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Abstract: In this research, we embark on the examination of lightlike hypersurfaces within an almost
meta-Golden semi-Riemannian manifold. We investigate the properties of the induced structure on a
lightlike hypersurface by meta-Golden semi-Riemannian structure. Then, we introduce invariant
lightlike hypersurfaces, anti-invariant lightlike hypersurfaces and screen semi-invariant lightlike
hypersurfaces of almost meta-Golden semi-Riemannian manifolds and give examples.
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1. Introduction

It has been shown that there is a close connection between the transition from New-
tonian physics to relativity mechanics and the Golden ratio. Moreover, the Golden ratio
was also used to derive the special theory of relativity, Lorentz contraction of lengths and
expansion of time intervals. This case reveals the research on numberless objects that
satisfy the Golden ratio necessity through the world. One of the results was the view that
a logarithmic spiral provides the Golden ratio. Recently, however, Barlett [1] has shown
that this assertion is untrue. It was also proved that an important class of logarithmic
spirals delivers the meta-Golden Chi ratio wonderfully. In [1], the same fulfillment was

built around the meta-Golden Chi ratio given by χ =
1+
√

4ϕ̇+5
2ϕ̇ , where ϕ̇ = 1+

√
5

2 .
In Riemannian (also semi-Riemannian ) manifolds, different geometric structures

allow important consequences to occur while investigating the geometric and differential
properties of submanifolds. Manifolds with such differential geometric structures have
been studied by several authors (see [2–7]).

A major shortcoming in manifold theory is the limited study of isometries between
manifolds with non-positive metrics. This is a significant gap, particularly in the context
of applications in physics and engineering. In fact, Riemannian submersions and isomet-
ric immersions are extensively studied topics, but degenerate cases have received scant
attention due to the challenges posed by metric complexities. Nevertheless, transitioning
from the non-degenerate case to the degenerate one, both in terms of applications and
mathematics, holds the potential to yield more general and robust results. The degeneracy
version of isometric immersions has been examined by a large group of geometers under
the name of lightlike submanifolds which were firstly defined by Duggal and Bejancu [8],
(see also [9–11]).

Recently, Şahin [12] introduced a new type of manifold and named it the meta-Golden
Riemannian manifold. This manifold was constructed by means of the meta-Golden Chi
ratio and the Golden manifolds.
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In this research, we embark on the study of lightlike geometry in meta-Golden semi-
Riemannian manifolds.

2. Preliminaries

A structure similar to the Golden ratio is presented as follows (see Hylebrouck [13]):
From Figure 1 in [12], we obtain χ̇ = 1

ϕ̇ + 1
χ̇ , which suggests that χ̇2 − 1

ϕ̇ χ̇− 1 = 0. Thus,

the roots are found as
1
ϕ̇∓
√

4+ 1
ϕ̇2

2 . The correlation between the meta-Golden Chi ratio χ̇
and continued fractions was found in [13]. By denoting the positive and negative roots by

χ̇ =

1
ϕ̇ +
√

4+ 1
ϕ̇2

2 and χ̈ =

1
ϕ̇−
√

4+ 1
ϕ̇2

2 , respectively, we have [13]

χ̈ =
1
ϕ̇
− χ̇, (1)

ϕ̇χ̇2 = ϕ̇ + χ̇, (2)

and
ϕ̇χ̈2 = ϕ̇ + χ̈. (3)

In [3], it was stated that an endomorphism β̌ on a manifold M̌∗ is an almost Golden
structure , if

β̌2X1 = β̌X1 +X1, (4)

for X1 ∈ Γ(TM̌∗). Hence, let ǧ be the semi-Riemannian metric on M̌∗; then, (ǧ, β̌) is called
an almost Golden semi-Riemannian structure if

ǧ(β̌X1,Y1) = ǧ(X1, β̌Y1), (5)

where for X1,Y1 ∈ Γ(TM̌∗). Therefore, (M̌∗, ǧ, β̌) is called an almost Golden semi-
Riemannian manifold. In view of (5), we obtain [3]

ǧ(β̌X1, β̌Y1) = ǧ(X1, β̌Y1) + ǧ(X1,Y1). (6)

Definition 1. Let =̌ be a (1, 1) tensor field on an almost Golden manifold (M̌∗, β̌) which satisfies

β̌=̌2X1 = β̌X1 + =̌X1, (7)

for every X1 ∈ Γ(TM̌∗). Then, =̌ is called an almost meta-Golden structure and (M̌∗, β̌, =̌) is
called an almost meta-Golden manifold [12].

Theorem 1. A (1, 1) tensor field =̌ on an almost Golden manifold (M̌∗, β̌) is an almost meta-
Golden structure if

=̌2 = β̌=̌ − =̌+ I (8)

where I is the identity map [12].

We give the following definition inspired by the definition given in [12].

Definition 2. Let =̌ be an almost meta-Golden structure on (M̌∗, β̌, ǧ). If =̌ is compatible with
semi-Riemannian metric ǧ on M̌∗, namely,

ǧ(=̌X1,Y1) = ǧ(X1, =̌Y1), (9)

or
ǧ(=̌X1, =̌Y1) = ǧ(β̌X1, =̌Y1)− ǧ(X1, =̌Y1) + ǧ(X1,Y1), (10)
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then (M̌∗, β̌, =̌, ǧ) is called an almost meta-Golden semi-Riemannian manifold where for X1,
Y1 ∈ Γ(TM̌∗).

