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Abstract: A fast convergence adaptive neural network event-triggered control strategy is proposed
for the trajectory tracking issue of uncertain robotic systems with output constraints. To cope with
the constraints on the system output in the actual industrial field while reducing the burden on
communication resources, an adaptive event-triggered mechanism is designed by using logarithm-
type barrier Lyapunov functions and an event-triggered mechanism. Meanwhile, the combination
of neural networks and fast finite-time stability theory can not only approximate the unknown
nonlinear function of the system, but also construct the control law and adaptive law with a fractional
exponential power to accelerate the system’s convergence speed. Furthermore, the tracking errors
converge quickly to a bounded and adjustable compact set in finite time. Finally, the effectiveness of
the strategy is verified by simulation examples.
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1. Introduction

In modern industrial systems, the constrained robot control problem has gradually
become a hot research field. Constraints can restrict the system output during operation,
ensuring the safety specifications and the system control performance, and have been exten-
sively studied by scholars [1–6]. In [1], the tangent-type barrier Lyapunov function (BLF) is
introduced to ensure that the output remains in the constrained region. In [2], a logarithm-
type BLF and the Moore–Penrose inverse term are employed to prevent contravention
of output and state constraints. In [3], an integral-type BLF is employed in a two-DOF
helicopter system. In [6], an integral-type BLF is introduced to cope with symmetric output
constraints, so that the system output conforms to the specified restrictions. In fact, a
constant constraint is a typical situation in time-varying constraints. Moreover, methods to
deal with time-varying constraints usually combine the time-varying BLF with fuzzy logic
systems (FLSs) [7–9] or neural networks (NNs) [10–12]. In [7], an output feedback control
approach for an adaptive fuzzy state observer is designed by employing the time-varying
BLF. In [10], the time-varying BLF and NNs are used to ensure that the output is limited
to a time-varying interval, and the n-link robotic systems are transformed into a class of
MIMO systems, which makes them more versatile in dealing with practical problems.

Lyapunov stability theory is one of the most traditional and widely used methods
for analyzing the stability of dynamic systems [13–16]. Only when time tends to infinity
can the states of the system converge to an equilibrium point. In [13], a diagonal recurrent
neural network (DRNN) is utilized for the adaptive control of nonlinear dynamic systems.
Furthermore, update rules are developed using Lyapunov stability criteria to further adjust
various parameters of the DRNN. Lastly, tests are conducted on parameter variations and
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disturbance signals to verify the robustness of the proposed control scheme. In [14], the
authors proposed a time-domain locally recursive radial basis function network structure
for nonlinear system modeling and adaptive control. The main feature of this study is
the introduction of discrete Lyapunov stability in order to ensure the asymptotic stability
of the system, and conditions on the learning rate are derived using this method. In
the simulation study, the performance of a recurrent Elman neural network, a DRNN, a
dynamic radial basis function network and a dynamic feedforward neural network is also
compared. In [15], a new higher-order contextual hierarchical recursive pi-sigma neural
network (CLRPSNN) is proposed. In order to adjust the weights of the proposed CLRPSNN
model, a learning process is developed by combining BP and Lyapunov stability methods.
The proposed model has better results compared to a PSNN, a feedforward neural network
(FFNN) (containing a single hidden layer) and various popular recurrent neural networks
(RNNs). In [16], an adaptive dynamic programming control and identification scheme for
nonlinear dynamical systems is designed with the control objective that the output of the
controlled object follows the desired trajectory. The gradient descent (GD) and Lyapunov
stability (LS) criterion methods are used to derive the weight-updating equations for all
the neural networks in the scheme. The global stability of the system is guaranteed by the
weight-updating equations obtained by the LS criterion, and the final results show that the
LS method is more accurate than the GD method.

