,
which is a value between 0 and 1. T indicates the initial temperature. Based on this criterion,
it can be concluded that (here is to find the minimum value):

(1) When the objective function corresponding to the new solution is less than the objec-
tive function value of the current solution, it will accept the new solution. That is, the
probability of accepting the new solution is 1;

(2) When the corresponding objective function of the new solution is greater than the
objective function value of the current solution, the new solution will be accepted
with a certain probability. When other variables are certain, the more the value of
the objective function corresponding to the new solution exceeds the value of the
objective function of the current solution, the smaller the probability of accepting the
new solution.

The steps of the SA algorithm are as follows:
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Step 1: Set the initial temperature T; The initial solution X0 is generated randomly and the
objective function E(X0) is calculated;
Step 2: Make T = kT, k ∈ (0, 1);
Step 3: Make random perturbation to the current solution Xt, generate a new solution
Xt+1 in its field, and calculate its corresponding function value E(Xt+1). Meanwhile, judge
whether to accept the new solution according to the Metropolis criterion above;
Step 4: At temperature T, iterate the disturbance and acceptance process for L times;
Step 5: Determine whether the terminal temperature is reached. If so, terminate; otherwise,
return to step 2.

3. The Combination of Intelligent Algorithms
3.1. First-Order Reliability Method
3.1.1. First-Order Reliability Method

The basic idea of the First-order reliability method (FORM) is to simplify the joint
probability density function fx(x) and the approximate limit state function g(x), primarily
by performing a first-order Taylor approximation expansion at MPP [39–42]. The process
of using FORM to calculate reliability includes coordinate space conversion and integral
boundary approximation [43,44].

Coordinate space conversion refers to converting random variables subject to various
probability distributions into variables subject to a standard normal distribution by the
Rosenblatt method [45]. Suppose the random variable follows the normal distribution with
mean value and standard deviation value, then the random variable transformed by the
Rosenblatt method is

u =
x− µ

σ
. (8)

The approximation of the integral boundary is an important part of FORM. Its main
idea is to perform first-order Taylor expansion of the integral boundary g(u) = 0 to
make the integral solution of failure probability easier. The first-order Taylor expansion of
g(u) can be expressed as

g(u) = g(u∗) +∇g(u∗)(u− u∗)T , (9)

where u∗ represents the expansion point; ∇g(u∗) represents the gradient of the expansion
point. To reduce the precision loss caused by Taylor expansion, the MPP point on the
fundamental boundary g(u) = 0 is expanded. Search for MPP points on integral boundary
g(u) = 0, that is, maximize the joint probability density:max

n
∏
i=1

1√
2π

e−
ui

2

2

s.t. g(u) = 0
. (10)

By observing Equation (10), it can be seen that the above process is a constrained
optimization problem. The deformation of Equation (10) is carried out:

n

∏
i=1

1√
2π

e−
ui

2

2 =
1√
2π

e
− 1

2

n
∑

i=1
ui

2

. (11)

And,

max
n

∏
i=1

1√
2π

e−
ui

2

2 ∼ min
n

∑
i=1

ui
2. (12)

Therefore, the search model of MPP points can be expressed as:{
min ‖u‖
s.t. g(u) = 0

, (13)
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where ‖u‖ =
√

u1
2 + · · ·+ un2 represents the magnitude of the vector u. The above

formula is solved to obtain u = u∗, which is the MPP point. Let β = ‖u∗‖, from the
perspective of two-dimensional geometry, the MPP point can be viewed as the point
g(u) = 0 tangent to a circle centered at the origin and with radius β. According to literature,
the calculation formula of reliability can be expressed as:

R = φ(β), (14)

where φ(·) represents the cumulative distribution function obeying normal distribution.
The above are the general steps of the First-order reliability analysis method. Accord-

ing to different solving methods, FORM can be divided into the Reliability Index Approach
(RIA) [40] and the Performance Measure Approach (PMA) [46].

3.1.2. Reliability Index Method

RIA uses a reliability index instead of failure probability constraints, the mathematical
model is the MPP point search model [47–50]. It can be seen that the mathematical model
is an optimization problem. A variety of optimization algorithms, such as Sequential
Quadratic Programming (SQP), can be used to solve the optimization model.