We note that an almost meta-Golden semi-Riemannian manifold is called a meta-
Golden semi-Riemannian manifold if ∇̄=̌ = 0 where ∇̄ is the Levi-Civita connection of
M̌∗. In this case, we also have ∇̄β̌ = 0.

From here throughout the paper, an almost meta-Golden semi-Riemannian manifold
(resp., meta-Golden semi-Riemannian manifold) will be denoted as AMGsR manifold
(resp., MGsR manifold).

Let M̌∗ be an (n + 2)-dimensional semi-Riemannian manifold with index q,
0 < q < n + 1, and M∗ be a hypersurface of M̌∗, with g = ǧ |M∗ . Then, M∗ is a lightlike
hypersurface of M̌∗, if the metric g is of rank n and the orthogonal complement TM∗⊥ of
TM∗, given as

TM∗⊥ =
⋃

p∈M∗
{Vp ∈ TpM̌

∗ : gp(Up,Vp) = 0, ∀ Up ∈ Γ(TpM
∗)},

is a distribution of rank 1 on M∗ [8]. Here, TM∗⊥ ⊂ TM∗ and then it coincides with the
distribution called the radical distribution given by Rad(TM∗) = TM∗ ∩ TM∗⊥.

A complementary bundle of TM∗⊥ in TM∗ is a non-degenerate distribution of con-
stant rank (n− 1) over M∗, which is known as a screen distribution and demonstrated with
S(TM∗).

Theorem 2 ([8]). Let (M∗, g, S(TM∗)) be a lightlike hypersurface of a semi-Riemannian manifold
M∗. Then, there exists a unique rank 1 vector sub-bundle ltr(TM∗) of TM̌∗, with base space N,
such that for every non-zero section ξ of Rad(TM∗) on a coordinate neighbourhood ℘ ⊂M∗, there
exists a section N of ltr(TM∗) on ℘ satisfying:

ǧ(N,W) = 0, ǧ(N,N) = 0, ǧ(N, ξ) = 1, for W ∈ Γ(S(TM∗)) |℘ .

Here, ltr(TM∗) is called the the lightlike transversal vector bundle.

Via the previous theorem, we obtain:

TM∗ = S(TM∗)⊥Rad(TM∗), (11)

and

TM̌∗ = TM∗ ⊕ ltr(TM∗)

= S(TM∗)⊥{Rad(TM∗)⊕ ltr(TM∗)}. (12)

For U,V ∈ Γ(TM∗), N ∈ Γ(ltr(TM∗)), from the equations of Gauss and Weingarten
formulas, we have

∇̄UV = ∇UV+ h(U,V), (13)

∇̄UN = −ANU+∇t
UN . (14)

3. Lightlike Hypersurfaces of Almost Meta-Golden Semi-Riemannian Manifolds

In this study, since there are both almost Golden structure and almost meta-Golden
structure in AMGsR manifolds, we will obtain two structures that are induced on the
lightlike hypersurface.

Throughout this paper, we will consider the structure that is induced from the almost
Golden structure on the ambient manifold to the lightlike hypersurface is being an almost
Golden structure and invariant, that is, β̌(TM∗) ⊆TM∗ and β̌(TM∗⊥) ⊆TM∗⊥.
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Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Consider a (1, 1) tensor field ] and a 1-form v on M̌∗. For any X1 ∈ Γ(TM∗), we have

=̌X1 = ]X1 + v(X1)N, β̌X1 = βX1 + u(X1)N, (15)

and
=̌N = V+ v(N)N, β̌N = U+ u(N)N, (16)

where U,V ∈ Γ(TM∗), N ∈ Γ(ltr(TM∗)), v(.) = ǧ(., =̌ξ), u(.) = ǧ(., β̌ξ) and

] : Γ(TM∗)→ Γ(TM∗), ]X1 = (=̄X1)
>.

In this case, the second parts of Equations (15) and (16) are in the form of β̌X1 = βX1,
u(X1) = 0 and U = 0 due to our assumption. If β̌ is applied to both sides of the second
equation in (16), we have u(N) = ϕ̇ and u(N) = 1− ϕ̇.

Therefore, we have the following theorem.

Theorem 3. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
In this case, we have a structure (β, g, u,U) induced on M∗ by the almost Golden structure β̌,
satisfies the following equalities:

β2X1 = βX1 +X1,

u(βX1) = 0,

βU = 0,

(u(N))2 − u(N)− 1 = 0,

g(βX1, βY1) = g(βX1,Y1) + g(X1,Y1),

where for X1,Y1 ∈ Γ(TM̌∗), N ∈ Γ(ltr(TM∗)).

Now, we give some characterizations for the structure induced to the lightlike hyper-
surface from the AMGsR manifold.