In contrast, however, fast-finite time stabilization theory focuses on analyzing the
ability of a system to reach a steady state in a finite time. The fast-finite time control
method has rapid convergence speeds, high precision and strong robustness to uncertainty.
Therefore, in recent years, many scholars have proposed a variety of finite-time stable design
mechanisms [17–23]. For instance, in [17], semi-global practical finite-time stability theory
is proposed, and a finite-time adaptive control approach to state feedback is proposed in
combination with NNs. Nonetheless, when its preliminary state is away from the origin,
the convergence speed of this control strategy will be reduced. In order to overcome
this problem, in [18], it was found that, according to the fast finite-time stability criterion,
the Lyapunov function satisfies V̇(x) ≤ −aV(x)− βVh(x) + $. Furthermore, in [19], the
dynamic surface control technique is utilized, the boundary conditions of the gain function
are relaxed and an adaptive fast finite-time output tracking control approach is designed
for reducing the computational complexity.

On the other hand, the above research achievements are based on a traditional time-
triggered mechanism (TTM). The sampling period is fixed and the communication band-
width is limited, thus leading to the data signal in the network transmission process being
prone to delays, affecting the quality of network communication. Therefore, event-triggered
mechanisms (ETMs) have attracted an increasing number of scholars’ attention [24–32].
In [24], the recent advances in event-triggered control mechanisms are summarized and
discussed. In [25], an adaptive NN control strategy for TTM and ETM is designed, and
comparative simulation experiments are conducted to further show that the adaptive NN
event-triggered control strategy has stronger robustness. In [26], considering uncertain
nonlinear systems, an event-triggered prescribed settling time consensus adaptive com-
pensation control method is proposed by using the relative threshold ETM. Furthermore,
in [28], by relaxing the permissible error scope of event triggering and integrating the state
model error into the construction of compound conditions and the adaptive law of NNs,
the amount of trigger moments is decreased significantly. In [33], in order to avoid the
continuous sampling of the controller, a method without considering the Zeno current is
proposed. The event trigger mechanism of an image is used, and the unmeasurable state
variables are reconstructed by multi-filters, which transforms the unknown time-varying
parameters and sensor sensitivity into an estimation problem with unknown parameters.
Thus, the event-triggered control of robotic systems has certain research significance and
is challenging.

Based on the above, considering an uncertain robot with output constraints, an adap-
tive event-triggered NN fast finite-time control approach is proposed. Under the condition



Mathematics 2023, 11, 4841 3 of 15

that the system output remains within the predefined constraint interval, all closed-loop sys-
tem signals are bounded and the tracking errors rapidly converge to a small and adjustable
set. The primary innovations can be generalized as follows:

1. Adaptive event-triggered control is designed by using the logarithm-type BLF and the
ETM, which effectively reduces the update frequency of the transmitted information
between the controller and the actuator while ensuring that the outputs of the robotic
systems remain within the predefined constraint interval.

2. Using fast finite-time stability theory, an adaptive NN control approach is proposed.
In particular, while compensating for system uncertainties, the system’s convergence
speed is also accelerated, so that the tracking error quickly converges to a bounded
and adjustable compact set within a finite time to improve the system’s robustness.

Then the research is divided into 5 sections. Section 2 details the problem exposition
and preliminaries. Section 3 introduces the design of event-triggered fast finite-time control
and analyzes its stability. Section 4 verifies the effectiveness of the proposed approach
through two simulation examples. At last, Section 5 is the conclusion.

2. Problem Description and Preliminaries
2.1. System Exposition

The dynamics of an n-degree of freedom (n-DOF) rigid robotic system [34] can be
described as

H(w)ẅ + K(w, ẇ)ẇ + D(w) + PT(w)Z(t) = ϕ(t) (1)

where the position, velocity, acceleration and input torque are w, ẇ, ẅ, ϕ(t) ∈ Rn, re-
spectively. P(w) is the reversible and unknown Jacobian matrix and Z(t) ∈ Rn is the
constrained vector force exerted by human and environment. H(w) ∈ Rn×n represents
an unknown inertia matrix. The unknown Coriolis and centripetal torque is denoted as
K(w, ẇ) ∈ Rn×n. D(w) ∈ Rn is the unknown gravitational force.

Property 1 ([35,36]). The matrix Ḣ(w)− 2K(w, ẇ) is skew-symmetric such that WT(Ḣ(w)− 2K
(w, ẇ))W = 0 and ∀W ∈ Rn, where H(w) is positive definite and symmetric.