3.1.3. Performance Measure Approach

When the failure probability is 0 or 1, the corresponding reliability index will approach
infinity or infinitesimal, resulting in RIA failure. At this time, PMA can be used to solve the
problem. Its mathematical model is [51]:{

min g(u)
s.t. ‖u‖ = βt

, (15)

where βt represents the target reliability index. The above model indicates that un-
der the given reliability, if g(u) > 0, it means that the solution can meet the given
reliability requirements.

Through the mathematical model of RIA and PMA, it can be seen that the solution of
the two ways is a reciprocal inverse process. The difference is that the feasible region of
PMA is a sphere, while that of RIA is a hypersurface. In terms of computational efficiency,
PMA has more advantages than RIA.

3.1.4. Reliability Analysis Method Considering Stochastic and Interval Uncertainties

In the above introduction to FORM, design variables are random variables that obey a
normal distribution. However, in many practical engineering applications, the distribution
of some random variables may not be clear [52–54]. The possible values of these uncertain
variables are usually only in the specified interval without accurate distribution information.
That is, there is interval uncertainty. When dealing with such mixed uncertainty RBDO
problems, the computational complexity will be greatly increased. A simple method is to
treat the interval variables as random variables to approximate the calculation. Although
this method can simplify the reliability analysis, it cannot guarantee the accuracy of the
results [55]. To solve such problems, Du et al. [23] proposed a kind of mixed uncertainty
analysis method.

Compared with the reliability analysis considering random and interval uncertainty,
some changes should be made based on the original calculation model. The transformed
RIA model is directly presented here:

min ‖uMPP(y)‖
s.t. g(u, y) = 0

yL ≤ y ≤ yU
, (16)



Mathematics 2023, 11, 4790 8 of 24

where y represents interval variable; yL represents the lower bound of the interval; yU is
the upper bound of the interval. Similarly, the PMA mathematical model considering
stochastic and interval uncertainty is:

min g(d, u, y)
s.t. ‖u‖ = βt

yL ≤ y ≤ yU
. (17)

It can be seen that reliability analysis considering random and interval uncertainty is
equivalent to adding a set of interval variables and changing the failure boundary based
on reliability analysis considering random uncertainty. The rest parts are the same exactly.
Therefore, when there is interval uncertainty, reliability analysis using the above method
will not bring about redundant calculation steps, so it will not significantly reduce the
calculation efficiency.

3.1.5. Method of Solving MPP Points by Improving PSO

For FORM, the main task is to solve the MPP points. According to the mathematical
models of RIA and PMA, the solution of MPP points is an optimization problem with
constraints. When solving optimization problems, intelligent optimization algorithms,
including PSO, do not need gradient information [56–60]. They can deal with discrete
variable optimization problems since they have strong global search ability [61,62]. The
detailed steps of MPP point solving using the improved PSO algorithm are as follows.

When an intelligent optimization algorithm is used to solve MPP points, the probability
constraint model in first-order reliability analysis can be processed by penalty function in
general [63], as shown below:

min f = ‖U‖+ ηmax{0, g(X)}, (18)

where f represents fitness; η represents the penalty factor, whose expression is:

η =
100
|g(µ)| (19)

Taking fitness f as the optimization objective, the general steps of solving MPP points
by using the improved PSO algorithm are shown as follows:

Step 1: Set the initial conditions for searching MPP points, including the limit state function
g(X), the probability distribution function of the design variable X (a normal distribution
with mean value µ and standard deviation σ), parameters of PSO algorithm, namely:
population number N, the total number of iterations ger, inertia coefficient w, and flight
step length c;
Step 2: Set the boundary conditions, including the lower bound XL = µ− 5σ and upper
bound XU = µ + 5σ of the design variable; the maximum value vmax = XU − XL/100 and
minimum value vmin = −vmax of the speed;
Step 3: Generate the initial population. The initial position X0 = XL + r× (XU − XL) and
initial velocity V0 = vmin + r× (vmax − vmin) of the population should be calculated. The
penalty factor η should be set;
Step 4: Update local optimal value pbest and global optimal value gbest. Firstly, the design
variable U was converted into the random variable X, which obeyed the standard normal
distribution. Then, fitness f = ‖U‖+ ηmax{0, g(X)}was calculated. Finally, pbest and gbest
were screened out;
Step 5: Update the population location. The population location updating method men-
tioned above was used to update all the particles;
Step 6: Check whether convergence occurs. The convergence condition can be g(gbest) < 0.001
or k = ger. If either condition is satisfied, the iteration can be stopped and XMPP = gbest is
output. Otherwise, do k = k + 1 and return to step (4) to continue the iteration.
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The above is the method of solving MPP points by using the improved PSO.