Theorem 4. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
In this case, the structure Π = (], β, g, v,V) satisfies the following equalities:

]2X1 = β]X1 − ]X1 +X1 − v(X1)V, (17)

v(]X1) = (u(N)− v(N)− I)v(X1), (18)

]V = βV − (1+v(N))V, (19)

(v(N))2 = v(N)(u(N)− 1) + I − v(V), (20)

g(]X1,Y1) = g(X1, ]Y1) + v(Y1)τ(X1)− v(X1)τ(Y1), τ(X1) = g(X1,N), (21)

g(]X1, ]Y1) =

 g(βX1, ]Y1)− g(X1, ]Y1) + g(X1,Y1)
+v(Y1)τ(βX1)− v(Y1)τ(X1)
−v(Y1)ζ(]X1)− v(X1)ζ(]Y1)

, ζ(]X1) = g(X1, ]N). (22)

Proof. If we apply =̌ to the first part of Equation (15) and consider Equations (8), (15) and
(16), we have

β̌=̌X1 − =̌X1 +X1 = =̌]X1 + v(X1)=̌N.
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By using (15) and (16) in the last equation, we obtain

β̌]X1 + v(X1)β̌N− ]X1 − v(X1)N+X1 = ]2X1 + v(]X1)N (23)

+v(X1)V+ v(N)v(X1)N,

which implies(
β]X1 + v(X1)u(N)N
−]X1 − v(X1)N+X1

)
=

(
]2X1 + v(]X1)N

+v(X1)V+ v(N)v(X1)N

)
. (24)

If we take the tangential and transversal components of Equation (24), we obtain (17) and
(18), respectively.

On the other hand, if we apply =̌ to Equation (16), we have

=̌2N = =̌V+ v(N)=̌N,

which gives

β(V+ v(N)N)− (V+ v(N)N) +N = ]V+ v(V)N+ v(N)V+ (v(N))2N,

via (8), (15) and (16). Again, equating the tangential and transversal components of the
above equation, we obtain (19) and (20), respectively. In addition, if we use (9), (15) and
(16), we obtain (21). Applying (8) and (9) in (15), we find (22).

If we use =̌X1 instead of X1 in Equation (7), we have:

Proposition 1. Let (M̌∗, β̌, =̌, ǧ) be an MGsR manifold. Then, we have ∇̄β̌=̌ = 0.

Theorem 5. Let M∗ be a lightlike hypersurface of an MGsR manifold (M̌∗, β̌, =̌, ǧ). Then, we have

(∇X1])Y1 = v(Y1)ANX1 + B(X1,Y1)V, (25)

(∇X1 v)Y1 = B(X1,Y1)v(N)− B(X1, ]Y1)V− v(Y1)τ(X1), (26)

∇X1V = −]ANX1 + τ(X1)V+v(N)ANX1, (27)

X1(v(N)) = −B(X1,V)− v(ANX1). (28)

Proof. Since ∇̄=̌ = 0, by using (15) and (16) and Gauss–Weingarten formulas, we write(
∇X1]Y1 + B(X1, ]Y1)N

+X1(v(Y1))N−v(X1)ANX1

)
=

(
]∇X1Y1 + v(∇X1Y1)N

+B(X1,Y1)V+B(X1,Y1)v(N)N

)
,

for X1,Y1 ∈ Γ(TM̌∗).
If the tangential and transversal parts of the above equation are equalized, we find (25)
and (26). In a similar way, for X1 ∈ Γ(TM∗), N ∈ Γ(ltrTM∗), if we use ∇̄=̌ = 0, the
Equations (15) and (16) and also Gauss–Weingarten formulas, we obtain(

∇X1V+B(X1,V)N+X1(v(N))N
−v(N)ANX1 + v(N)τ(X1)V

)
=

(
−]ANX1 − v(ANX1)N
+τ(X1)V+v(N)τ(X1)V

)
.

Therefore, if the tangential and transversal parts of above equation are equalized, we find
the Equations (27) and (28).

Theorem 6. Let (M̌∗, β̌, =̌, ǧ) be an MGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then, we have the following equations:
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∇β = 0,

B(X1, βY1) = B(X1,Y1)u(N),
βANX1 = u(N)ANX1,

X1(u(N)) = 0.

Now, using ∇̄β̌=̌ = 0, we can give the following theorem regarding the conditions
provided by the structures reduced on the lightlike hypersurface of the MGsR manifold
(M̌∗, β̌, =̌, ǧ) .

Theorem 7. Let (M̌∗, β̌, =̌, ǧ) be an MGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then, we have

(∇X1 β])Y1 = B(X1,Y1)βV−v(Y1)u(N)ANX1,

u(N)(∇X1
v)Y1 = −B(X1, β]Y1)−v(Y1)u(N)τ(X1)

+ B(X1,Y1)v(N)u(N),

∇X1 βV = β∇X1V = v(N)u(N)ANX1 − β]ANX1 + τ(X1)βV,

X1(v(N))u(N)= −v(ANX1)u(N)−B(X1, βV)− v(N)u(N)τ(X1).

Proof. For X1,Y1 ∈ Γ(TM∗), N ∈ Γ(ltrTM∗), if we use ∇̄β̌=̌ = 0 and Equations (15) and
(16), we have

∇X1 β]Y1 + B(X1, β]Y1)N
+[X1(v(Y1))u(N)+v(Y1)X1(u(N))]N

−v(Y1)u(N)ANX1
+v(Y1)u(N)τ(X1)N

 =

 β]∇X1Y1 + v(∇X1Y1)u(N)N
+B(X1,Y1)βV

+B(X1,Y1)v(N)u(N)N

.