Then, let x1 = w, x2 = ẇ. The dynamics of the robotic system (1) are transformed into
the following equation 

ẋ1 = x2
ẋ2 = H−1(ϕ−PTZ− Kx2 − D

)
y = x1

(2)

where, for convenience, H, ϕ,P , K, D and Z are abbreviations of H(x1), ϕ(t),P(x1), K(x1, x2),
D(x1) and Z(t), respectively. x1 = [x11, x12, . . . , x1n]

T, x2 = [x21, x22, . . . , x2n]
T ∈ Rn and y

represents the system output. Meanwhile, there exists a constant vector
k̄v1 =

[
k̄v11, k̄v12, . . . , k̄v1n

]T ∈ Rn, such that the system output constraint satisfies |x1| ≤ k̄v1.

Assumption 1 ([37]). The desired signal vector ys = [ys1, ys2, . . . , ysn]
T ∈ Rn and its first-order

derivative ẏs = [ẏs1, ẏs2, . . . , ẏsn]
T ∈ Rn are both continuous and bounded. There exist positive

constant vectors S0 and S1 such that |ys| ≤ S0 ≤ k̄v1 and |ẏs| ≤ S1.

Assumption 2 ([38]). Assume that for any t ∈ [0, ∞), the constrained force Z(t) is uniformly
bounded, and there exists Z̄ > 0, which satisfies |Z(t)| ≤ Z̄.

Lemma 1 ([19]). Considering a general system ẋ = f (x, w), if there exists a continuous function
V(x, t), γ1 > 0, γ2 > 0, $ ∈ (0, ∞) and h ∈ (0, 1) such that

V̇(x, t) ≤ −γ1V(x, t)− γ2V(x, t)h + $ (3)
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then the trajectory of system ẋ = f (t, w) is practically fast finite-time stable. Then, the residual set
of the system solution is described as follows

Ξ =

{
x|V(x, t) ≤ min

{
$

(1−ω0)γ1
,
(

$

(1−ω0)γ2

) 1
h
}}

(4)

where ω0 ∈ (0, 1). The convergence time Tm is

Tm = max

{
t0 +

1
ω0γ1(1− h)

ln
ω0γ1V(t0)

1−h + γ2

γ2
, t0 +

1
γ1(1− h)

ln
γ1V(t0)

1−h + ω0γ2

ω0γ2

}
(5)

Lemma 2 ([39]). For ∀ϑj ∈ R, j = 1, 2, . . . , n and a ∈ [0, 1], the following inequality holds(
n

∑
j=1

∣∣ϑj
∣∣)a

≤
n

∑
j=1

∣∣ϑj
∣∣a (6)

Lemma 3 ([40]). For any δ, µ ∈ R, one has

0 ≤ |δ| − δ tanh
(

δ

µ

)
≤ 0.2785µ (7)

Lemma 4 ([41]). For any κ1 > 0, κ2 > 0, κ3 > 0, ψ1 > 0, ψ2 > 0 and ψ3 > 0, the following
inequality holds

ψκ1
1 ψκ2

2 ψ3 ≤ κ3ψκ1+κ2
1 +

κ2

κ1 + κ2
×
[

κ1

κ3(κ1 + κ2)

] κ1
κ2

ψκ1+κ2
2 ψ

κ1+κ2
κ2

3 (8)

2.2. Radial Basis Function Neural Networks

Radial basis function neural networks (RBFNNs) are widely applied in arbitrary
approximation to deal with the environmental uncertainties in nonlinear systems. The
general form of RBFNNs can be described as

M(Y) = UT N(Y) + ε(Y) (9)

where Y ∈ Rn is the input vector; U = [U1, U2, . . . , Un]
T represents the ideal weight vector;

and N(Y) = [N1(Y), N2(Y), . . . , Nn(Y)]
T is the basis function vector, where n is the number

of nodes. ε(Y) denotes approximation error such that |ε(Y)| ≤ ε̄. The Gaussian function is
usually chosen as follows

Ni(Y) = − exp

(
(Y−mi)

T(Y−mi)

u2
i

)
, i = 1, 2, . . . , n (10)

where ui and mi, respectively, represent the width and center of the Gaussian function.