3.2. The Used PSO Algorithm

By using the enhanced PSO algorithm, each constraint function is considered sepa-
rately. During the algorithm process, the best fitness of each individual particle is updated
through the constraint function, and then the best position of the particle is obtained by
comparing the fitness of each individual. Through the optimal position of each particle
in the population, the optimal population position for the current constraint function is
finally obtained. Finally, by comparing the calculation results of each constraint function,
the optimal MPP point is obtained. The calculation steps of the used PSO algorithm are
shown in the Table 1.

Table 1. The calculation steps of the used PSO algorithm.

The PSO Algorithm

Step 1 Firstly, PSO is used to generate a set of initial solutions;

Step 2 For each particle, the value of its objective function is calculated and the current
optimal solution is recorded;

Step 3 Calculate the speed of each particle, according to the speed of updating the positions
of the particles in the solution space;

Step 4 Using the Metropolis criterion to decide whether to accept the new position;

Step 5
The particles are updated in a certain order to make the local optimal particle

position move to the global optimal, which improves the global search performance
of the algorithm

Step 6 Repeat Steps 2 through 5 until the termination condition is reached

By using this method, the advantages of a simple and efficient PSO algorithm can be
brought into play. The SA algorithm can keep the original performance without expending
the energy to adjust the parameters.

3.3. RBDO Decoupling Method

RBDO solution strategies can be divided into double-loop method, single-loop method,
and decoupling method [64]. The double-loop method is the most basic and direct solution
strategy [65]. Its flow is a double-layer nested cycle optimization flow. What is more,
its solving efficiency is the lowest. The single-loop method is the most efficient solution
strategy. However, it has problems such as low precision and difficult convergence [66].
Compared with the other two methods, the decoupling strategy is a very important RBDO
method, which can give consideration to both solving accuracy and solving efficiency.

Sequence Optimization and Reliability Assessment (SORA) method is an efficient
decoupling method for solving RBDO problems [67]. Based on the decoupling idea, SORA
serializes the traditional two-layer nested cycle optimization process. Forming a sequential
deterministic design optimization and controllability analysis process [68]. The main idea
of SORA is to approximate the solution of the RBDO problem. The main method is to make
the constraint gradually shift to the direction of the probability constraint, so as to quickly
get the optimal solution. Its mathematical expression is

find : µX

min : C(µX)
s.t. gi(µX − si) ≥ 0(i = 1, 2, · · · , m)

µL
X ≤ µX ≤ µU

X

, (20)

where si = µ
(k−1)
X − x∗i (i = 1, 2, · · · , m) is the offset vector of the ith probability constraint;

3 was the design point of the last iteration. In SORA, each iteration cycle will construct
an offset vector based on the reliability analysis results of the previous iteration to move
the boundary of the probability constraint. According to the constraint boundary after
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moving, the DO is constructed to update the optimal design scheme. The nested RBDO is
decomposed into a series of reliability analyses and DO problems.

3.4. The Proposed RBDO Method Based on the PSO and SA Algorithm

The analysis optimization method proposed in this paper is a fusion of the meta-
heuristic algorithm RBDO method. Its main idea is that: the SA algorithm and enhanced
PSO algorithm are, respectively, used to perform reliability optimization and reliability anal-
ysis after decoupling. The purpose of improving the efficiency of analysis and optimization
is achieved.

The overall process is as follows:

Step 1: Set the probability distribution of random variables and the reliability index of the
target βt;
Step 2: Set parameters of the PSO algorithm and SA algorithm;
Step 3: Enter the optimization cycle of the SA algorithm. Select the design variable set in
step (1) as the initial point to calculate the value of the objective function;
Step 4: Reliability analysis is carried out on the results obtained in step (3). The improved
PSO algorithm is used to solve the MPP points, calculate the reliability index, and judge
its reliability. If the reliability requirements are met, this solution is output as the optimal
solution. Otherwise, calculate the offset vector, update the probability constraint function,
and return to step (3) for a new round of reliability optimization.