By taking the tangential and transversal parts of this equation, the first two of the equations
specified in the theorem are obtained. For X1 ∈ Γ(TM∗), N ∈ Γ(ltrTM∗), by using
∇̄β̌=̌ = 0 and Equations (15) and (16), we obtain

∇X1 βV+ B(X1, βV)N
+[X1(v(N))u(N)+v(N)X1(u(N))]N

−v(N)u(N)ANX1
+v(N)u(N)τ(X1)N

 =

 −β]ANX1 − v(ANX1)u(N)N
+τ(X1)βV+τ(X1)v(N)V

+τ(X1)v2(N)N

,

which implies that the last two of the equations specified in the theorem are obtained. Thus,
the proof is completed.

Now, we define some special lightlike hypersurfaces.

Definition 3. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then,

1. if β̌=̌(TM∗) ⊂ TM∗, M∗ is called as an invariant,
2. If β̌=̌(Rad(TM∗)) ⊂ S(TM∗) and β̌=̌(ltrTM∗) ⊂ S(TM∗), M∗ is called a screen semi-

invariant,
3. If β̌=̌(Rad(TM∗)) ⊂ ltrTM∗, M∗ is called a radical anti-invariant,

lightlike hypersurface.
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Example 1. Let M̌∗ = R5
1 be an almost Golden semi-Riemannian manifold with a coordinate

system (x1, x2, x3, x4, x5), a semi-Euclidean metric ǧ of signature (−,+,+,+,+) and an almost
Golden structure defined by

β̌(x1, x2, x3, x4, x5) = (ϕ̇x1, ϕ̇x2, ϕ̇x3, (1− ϕ̇)x4, (1− ϕ̇)x5).

Also, we define a (1, 1) tensor field =̌ on M̌∗ by

=̌(x1, x2, x3, x4, x5) = (χ̇x1, χ̇x2, χ̇x3,−χ̃x4,−χ̃x5),

where χ̃ =
ϕ+
√

ϕ2+4
2 and χ̃2 = ϕχ̃ + I, (I is an identity map.)

One can see that =̌ satisfies (8)–(10) which imply that (M̌∗, β̌, =̌, ǧ) is an AMGsR manifold. Now,
we consider a hypersurface M∗ of M̌∗ given by

x1 = u3, x2 = −(sin α)u1 + (cos α)u3,

x3 = (cos α)u1 + (sin α)u3, x4 = u2, x5 = u4.

Then, TM∗ is spanned by

Z1 = − sin α
∂

∂x2
+ cos α

∂

∂x3
, Z2 =

∂

∂x4
,

Z3 =
∂

∂x1
+ cos α

∂

∂x2
+ sin α

∂

∂x3
, Z4 =

∂

∂x5
.

So, M∗ is a lightlike hypersurface of M̌∗. In this case, Rad(TM∗) and S(TM∗) are given by

Rad(TM∗) = Span{Z3},

and
S(TM∗) = Span{Z1,Z2,Z4},

respectively, where β̌Z4 = (1− ϕ̇)Z4 ∈ Γ(S(TM∗)), β̌Z3 = ϕ̇Z3 ∈ Γ(Rad(TM∗)),
β̌Z1 = ϕ̇Z1 ∈ Γ(S(TM∗)) and β̌Z2 = (1 − ϕ̇)Z2 ∈ Γ(S(TM∗)). Thus, Rad(TM∗) and
S(TM∗) are β̌-invariant distributions. Also, we obtain

ltr(TM∗) = Span
{
N =

1
2

(
− ∂

∂x1
+ cos α

∂

∂x2
+ sin α

∂

∂x3

)}
,

and β̌N =ϕ̇N ∈ Γ(ltr(TM∗)), which imply that M∗ is a β̌−invariant lightlike hypersurface of
M̌∗. Since

=̌Z1 = χ̇Z1 ∈ Γ(S(TM∗)), =̌Z2 = −χ̃Z2 ∈ Γ(S(TM∗)),

=̌Z4 = −χ̃Z4 ∈ Γ(S(TM∗)), =̌Z3 = χ̇Z3 ∈ Γ(Rad(TM∗)),

and
=̌N = χ̇N ∈ Γ(ltr(TM∗)).

Then, M∗ is an invariant lightlike hypersurface of an AMGsR manifold M̌∗.

Theorem 8. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then, the followings are equivalent;

1. M∗ is =̌-invariant, so β̌=̌ is invariant;
2. v vanishes on M∗;
3. ] is an almost meta-Golden structure on M∗.

Proof. We know that if M∗ is =̌-invariant, then for any X1 ∈ Γ(TM∗) we write =̌X1 = ]X1.
From (15), we obtain v(X1) = 0. Conversely, if v vanishes on M∗, then (1) is satisfied. Hence,
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(1)⇐⇒(2). The necessary and sufficient condition for v = 0 on M∗ is that =̌X1 = ]X1. Then,
we obtain

]2X1 = β]X1 − ]X1 +X1.

Here, we also have
g(]X1,Y1) = g(X1, ]Y1).

Therefore, ] is an almost meta-Golden structure on M∗.