3. Adaptive Event-Triggered Fast Finite-Time Control Design
3.1. Control Design

Firstly, the following error system has been defined as{
ξ1 = x1 − ys
ξ2 = x2 − α1

(11)

where ξ1 = [ξ11, ξ12, . . . , ξ1n]
T and ξ2 = [ξ21, ξ22, . . . , ξ2n]

T ; ys = [ys1, ys2, . . . , ysn] denotes
the desired signal vector; and α1 = [α11, α12, . . . , α1n]

T represents the virtual control law.
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From (11), the derivative of ξ1 can be written as

ξ̇1 = ξ2 + α1 − ẏs (12)

ξ̇1i = ξ2i + α1i − ẏsi (13)

where i = 1, 2, . . . , n. Choosing the first BLF as

V1 =
n

∑
i=1

1
2

log
k2

1i
k2

1i − ξ2
1i

(14)

where k1 = k̄v1 − S0 = [k11, k12, . . . , k1n]
T , then V̇1 can be expressed as

V̇1 =
n

∑
i=1

ξ1i(ξ2i + α1i − ẏsi)

k2
1i − ξ2

1i
(15)

α1i is designed as follows

α1i = −z1iξ1i −
s1iξ

2h−1
1i

(k2
1i − ξ2

1i)
h−1

+ ẏsi (16)

where z1i and s1i are positive constants and h ∈ ( 1
2 , 1).

By substituting (16) into (15), one has

V̇1 ≤ −
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h +

n

∑
i=1

ξ1iξ2i

k2
1i − ξ2

1i
(17)

From (2) and (11), the derivative of ξ2 can be written as

ξ̇2 = H−1
(

ϕ−PTZ− Kx2 − D
)
− α̇1 (18)

Considering the second BLF as

V2 = V1 +
1
2

ξT
2 Hξ2 (19)

and taking the derivative of V2 and combining it with (17) and (18), it can be obtained that

V̇2 ≤−
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h +

n

∑
i=1

ξ1iξ2i

k2
1i − ξ2

1i

+ ξT
2

(
ϕ−PTZ− Kx2 − D− Hα̇1

)
+

1
2

ξT
2 Ḣξ2 (20)

Then, according to Property 1 and ξ2 = x2 − α̇1, Equation (20) can be further rewritten as

V̇2 ≤−
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h +

n

∑
i=1

ξ1iξ2i

k2
1i − ξ2

1i

+ ξT
2

(
ϕ−PTZ− Kα1 − D− Hα̇1

)
(21)

Define the unknown continuous function M = [M1(E), M2(E), . . . , Mn(E)]T ∈ Rn

as follows

M(E) = −PTZ− Kα1 − D− Hα̇1 +
n

∑
i=1

ξ1i

k2
1i − ξ2

1i
(22)
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where E =
[
xT

1 , xT
2 , yT

s , ẏT
s
]T ∈ R4n. By utilizing RBFNNs to approximate the unknown

continuous function, it can be described as

Mi(E) = WT
i Qi(E) + εi (23)

ξ2i Mi(E) = ξ2iWT
i Qi(E) + ξ2iεi

≤ 1
2r2

i
ξ2

2iζi‖Qi‖2 +
r2

i
2
+

ξ2
2i
2

+
µ2

i
2

(24)

where WT
i denotes the optimal weight vector; Qi(E) = [Qi1(E), Qi2(E), . . . , Qir(E)]T repre-

sents the radial function vector; r is the amount of nodes; εi is the approximation error; µi
is a constant such that εi ≤ |µi|; and ζi ≤ ‖Wi‖2.

With the help of the relative threshold ETM, the actual control input torque ϕi is intro-
duced to save communication resources. The control input vi(t) of the ETM is considered as

vi(t) = −(1 + λi)

[
α2i tanh

(
α2iξ2i

σi

)
+ bi tanh

(
biξ2i

σi

)]
(25)

The actual control input ϕi(t) is described as{
ϕi(t) = vi(ti,k), ti,k ≤ t < ti,k+1
ti,k+1 = inf{t ∈ R||mi(t)|≥ λi|ϕi(t) | +oi}

(26)

where λi, bi σi and oi are positive design parameters; mi(t) = ϕi(t)− vi(t) denotes the
measurement error; bi > oi/(1− λi); and k ∈ Z+.