The pseudocode is shown below:

Set initial variables
While1 Reliability index not met

%%Obtain the optimal solution space through annealing method
Using simulated annealing method to generate initial solution space
Random number generator initialization
While2 Does not meet Metropolis criterion Equation (7)

For From 1 to the set number of annealing times
Generate random perturbations to obtain new solutions
Check whether the Metropolis criterion Equation (7) is met, if so, exit the

current annealing
Perform annealing and save the optimal solution during the annealing process.

End for loop
Update random number generator

End the while2 loop and obtain the optimal design variable solution space
%%Using PSO algorithm to find MPP points
%%Perform the following operations for each limit state function

Initialize the population position and velocity according to the optimal solution space
obtained by the annealing algorithm

While3 The current iteration is less than the maximum number of iterations
Update the population position and velocity according to the objective function value of

each population particle
Dealing with boundary issues

End the current while3 loop
Translational failure boundary
Solve to obtain the optimal MPP point
Use this point as the initial solution space for the next cycle.

End the while1 loop

The flowchart of this method is shown in Figure 2:
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4. Experimental Results and Discussion
4.1. Example Verification

In order to obtain the performance of reliability analysis by using the PSO algorithm,
two mathematical examples are selected in this section for verification. The SQP method
and Monte Carlo Simulation (MCS) are selected as a comparison. The MCS is considered an
approximate solution. Therefore, its calculation error is considered to be 0. In this article, it
is represented by the symbol “−−”. The two examples are a convex function and a concave
function, respectively. The variables of the convex function only have random uncertainty,
while those of the concave function have both random uncertainty and interval uncertainty.

4.1.1. Convex Limit State Function

The expression of the limit state function of this example is:

g = −ex1−7 − x2 + 10, (21)

where both x1 and x2 have random uncertainty; x1 ∼ N(6.0, 0.8), x2 ∼ N(6, 0.8). The limit
state function is solved. Its convergence process is shown in Figure 3. Different colors in
the figure represent contour distribution. The red dot represents the optimization solution
process. The comparison of results is shown in Table 2 below:
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Table 2. Reliability index of the convex function.

Method Reliability Index Error Solution Time (Milliseconds)

MCS 2.8445 −− 1,948,731.39
SQP 2.8782 1.2% 988.71

Improved PSO 2.8865 1.5% 47.67

It can be seen from the calculation results that the improved PSO algorithm is equiva-
lent to the SQP algorithm in solving accuracy. However, about 50% faster than the SQP
algorithm. It can be seen that the PSO algorithm has better performance in reliability
analysis under stochastic uncertainty.

4.1.2. Concave Limit State Function

In this example, the limit state function can be expressed as:

g =
e0.8x1−1.2 + e0.7x2−0.6 − 7

10
, (22)

where variable x1 has random uncertainty, x1 ∼ N(4.0, 0.8); variable x2 has interval
uncertainty, x2 ∈ [3.2, 4.2]. To solve this concave limit state function, the convergence
process is shown in Figure 4. Different colors in the figure represent contour distribution.
The red dot represents the optimization solution process. The comparison of results is
shown in Table 3.

It can be seen from the table that the accuracy of PSO is about 24% higher than that
of SQP when solving the concave limit state function considering random and interval
uncertainty. It can be seen that the sequential quadratic programming algorithm is not
suitable for dealing with the reliability analysis problem of concave functions under mixed
uncertainty. The improved PSO algorithm has good fitness when dealing with the mixed
uncertainty analysis problems of convex function type and concave function type, which
proves that the performance of the PSO algorithm is good enough to solve MPP points in
first-order reliability analysis.
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Table 3. Concave function reliability index.

Method Reliability Index Error Solution Time (Milliseconds)

MCS 2.9906 −− 1,851,997.89
SQP 2.1681 27.5% 80.32

Improved PSO 2.8891 3.4% 228.12

4.2. Mathematical Example

In this section, a nonlinear mathematical example is used to verify the RBDO method of
the proposed fusion meta-heuristic algorithm. The objective function of this mathematical
example is the sum of two normally distributed design variables x1 and x2. The constraint
function consists of three nonlinear functions. The mathematical model of the optimization
problem is as follows:

find µX = [µx1 , µx2 ]

min f (µx) = µx1 + µx2

s.t. Prob(gi(X) ≥ 0) ≥ ϕ(βt), i = 1, 2, 3
, (23)

where βt represents the target reliability index. Its value here is βt = 3.0; µx1 and µx2 are
the mean values of design variables x1 and x2, respectively. Their standard deviation σ is
0.3. The mean values range between 0 and 10, i.e.,:{

X ∼ N(µX , 0.32)

0 ≤ µX ≤ 10
(24)

The limiting equation of state is
g1(X) = x1

2x2/20− 1

g2(X) = (x1 + x2 − 5)2/30+(x1 − x2 − 12)2/120− 1
g3(X) = 80/(x1

2 + 8x2 + 5)− 1
. (25)

The solution space formed by the limit state equation is shown in Figure 5.
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Figure 5. Design variable feasible domain.