Theorem 9. There is no radical anti-invariant lightlike hypersurface of an AMGsR manifold.

Proof. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a radical anti-invariant lightlike
hypersurface of M̌∗. From the definition of radical anti-invariant lightlike hypersurface,
for any ξ ∈ Γ(Rad(TM∗)), we have =̌ξ ∈ Γ(ltr(TM∗)), which implies

ǧ(=̌ξ, =̌ξ) = 0, ǧ(=̌ξ, =̌N) 6= 0, ǧ(=̌N, =̌N) = 0.

Therefore, there is no radical anti-invariant lightlike hypersurface.

4. Screen Semi-Invariant Lightlike Hypersurfaces of Almost Meta-Golden
Semi-Riemannian Manifolds

Let (M̌∗, β̌, =̌, ǧ) be an (m + 2)-dimensional AMGsR manifold and (M∗, g) be a screen
semi-invariant lightlike hypersurface of M̌∗. Taking DT = ]Rad(TM∗), D⊥ = ]ltr(TM∗)
and D = D◦⊥Rad(TM∗)⊥]Rad(TM∗), we have the following decompositions:

S(TM∗) = D◦⊥(DT ⊕ D⊥), (29)

TM∗ = D⊕ D⊥, (30)

TM̌∗ = D⊕ D⊥ ⊕ ltr(TM∗), (31)

where D◦ is an (m− 2)-dimensional distribution, V = =̌N and Z = =̌ξ.

Example 2. Let M̌∗ = R5
2 be a semi-Riemannian manifold with coordinate system (x1, x2, x3, x4, x5)

and signature (−,+,−,+,+). Taking an almost Golden structure

β̌(x1, x2, x3, x4, x5) = (ϕ̇x1, ϕ̇x2, ϕ̇x3, ϕ̇x4, ϕ̇x5),

with a meta-Golden structure

=̌(x1, x2, x3, x4, x5) = (χ̇x1, χ̇x2, χ̈x3, χ̇x4, χ̈x5),

then (R5
2, β̌, =̌, ǧ) is an AMGsR manifold.

Now, we consider a hypersurface M∗ of M̌∗ given by

x5 = χ̈x1 + χ̈x2 + x3,

Then, TM∗ is spanned by {Z1,Z2,Z3,Z4}, where

Z1 =
∂

∂x1
+ χ̈

∂

∂x5
, Z2 =

∂

∂x2
+ χ̈

∂

∂x5
,

Z3 =
∂

∂x3
+

∂

∂x5
, Z4 =

∂

∂x4
.
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So, M∗ is a 1-lightlike hypersurface of M̌∗ with

Rad(TM∗) = Span{ξ = χ̈
∂

∂x1
− χ̈

∂

∂x2
− ∂

∂x3
− ∂

∂x5
},

and
S(TM∗) = Span{W1,W2,W3},

where
W1 =

∂

∂x4
, W2 = −χ̈

∂

∂x1
+ χ̈

∂

∂x2
+

∂

∂x3
+

∂

∂x5
,

W3 = −χ̈
∂

∂x1
− χ̈

∂

∂x2
+

∂

∂x3
− ∂

∂x5
.

Then, we write DT = Span{W2} and D⊥ = Span{W3}. Also, we obtain

ltr(TM∗) = Span
{
N =

1
2(1− χ̈2)

(
χ̈

∂

∂x1
+ χ̈

∂

∂x2
− ∂

∂x3
+

∂

∂x5

)}
,

which implies that M∗ is a β̌−invariant lightlike hypersurface of M̌∗. Furthermore, we obtain

=̌ξ = χ̈W2 ∈ Γ(DT),

=̌N =
χ̈

2(1− χ̈2)
W3 ∈ Γ(D⊥).

Therefore, M∗ is a screen semi-invariant lightlike hypersurface of (R5
2, β̌, =̌, ǧ).

Proposition 2. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, =̌, ǧ). Then, for X1,Y1 ∈ Γ(TM∗), V ∈ Γ(D⊥) and Z ∈ Γ(DT), we have

v(]X1) = v(X1)(u(N) + I),

]v = βv− v,

v(V) = 1, (32)

u(N)(∇X1
v)Y1 = −B(X1, β]Y1)− v(Y1)u(N)τ(X1),

∇X1 βV = −β]ANX1 + τ(X1)βV,

v(ANX1)u(N) = −B(X1, βV),

(∇X1 v)Y1 = −B(X1, ]Y1)−v(Y1)τ(X1),

B(X1, ]Y1) =
1

u(N)B(X1, β]Y1),

(∇X1 β])Y1 = B(X1,Y1)βV,

u(ANX1)u(N) = C(X1, ]ξ)u(N) = −B(X1, βV),

B(X1,V) = −C(X1,Z), (33)

∇X1Z = −]A∗ξX1−τ(X1)Z,

C(X1,V) = 0. (34)
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Corollary 1. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant lightlike
hypersurface of M̌∗. Then, for X1,Z ∈ Γ(TM∗), we have

B(X1,Z) = 0. (35)

Corollary 2. There is no DT−valued component of A∗ξ in a screen semi-invariant lightlike hyper-
surface of an AMGsR manifold.