Remark 1. While the trigger condition |mi(t)|≥ λi|ϕi(t) | +oi is true, the control input signal
ϕi(t) = vi(ti,k) will be updated and its value will be transmitted to the actuator; conversely, when
the trigger condition is false, the control signal that maintains the last moment ϕi(t) = vi−1(ti−1,k)
is transmitted to the actuator. Therefore, the ETM reduces the communication burden of the system
by reducing the update frequency of the control signal.

Equation (26) shows that for any t ∈ [ti,k, ti,k+1), vi(t) = (1 + η1i(t)ρi)ϕi(t) + η2i(t),
where |η1i(t)| ≤ 1 and |η2i(t)| ≤ 1 are time-varying parameters. Thus, it can be further
expressed that

ϕi(t) =
vi(t)− η2i(t)oi

1 + η1i(t)λi
(27)

According to (26) and (27),

ξ2i ϕi = −
(

1 + λi
1 + λiη2i(t)

(
ξ2iα2i tanh

(
ξ2iα2i

σi

)
+ ξ2ibi tanh

(
ξ2ibi

σi

))
+

oiη1i(t)
1 + λiη2i(t)

)
≤ |ξ2iα2i| − ξ2iα2i tanh

(
ξ2iα2i

σi

)
− |ξ2iα2i|+ |ξ2ibi| − ξ2ibi tanh

(
ξ2ibi

σi

)
≤ ξ2iα2i + 0.557σi (28)

Substituting (23)–(28) into (21), one has

V̇2 ≤−
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h +

n

∑
i=1

ξ2i(αi +
1

2r2
i

ξ2iζi‖Qi‖2 +
ξ2i
2
)

+
n

∑
i=1

r2
i
2
+

n

∑
i=1

µ2
i

2
+

n

∑
i=1

0.557σi (29)
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The controller law α2i is designed as follows

α2i = −ciξ2i − biξ
2h−1
2i − 1

2r2
i

ξ2i ζ̂i‖Qi‖2 − ξ2i
2

(30)

The third BLF is chosen as

V3 = V2 +
n

∑
i=1

1
2ai

ζ̃2
i (31)

where ζ̃i = ζi − ζ̂i. Taking the derivative of V3 and combining it with (30) and (31),
one obtains

V̇3 ≤−
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h −

n

∑
i=1

ciξ
2
2i −

n

∑
i=1

biξ
2h
2i

+
n

∑
i=1

1
ai

ζ̃i(
1

2r2
i

aiξ
2
2i‖Qi‖2 − ˙̂ζi) +

n

∑
i=1

(0.557σi +
r2

i
2
+

µ2
i

2
) (32)

˙̂ζi is the adaptive law, designed as follows

˙̂ζi =
1

2r2
i

aiξ
2
2i‖Qi‖2 − ρi ζ̂i (33)

Substituting (33) into (32), one has

V̇3 ≤−
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h −

n

∑
i=1

ciξ
2
2i −

n

∑
i=1

biξ
2h
2i

+
n

∑
i=1

1
ai

ρi ζ̃i ζ̂i +
n

∑
i=1

(0.557σi +
r2

i
2
+

µ2
i

2
) (34)

By utilizing Young’s inequality, one has

n

∑
i=1

1
ai

ρi ζ̃i ζ̂i ≤ −
n

∑
i=1

1
2ai

ρi ζ̃
2
i +

n

∑
i=1

1
2ai

ρiζ
2
i (35)

Substituting (35) into (34), it can be obtained that

V̇3 ≤−
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

z2iξ
2
2i

k2
2i − ξ2

2i
−

n

∑
i=1

biξ
2h
2i −

n

∑
i=1

ciξ
2
2i

−
(

n

∑
i=1

1
2ai

ζ̃2
i

)h

+

(
n

∑
i=1

1
2ai

ζ̃2
i

)h

−
n

∑
i=1

1
2ai

ρi ζ̃
2
i + ∆1 (36)

where ∆1 = ∑n
i=1

(
1

2ai
ρiζ

2
i +

µ2
i

2 +
r2

i
2 + 0.557σi

)
.