In order to test the performance of the RBDO method of the fusion meta-heuristic
algorithm proposed in this paper, the proposed method is compared with the results
obtained by using the optimization algorithm SQP, GA, and the theoretical solution in
the literature [69]. The results are shown in Table 4. “−−” means there is no relevant
information in Table 4.

Table 4. Optimization result.

Method Optimal Solution Error Solution Time (Milliseconds)

Theoretical method 6.7318 −− −−
SQP 7.4195 10.2% 320.5
GA 6.9754 3.6% 6975.4

The proposed method 7.0988 5.5% 211.9

As shown in Table 4, the method proposed in this study is identical to the results
obtained using two other heuristic algorithms SQP and Genetic algorithm (GA). Compared
with SQP method, the method proposed in this study is closer to the exact solution. Com-
pared with GA method, the time used in this study is greatly reduced, and the solving
speed is increased by 32 times. It can be seen that the method proposed in this study has
reliable accuracy and superior solving efficiency.

4.3. Volume Optimization of Gear Reducer

In the engineering example of this section, a classic case of the gear reducer is se-
lected to optimize the reliability design. In order to verify the method presented in this
paper [70,71], the original example is modified to make it a single-discipline design opti-
mization problem considering stochastic and interval uncertainty.

The structure diagram of the gear reducer is shown in Figure 6. The optimization
model has seven design variables that determine the component size of the reducer. When
only random uncertainty analysis is considered, all seven variables are set as random
variables and have a normal distribution, as shown in Table 5. At the same time, this study
also considers mixed random variables to improve the accuracy of calculation results. As
shown in Table 6, change the diameter of the axis to an interval variable. In this example,
the target reliability index is set as βt = 2.4. The corresponding reliability is R = 99.18%.
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Table 5. Random uncertainty description.

Design Variable Mean Value Standard
Deviation

Distribution
Type

Lower Bound
of Mean

Upper Bound
of Mean

Tooth width factor x1 xM
1 0.01xM

1
Orthographic
distribution 2.63 3.57

Module of gear teeth x2 xM
2 0.01xM

2
Orthographic
distribution 0.71 0.81

Number of teeth of gear 1 x3 xM
3 0.01xM

3
Orthographic
distribution 17 23

Length of shaft 1 x4 xM
4 0.01xM

4
Orthographic
distribution 7.31 8.29

Length of shaft 2 x5 xM
5 0.01xM

5
Orthographic
distribution 7.31 8.29

Shaft 1 diameter x6 xM
6 0.01xM

6
Orthographic
distribution 2.93 3.87

Shaft 2 diameter x7 xM
7 0.01xM

7
Orthographic
distribution 5.03 5.47

Table 6. Interval uncertainty description.

Design Variable Upper Bound of Interval Lower Bound of Interval

Shaft 1 diameter x6 2.93 3.87
Shaft 1 diameter x7 5.03 5.47

In this optimization problem, the objective is to minimize the volume V of the gear
reducer, whose mathematical expression is

V = V1 + V2, (26)

where V1 and V2 represent the volume of the gear and the volume of the bearing, respec-
tively. The volume of the gear can be expressed as

V1 = 0.7854x1x2
2(3.3333x3

2 + 14.9334x3 − 43.0934)− 1.508x1(x6
2 + x7

2). (27)

The volume of the bearing can be expressed as

V2 = 7.477(x6
3 + x7

3) + 0.7854(x4x6
2 + x5x7

2). (28)

The constraint function is the related performance index of the gear reducer, including
stress, size, displacement, etc., 11 in total.
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The optimization model of this problem is
find X = [x1, x2, x3, x4, x5, x6, x7]

min f = V1 + V2

s.t. Prob(gi(X) ≥ 0) ≥ ϕ(βt), i = 1, 2, · · · , 11
. (29)