Proof. In view of (35), we state

B(X1,Z) = −g(A∗ξX1, =̌ξ) = −g(A∗ξX1,Z) = 0,

for X1,Z ∈ Γ(TM∗), which gives our assertion.

Corollary 3. There is no D⊥− valued component of AN in a screen semi-invariant lightlike
hypersurface of an AMGsR manifold.

Proof. In view of (34), we write

C(X1,V) = −g(ANX1, =̌N) = −g(ANX1,V) = 0,

which completes the proof.

Proposition 3. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, for the distribution D◦, we have =̌D◦ ⊂ S(TM∗).

Proof. For X1 ∈ Γ(D◦), ξ ∈ Γ(Rad(TM∗)) and N ∈ Γ(ltr(TM∗)), we obtain

ǧ(=̌X1, ξ) = ǧ(X1, =̌ξ) = 0,

and
ǧ(=̌X1,N) = ǧ(X1, =̌N) = 0.

Moreover, for V ∈ Γ(D⊥) and Z ∈ Γ(DT), we obtain

ǧ(=̌X1,V) = ǧ(X1, =̌V) = ǧ(X1, =̌2N)
= ǧ(X1, β̌=̌N− =̌N+N)
= ǧ(β̌X1, =̌N)

and

ǧ(=̌X1,Z) = ǧ(X1, =̌Z) = ǧ(X1, =̌2ξ)

= ǧ(X1, β̌=̌ξ − =̌ξ + ξ)

= ǧ(β̌X1, =̌ξ).

So, there is no component of =̌X1 on ltr(TM∗) and Rad(TM∗).

Corollary 4. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, =̌, ǧ). Then, D◦ is an =̌-invariant distribution.

Theorem 10. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant light-
like hypersurface of M̌∗. Then, the vector fieldZ is parallel on M∗ if B(X1,Y1) = −g(=̌A∗ξX1, β̌Y1)
and τ = 0.
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Proof. Assume that the vector field Z is parallel. From (25), for X1 ∈ Γ(TM∗), we obtain

∇X1Z = −=̌A∗ξX1 − τ(X1)Z = 0. (36)

Applying =̌ to (36) and using (15) with (16), we obtain

−=̌2 A∗ξX1 − τ(X1)=̌2ξ = −β̌=̌A∗ξX1 + =̌A∗ξX1 − A∗ξX1

− τ(X1)β̌=̌ξ+τ(X1)=̌ξ−τ(X1)ξ. (37)

From (36) with (37), we arrive at

−β̌=̌A∗ξX1 − A∗ξX1 − τ(X1)β̌=̌ξ−τ(X1)ξ = 0,

which gives τ = 0 and β̌=̌A∗ξX1 = −A∗ξX1. So, the proof is completed.

Theorem 11. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, =̌, ǧ) and the vector field Z be parallel on M∗. Then, either ] or V are parallel on M∗ if
B(X1,V) = 0 and ANX1 = 0.

Proof. Assume that ] is parallel on M∗. From (25), for X1,Y1 ∈ Γ(TM∗), we obtain

0 = (∇X1])Y1 = v(Y1)ANX1 + B(X1,Y1)V,

from which we have
B(X1,Y1)V = −v(Y1)ANX1. (38)

Since Z is parallel, we state

ǧ(=̌A∗ξX1, β̌Y1)V = v(Y1)ANX1.

In the last equation, replacing Y1 with V and using (32), we obtain

ǧ(=̌A∗ξX1, β̌V)V = v(V)ANX1 = ANX1,

which gives
ǧ(=̌A∗ξX1, β̌V) = g(ANX1,V) = C(X1,V).

By use of (34), we obtain B(X1,V) = 0.
Similarly suppose that V is parallel on M∗, i.e., ∇X1V = 0. So, we write

−]ANX1 + τ(X1)V = 0,

from which
−=̌ANX1 + v(ANX1)N+ τ(X1)V = 0. (39)

Applying =̌ to (39) and using (15), we obtain

0 = −=̌2 ANX1 + v(ANX1)=̌N+ τ(X1)=̌V (40)

= −β]ANX1 + ]ANX1 − ANX1

+ (v(ANX1)− τ(X1))V
+ ((1− u(N)v(ANX1) + τ(X1))N.

From (39) with (40), we arrive at

−β]ANX1 − ANX1 + v(ANX1)V+ ((1− u(N)v(ANX1) + τ(X1))N = 0. (41)
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From (41), we obtain

−β]ANX1 − ANX1 + v(ANX1)V = 0, (42)

(1− u(N))v(ANX1) + τ(X1) = 0.

Since Z is parallel, we know that τ(X1) = 0, which gives rise to ANX1 = 0, via (42). So,
the proof is completed.

Theorem 12. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, =̌, ǧ). If ] is parallel with respect to the induced connection ∇ on M∗, then D is parallel
with respect to ∇. Furthermore, M∗ has M1 ×M2 local product structure, where M1 is a null
curve tangent to =̌ltr(TM∗) and M2 is a leaf of distribution D.