According to Lemma 4, and letting κ1 = 1 − κ2, κ2 = h, κ3 = κ1κ

κ2
κ1
2 , ψ1 = 1,

ψ2 = ∑n
i=1

1
2ai

ζ̃2
i and ψ3 = 1, it can be obtained that

(
n

∑
i=1

1
2ai

ζ̃2
i

)h

≤ κ3 +
n

∑
i=1

1
2ai

ζ̃2
i (37)
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Substituting (37) into (36), one has

V̇3 ≤
n

∑
i=1

z1iξ
2
1i

k2
1i − ξ2

1i
−

n

∑
i=1

s1iξ
2h
1i

(k2
1i − ξ2

1i)
h −

n

∑
i=1

ciξ
2
2i −

n

∑
i=1

biξ
2h
2i

−
n

∑
i=1

1
2ai

ρi ζ̃
2
i +

n

∑
i=1

1
2ai

ζ̃2
i −

(
n

∑
i=1

1
2ai

ζ̃2
i

)h

+ ∆2 (38)

where ∆2 = ∆1 + κ3. Furthermore, using Lemma 2 yields

V̇3 ≤− 2 min{z1i}
n

∑
i=1

1
2

log
k2

1i
k2

1i − ξ2
1i
− 2h min{s1i}

(
n

∑
i=1

1
2

log
k2

1i
k2

1i − ξ2
1i

)h

−min
{

2ci
λmax(H)

}(
1
2

ξT
2 Hξ2

)
−min

{
bi2h

λh
max(H)

}(
1
2

ξT
2 Hξ2

)h

−min{ρi − 1}
(

n

∑
i=1

1
2ai

ζ̃2
i

)
−
(

n

∑
i=1

1
2ai

ζ̃2
i

)h

+ ∆2 (39)

Finally, it can be obtained that

V̇3 ≤ −φV3 − χVh
3 + ∆2 (40)

where φ = min
{

2z1i,
2ci

λmax(H)
, ρi − 1

}
and χ = min

{
2hs1i,

bi2h

λh
max(H)

, 1
}

.

Remark 2. In [42], for any k > 0 satisfying |k| < z, we can obtain that log k2

k2−z2 ≤ z2

k2−z2 .

Therefore, it can be further inferred that
(

log k2

k2−z2

)h
≤
(

z2

k2−z2

)h
holds when h ∈ (0, 1).

3.2. Stability Analysis

Theorem 1. Considering n-DOF robotic systems (1) with output constraints under Assumptions
1 and 2, the virtual control laws (16) and (30), adaptive law (33) and ETMs (25) and (26), it is
guaranteed that

1. All the closed-loop system signals are bounded, and the tracking errors ξ1i rapidly converge to
the bounded and adjustable compact set within a finite time.

2. The system output does not exceed the predefined constraint interval, and the Zeno phe-
nomenon does not occur successfully.

Proof of Theorem 1. According to Lemma 1 and (40), in a finite time, the error signals
E = [ξT

1i, ξT
2i, ζ̃1, ζ̃2, . . . , ζ̃n]T can rapidly converge to the following set

Υ =

{
E|V(E) ≤ min

{
∆2

(1− κ)φ
,
(

∆2

(1− κ)χ

) 1
h
}}

(41)

where κ ∈ (0, 1). Then, the convergence time T is given as

T ≤ max

{
t0 +

1
κφ(1− h)

ln
κφV(t0)

1−h + χ

χ
, t0 +

1
φ(1− h)

ln
φV(t0)

1−h + κχ

κχ

}
(42)

Therefore, it can be obtained from (41) that ξ1i, ξ2i and ζ̃i are bounded, as well as ym,
so x1 and ζ̂i are bounded. Further, the boundedness of α1i, x2 and α2i can be obtained from
(11), (16) and (30). As a result of the boundedness of x2 and α2i, one has that vi and τi are
bounded. Thus, all closed-loop system signals are bounded.
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Remark 3. Based on the above analysis, the tracking errors converge to the bounded and adjustable
set in Equation (41), which can be adjusted by adjusting the parameters of h, ψ, φ and κ. Further-
more, it can be perceived from Equation (44) that the convergence time T is bounded, and its related
design parameters are the same as those of the tracking errors. Therefore, selecting appropriate
parameter values can not only improve the convergence accuracy, but also accelerate the system’s
convergence speed.