The stress constraint function of the gear reducer performance is
g1 = 1− 27/(x1x2

2x3)

g2 = 1− 397.5/(x1x2
2x3

2)

g3 = 12− x1/x2

g4 = x1/x2 − 5

. (30)

The dimension constraint function is

g5 = 1− 1.93x4
3/(x2x3x6

4)

g6 = 1− 1.93x5
3/(x2x3x7

4)

g7 = 1100− A1/B1

g8 = 1− (1.5x6 + 1.9)/x4

g9 = 1− (1.1x7 + 1.9)/x5

. (31)

where A1 =
√
[745x4/(x2x3)]

2 + 16.9× 106; B1 = 0.1x6
3.

The displacement constraint function is{
g10 = 850− A2/B2
g11 = 40− x2x3

, (32)

where A2 =
√
[745x5/(x2x3)]

2 + 157.5× 106, B2 = 0.1x7
3.

For this optimization model, the RBDO method of fusion meta-heuristic algorithm
proposed in this paper is used to solve it. Meanwhile, the case where only random
uncertainty is considered is calculated. The calculation results of the two uncertain cases
are shown in Table 7 below.

Table 7. Optimization result.

Uncertainty Description Optimal Solution Error

Comparison method(MCS) 2753.8
SQP 2851.2653 3.54%
GA 2891.1236 4.99%

The proposed method 1 2773.0126 0.69%
The proposed method 2 2814.9546 2.22%

For this algorithm, this study uses the results obtained by MCS to be approximately
regarded as the exact solution to compare other solutions. Judging from the calculation
results in Table 7, it is found that when using the optimization results (The proposed
method 1) that do not consider mixed variables, the optimization results of this article are
very close to the exact solution. Considering the complex influencing factors in engineering,
this paper also adopts complex optimization conditions that consider multiple variables.
Although the result is worse than the proposed method 1, it has higher stability. In addition,
this article also compared it with two other heuristic algorithms, SQP and GA algorithms,
and found that the results of this algorithm are basically consistent with the other two
results. This proves the feasibility of this method.
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4.4. Composite Cylinder Size Optimization

This section further illustrates the effectiveness of the proposed method by combining
cylinder size optimization cases [72]. The composite cylinder is composed of an inner
cylinder and an outer cylinder. The inner diameter of the inner cylinder is a, the outer
diameter is b, the inner diameter of the outer cylinder is b, and the outer diameter is c. The
height of the composite cylinder is 50 mm. The cylinder body is subjected to a pressure of
size p. The structure and initial size of the composite cylinder are shown in Figure 7.
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The optimization goal of the composite cylinder is to minimize the volume of the
composite cylinder while satisfying the allowable equivalent stress and tangential stress of
the inner and outer cylinders. The optimization problem includes three design variables:
x1, x2, and x3, corresponding to the inner diameter a and outer diameter b of the inner
cylinder and the outer diameter c of the outer cylinder, respectively. There are 8 constraint
conditions, among which the equivalent stress and tangential stress are all implicit expres-
sions. The approximate mathematical expressions need to be established by finite element
analysis. The optimization model of the composite cylinder is as follows:

find x = (x1, x2, x3)

max f = V = 12.5πx1
2

s.t. Prob(gi(X) ≥ 0) ≥ ϕ(βt), i = 1, 2, · · · , 8
, (33)

where βt is the target reliability index. Here, βt = 2.4.
The stress constraint and geometric constraint of the inner cylinder are

g1 = S− S1

g2 = τ − τa
1

g3 = τ − τb
1

g4 = b− 1.2a

. (34)

The stress constraint and geometric constraint of the outer cylinder are
g5 = S− S2

g6 = τ − τb
2

g7 = τ − τc
2

g8 = c− 1.2b

. (35)
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The value range of the design variable of the composite cylinder is as follows:
31.496 ≤ a ≤ 40.64
38.1 ≤ b ≤ 50.8
30.48 ≤ c ≤ 60.96

, (36)

where S and τ represent allowable equivalent stress and tangential stress, respectively;
S1 and S2 represent the maximum equivalent stress of inner cylinder and outer cylinder,
respectively; τa

1 and τb
1 represent the maximum tangential stress on inside diameter a and

outside diameter b of the inner cylinder; τb
2 and τc

2 represent the maximum tangential
stresses on inside diameters b and outside diameters c of the outer cylinder. Ansys Work-
bench software was used for finite element analysis. The relevant parameters of the
composite cylinder are shown in Table 8.