Proof. Assume that ] is parallel with respect to the induced connection ∇ on M∗. D is
parallel with respect to ∇ if and only if

g(∇X1 ξ, =̌ξ) = g(∇X1=̌ξ, =̌ξ) = g(∇X1Y1, =̌ξ) = 0, (43)

for X1 ∈ Γ(TM∗) and Y1 ∈ Γ(D◦). From (13)–(15), we obtain

g(∇X1 ξ, =̌ξ) = g(=̌∇X1 ξ, ξ) = g(∇X1=̌ξ, ξ) = B(X1,Z), g(∇X1=̌ξ, =̌ξ) = 0, (44)

and

g(∇X1Y1, =̌ξ) = g(∇̄X1Y1, =̌ξ)

= g(=̌∇̄X1Y1, ξ)

= g(∇̄X1=̌Y1, ξ)

= −g(=̌Y1, ∇̄X1 ξ)

= g(=̌Y1, A∗X1
ξ)

= B(X1, =̌Y1). (45)

From (35), we know that B(X1,Z) = 0. By use of (38), we obtain

B(X1, =̌Y1)V = −v(=̌Y1)ANX1 = 0.

If we consider this equation in (45), we obtain the proof of our assertion.

Definition 4. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of
M̌∗. If the second fundamental form B of M∗ satisfies

B(X1,Y1) = 0, X1,Y1 ∈ Γ(D⊥),

then we say that M∗ is a D⊥- totally geodesic lightlike hypersurface.

Definition 5. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. If the second fundamental form B of M∗ satisfies

B(X1,Y1) = 0, X1 ∈ Γ(D), Y1 ∈ Γ(D⊥),

then M∗ is called a mixed geodesic lightlike hypersurface.

Theorem 13. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, =̌, ǧ). Then, the following assertions are equivalent:

(i) M∗ is a mixed geodesic lightlike hypersurface.
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(ii) There is no DT-valued component of AN .
(iii) There is no D⊥-valued component of A∗ξ .

Proof. Suppose that M∗ is a mixed geodesic lightlike hypersurface. Then from (33),
for X1 ∈ Γ(D),V ∈ Γ(D⊥) and Z ∈ Γ(DT), we have

B(X1,V) = −C(X1,Z) = −g(ANX1,Z) = 0

which implies the equivalence of (i) and (ii).
The equivalence of (ii) and (iii) follows from

B(X1,V) = −C(X1,Z)⇒ −g(ANX1,Z) = g(A∗ξX1,V) = 0,

which completes the proof.

Theorem 14. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, the distribution D is integrable if and only if

B(=̌Y1, =̌X1) = B(X1, =̌β̌Y1)− B(X1, =̌Y1) + B(X1,Y1), (46)

for any X1,Y1 ∈ Γ(D).

Proof. It is known that, for X1 ∈ Γ(D), if the D is invariant then =̌X1 ∈ Γ(D). So the D is
integrable if and only if

v([=̌X1,Y1]) = 0.

From the above equation, we obtain

v([=̌X1,Y1]) = g([=̌X1,Y1], =̌ξ)

= g(∇̄=̌X1
Y1, =̌ξ)− g(∇̄Y1=̌X1, =̌ξ)

= g(∇̄=̌X1
=̌Y1, ξ)− g(=̌∇̄Y1X1, =̌ξ)

= g(∇=̌X1
=̌Y1 + B(=̌X1, =̌Y1)N, ξ)

− g(∇X1=̌β̌Y1, ξ) + g(∇X1=̌Y1, ξ)− g(∇X1Y1, ξ)

= B(=̌Y1, =̌X1)− B(X1, =̌β̌Y1)

+ B(X1, =̌Y1)− B(X1,Y1),

which gives (46).

Theorem 15. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, the following assertions are equivalent:

(i) The distribution D is parallel.
(ii) The distribution D is totally geodesic.
(iii) (∇X1])Y1 = 0, for any X1,Y1 ∈ Γ(D).

Proof. The distribution D is parallel if for any X1,Y1 ∈ Γ(D) and Z ∈ Γ(DT)

v(∇X1Y1) = 0.
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From the above equation, we obtain

v(∇X1Y1) = g(∇X1Y1, =̌ξ)

= g(∇̄X1Y1, =̌ξ)

= g(=̌∇̄X1Y1, ξ)

= g(∇̄X1=̌Y1, ξ)

= B(X1, =̌Y1)

which gives the equivalence of (i) and (ii).
In view of (25), the equivalence of (ii) and (iii) follows from

(∇X1])Y1 = v(Y1)ANX1 + B(X1,Y1)V⇒(∇X1])Y1 = B(X1,Y1)V,

which completes the proof.

Theorem 16. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, M∗ is totally geodesic if for any X1 ∈ Γ(TM∗), Y1 ∈ Γ(D)
and V ∈ Γ(D⊥)

(∇X1])Y1 = 0, (47)

(∇X1])V = ANX1. (48)

Proof. Suppose that M∗ is totally geodesic; then for Y1 ∈ Γ(D), we obtain

v(Y1) = g(Y1, =̌ξ) = g(=̌Y1, ξ) = 0.

From (25), we have

(∇X1])Y1 = v(Y1)ANX1 + B(X1,Y1)V =0.

Similarly, for V ∈ Γ(D⊥), we have v(V) = 1. In Equation (25), replacing Y1 by V, we obtain

(∇X1])V = v(V)ANX1 + B(X1,V)V = ANX1.

Conversely, we suppose that Equations (47) and (48) are satisfied. In view of decomposition
(30), for any Y1 ∈ Γ(TM∗) we find a function f such that Y1 = Yd + fV, where Yd ∈ Γ(D).
So we write

B(X1,Y1) = B(X1,Yd) + f B(X1,V). (49)

In (25), replacing Y with Yd and using (47), we obtain

0 = (∇X1])Yd

= v(Yd)ANX1 + B(X1,Yd)V,

which gives B(X1,Yd) = 0.
Similarly in (25), replacing Y with V and using (48), we have

0 = (∇X1])V
= v(V)ANX1 + B(X1,V)V
= ANX1 + B(X1,V)V

which implies B(X1,V) = 0. So, from (49) we arrive at B(X1,Y1) = 0. This completes the
proof.
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Theorem 17. Let M∗ be a totally umbilic screen semi-invariant lightlike hypersurface of an
AMGsR manifold (M̌∗, β̌, =̌, ǧ). Then, M∗ is totally geodesic on M̌∗.

Proof. Suppose that M∗ is a totally umbilic screen semi-invariant lightlike hypersurface of
M̌∗. From (35), for any X1 ∈ Γ(TM∗) we have

B(X1,Z) = λg(X1,Z).

Replacing X1 with V in the last equation, we obtain

B(V,Z) = λg(V,Z) = 0,

which yields λ = 0. In this case, we obtain B = 0.

Theorem 18. Let (M̌∗, β̌, =̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, if screen distribution S(TM∗) is totally umbilic, then S(TM∗)
is totally geodesic.

Proof. Suppose that S(TM∗) is totally umbilic. From (34), for any X1 ∈ Γ(TM∗), we have

C(X1,V) = δg(X1,V).

Replacing X1 with Z in the above equation, we obtain

C(Z,V) = δg(Z,V) = 0,

which gives δ = 0. In this case, we obtain C = 0. So, the proof is completed.

5. Conclusions

In this study, we found structures reduced from the meta-Golden structure of an
almost meta-Golden semi-Riemannian manifold onto the tangent and transversal bundles
of the lightlike hypersurface. We gave the definitions of invariant, anti-invariant and screen
semi-invariant lightlike hypersurfaces of the meta-Golden semi-Riemannian manifold.
We have obtained the necessary and sufficient conditions for the distributions of these
hypersurfaces to be integrable and totally geodesic.

Working with manifolds with a polynomial structure with constant coefficients allows
the definition of many results from classical algebra and geometry, tools that make calcu-
lations and proofs simpler (tensor fields, 1-forms, reduced structures, etc.). For example,
the fundamental theorem of algebra states that any polynomial with complex coefficients
is factored by linear equations, and this result is used to prove that certain manifolds are
topologically equivalent to a sphere. These types of manifolds are also important for the
differential geometry of manifolds because the properties offered by these structures make
geometric structures and curves much easier to examine and understand.

Hypersurfaces and submanifolds are special types of general manifolds and have
certain geometric properties. These structures allow the achievement of more specific and
meaningful results in mathematical analysis. Submanifolds represent situations where
certain parts of the manifold have flatter and simpler geometry. This is important for its
flattenability and minimalism properties. Submanifolds provide the ability to better model
and understand physical phenomena. For example, they can be used to model physical
quantities such as time, which is a submanifold of spacetime. Hypersurfaces and subman-
ifolds are widely used in physics, engineering, computer science and other applications.
For example, these structures are frequently encountered concepts in fields such as image
processing, graphic design and data analysis. In physics, the integrability of distributions
of submanifolds of a manifold provides the ability to better model and understand physical
phenomena. It is particularly important for the analysis of physical quantities such as
energy distributions or currents on submanifolds of spacetime. An integrable surface
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provides advantages in calculating center of gravity, moment and similar quantities. Such
calculations are important in engineering and physics, especially for analyzing the geomet-
ric properties of objects. The concept of parallelism plays an important role in fields such
as differential geometry on manifolds and general relativity. For example, it is important
in physics, especially in the general theory of relativity, for describing the trajectories of
objects in a gravitational field.
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12. Şahin, F.; Şahin, B. Meta-Golden Riemannian manifolds. Math. Meth. Appl. Sci. 2022, 45, 10491–10501. [CrossRef]
13. Huylebrouck, D. The meta-Golden ratio Chi. In Proceedings of the Bridges 2014: Mathematics, Music, Art, Architecture, Culture,

Seoul, Republic of Korea, 14–19 August 2014; pp. 151–158.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00004-018-0419-3
http://dx.doi.org/10.2996/kmj/1138846118
http://dx.doi.org/10.1016/j.chaos.2008.04.007
http://dx.doi.org/10.3906/mat-1108-35
http://dx.doi.org/10.3906/mat-0711-29
http://dx.doi.org/10.1007/s10474-006-0068-y
http://dx.doi.org/10.1155/2007/57585
http://dx.doi.org/10.1002/mma.8380

	Introduction
	Preliminaries
	Lightlike Hypersurfaces of Almost Meta-Golden Semi-Riemannian Manifolds
	Screen Semi-Invariant Lightlike Hypersurfaces of Almost Meta-Golden Semi-Riemannian Manifolds
	Conclusions
	References 