Table 8. Composite cylinder-related parameters.

Name Symbol Value

Modulus of elasticity/GPa E 210
Poisson’s ratio ρ 0.3

Internal pressure/MPa p 139.7
Allowable stress/MPa S 607.7

Allowable shear stress/MPa τ 244.5

Three-dimensional modeling was carried out in Ansys Workbench. The inner diameter
a of the inner cylinder, outer diameter b of the inner cylinder, and outer diameter c of the
outer cylinder were set as input parameters, which were used to solve the subsequent
response surface. Tetrahedral elements are used to divide the grid. To ensure the number
of elements and nodes on the composite cylinder wall, the cell size is set as 1 mm. The
displacement constraints in the direction of X, Y, and Z are, respectively applied to the
cylinder end face of the composite cylinder. Meanwhile, the stress loading p is applied to the
inner cylinder of the inner cylinder. The contact between the inner cylinder and the inner
cylinder is selected as “no separation” in the “connection” option. The equivalent stress
and maximum shear stress were solved, respectively. The results are shown in Figure 8.
The equivalent stress and maximum shear stress were set as output parameters.

According to the results of finite element analysis, the stress of the inner cylinder
exceeds the maximum allowable value, so it cannot meet the use requirements at present.
Its size parameters need to be further optimized. In this example, the expressions of
the equivalent stress and tangential stress are approximated by polynomials. Quadratic
polynomials with cross terms are selected here. The form is that the finite element analysis
results show that the stress of the inner cylinder exceeds the maximum allowable value,
so it cannot meet the use requirements at present. Its size parameters need to be further
optimized. In this example, the expressions of equivalent stress and tangential stress are
approximated by polynomials. Here, the quadratic polynomial with cross terms is selected.
Its form is

F̃(x) = a0 +
3

∑
i=1

bixi +
3

∑
i=1

cixi
2 +

2

∑
i=1

3

∑
j=i+1

dijxixj + e123x1x2x3. (37)

The response surface module in Ansys Workbench software is used to generate design
points and calculate corresponding output values. The results are shown in Table 9.

The coefficients of the quadratic polynomial are solved in Matlab by using the above
10 groups of design points. The obtained values of each system are shown in Table 10.

By the above method, the limit state function is expressed explicitly instead of implic-
itly. In this problem, which has random uncertainty, their probability distribution is normal.
Their standard deviation is 1% of their mean. c has interval uncertainty. Its value range is
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shown in Equation (36). The results are shown in Table 11 below. It can be seen from the
optimization results that the method proposed in this article can obtain a smaller objective
function value. This shows that the optimization results obtained by this method are more
superior. In order to verify the feasibility of this method, the optimization results of this
method are modeled and analyzed through finite element analysis.
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Table 9. Design point.

a b c S1 S2 τa
1 τb

1 τb
2 τc

2

1 38.5 39.9 49.7 889.90 997.82 483.00 400.66 526.84 346.94
2 39.2 49.6 53.1 1069.30 518.25 578.87 273.39 273.69 180.97
3 33.0 49.5 55.5 589.82 252.57 324.35 130.22 133.18 89.94
4 39.3 43.8 58.0 792.55 528.81 441.83 281.42 279.47 186.87
5 37.1 47.6 50.4 751.12 438.64 414.24 234.62 230.51 177.81
6 32.8 39.7 52.7 605.15 391.49 337.28 195.88 207.00 135.23
7 34.2 43.1 52.3 811.37 436.74 442.53 218.96 231.57 170.05
8 36.4 49.0 56.8 881.32 430.42 483.57 201.98 226.71 155.63
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Table 9. Cont.

a b c S1 S2 τa
1 τb

1 τb
2 τc

2

9 39.7 47.5 49.7 1256.80 565.43 675.41 353.23 308.07 260.49
10 39.7 49.5 55.1 990.28 564.01 536.79 274.83 297.29 199.18

Table 10. Polynomial coefficient.

S1 S2 τa
1 τb

1 τb
2 τc

2

a0 1,306,319 41,973.2 685,669.2 116,143.7 34,266.6 −23,063.3
b1 −34,404 −644.3 −18,032.3 −2974.9 −663.4 748.8
b2 −28,761.7 −1219.7 −15,093.5 −2522.8 −894.6 502.7
b3 −24,292.4 −753.5 −12,764.2 −2184.7 −628.1 367.9
c1 −5 −1.7 −3 0.8 −0.7 0.6
c2 −10.9 0.5 −5.5 −1.1 0.01 −1.7
c3 −9.4 −3.1 −4.7 −0.4 −1.5 0.3
d12 761.1 18.5 399.3 65.2 16.7 −14
d13 645.8 18.3 339 55.2 15.2 −14.6
d23 550.9 23.7 288.7 48.9 17.5 −6.8
e123 −14.1 −0.4 −7.4 −1.2 −0.3 0.3

Table 11. Optimization result.

Variable a b c V

GA 37.65 38.10 59.58 55,662.18
SQP 38.47 38.10 59.26 57,190.73

Result 37.40 45.72 60.96 54,929.13

In order to verify the accuracy of the results, modeling and finite element analysis were
conducted on the optimized composite cylinder again. The results are shown in Figure 9.
It can be seen from the stress program that the maximum equivalent stress and maximum
shear stress of the composite cylinder do not exceed the allowable value, which proves that
the optimization scheme is feasible.

Figure 9. Cont.
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Figure 9. Stress nephogram of the composite cylinder after optimization. (a) Equivalent stress of inner
cylinder, (b) Equivalent stress of outer cylinder, (c) Tangential stress on inner diameter of the inner
cylinder, (d) Tangential stress on outer diameter of the inner cylinder, (e) Tangential stress on inner
diameter of the outer cylinder, and (f) Tangential stress on the outer diameter of the outer cylinder.

5. Conclusions

This study constructs a RBDO method framework for RBDO considering mixed
uncertainties, combined with a metaheuristic algorithm with superior performance. The
research contents include: (1). Through the enhanced PSO algorithm, give full play to the
global optimization ability of the algorithm to obtain better MPP points for the update
optimization of the SA algorithm; (2). Through the decoupling method, the enhanced
PSO of the algorithm is combined with the SA algorithm and put into an optimization
framework. Realize the construction of a complete reliability-based design optimization
algorithm; (3). Adopt a decoupling optimization strategy based on the SA algorithm,
taking advantage of the faster convergence characteristics of SA. Compared with the
ordinary double-loop method and single-loop method, this optimization method has
faster solution efficiency and solution accuracy. The method proposed in this paper is
dedicated to solving the RBDO problem considering mixed uncertainties. By applying the
metaheuristic algorithm to the reliability analysis and optimization process of engineering
structures, it provides new ideas to solve the problems of high computational cost and slow
solution efficiency during the design optimization of increasingly complex engineering
structures. Through the improved PSO algorithm and the decoupled convergence process
combined with the SA algorithm, on the basis of ensuring the accuracy of the convergence
results, the optimization efficiency is improved and the problem of easily falling into
local convergence is solved. At the end of the article, the feasibility and superiority of
this method are verified through a mathematical example and two complex engineering
examples. It can be seen from the optimization results that compared with the double-loop
RBDO method using the SQP method and the ordinary reliability optimization based on
the first-order Taylor formula, the results of this method are better and the calculation
efficiency is higher. Through the finite element analysis of the results and combined with
the constraint conditions, it was found that under the same load conditions, the results of
this method have smaller deformation amounts and stress and strain values. The reliability
and feasibility of this method are proved.

In order to synthesize the role of each constraint function and obtain the optimal MPP
point, this study performed equal calculations on each constraint function. However, in
actual engineering, different constraint functions play different roles for each engineering
situation, and sometimes there are even situations where the function does not play a
constraining role. Therefore, in future work, by reducing the calculation of ineffective
constraint functions in RBDO, the efficiency of optimization calculations can be further
greatly improved.

This study uses the improved PSO algorithm to solve the global optimal MPP point,
although it is compared with the SQP method and the simple FORM method. However,
heuristic algorithms include more, such as multi-objective flower pollination algorithm,
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multi-objective bat algorithm, multi-objective multiverse optimization, and multi-objective
water cycle optimizer algorithms that are not mentioned in the article. In future work, it will
be meaningful to explore and compare the efficiency of various optimization algorithms in
solving RBDO problems considering mixed uncertainties.
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