According to (11), |ξ1| ≤ k1 and |ym| ≤ S0, and thus one has x1| ≤ |ξ1| + |ym| ≤
k1 + S0. Due to k1 = k̄v1 − S0, it can be further obtained that |xi| ≤ k̄vi, so the output of the
n-DOF robotic system will remain within the predefined constraint interval.

From any t ∈ [ti,k, ti,k+1) and mi(t) = τi(t)−vi(t), one has

d|mi|
dt

= sgn(mi)ṁi ≤ |v̇i| (43)

As can be obtained from (27), v̇i is continuous and bounded, so there is a positive con-
stant v̄i which satisfies |v̇i| < v̄i. At the same time, because limtk→tk+1 mi(t) = λi|τi(t)|+ oi
and mi(tk) = 0, the lower bound of the event-triggered time interval can be expressed
as t? ≥ (λi|τi(t)| + oi)/v̄i. Thus, the Zeno phenomenon does not occur successfully.
Finally, the proposed control method and its pseudo-code are shown in Figure 1 and
Algorithm 1.

Algorithm 1: The proposed control method
Choose the following controller parameters:
The parameters of α1i: z1i, k1i, s1i, h;
The parameters of α2i and ζi: z2i, b2i, ri, ai, ρi;

Choose the following controller parameters:
Reference output: ys;
Initializing: xi(0), ζ̂i(0);
State feedback: xi(t).

FOR EACH t
1. Update the system states by solving (1);
2. α1i is computed by solving (16);
3. α2i and ζ̂i are computed by solving (30) and (33), respectively;
4. The control input vi(t) is calculated by solving (25);
5. Update the control input ϕi(t) according to the following rules:

IF |mi(t)| ≥ λi|ϕi(t)|+ oi
ϕi(t) = vi(t);

ELSE
ϕi(t) keeps the value of the previous moment;

END
6. ϕi(t) is applied to the system (2);

END FOR
System output: y.
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Figure 1. The proposed control method.

4. Simulation

Next, the control strategy designed above will be applied to rigid robotic systems with
two DOFs and three DOFs in order to verify its effectiveness through simulations.

4.1. Example A: Two-DOF Rigid Robotic System

A rigid robotic system with two rotary degrees of freedom is considered. We de-
fine x1 = [w1, w2]

T and x2 = [ẇ1, ẇ2]
T . H(x1), K(x1, x2), D(x1) and P(x1) are defined

as follows

H(x1) =

[
H11 H12
H21 H22

]

K(x1, x2) =

[
K11 K12
K21 K22

]

D(x1) =

[
D11
D21

]

P(x1) =

[
P11 P12
P21 P22

]
where the elements in these matrices are defined in Table 1.

The parameters for the two-DOF rigid robotic system have been chosen as m1 = 2.0 kg,
m2 = 0.85 kg, L1 = 0.35 m, L2 = 0.31 m, I1 = 61.25× 10−3 kgm2, I2 = 20.42× 10−3 kgm2

and g = 9.8 m/s2. The vector of constrained force exerted by humans and the environment
is considered as Z(ts) = [sin(ts) + 1, 2cos(ts) + 0.5]T . The output constraint interval is
defined as |xi| ≤ 1.5 rad. The initial position and velocity are considered as x1i(0) = 0 and
x2i(0) = 0.1. The desired signal is selected as ys = [sin(2ts)− 0.3arctan(t) + 0.1, sin(2ts)−
0.3arctan(t) + 0.1]T , where ts ∈ [0, 10].
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Table 1. Definition of elements in H(x1), K(x1, x2), D(x1) and P(x1).

Elements Definition Elements Definition

H11
m1L2

c1 + m2(L2
1 + L2

c2 K22 0
+2L1Lc2cos(w2)) + I1 + I2 D11

(m1Lc2 + m2L1)gcos(w1)
H21 m2(L2

c2 + L1Lc2cos(w2)) + I2 +m2Lc2gcos(w1 + w2)
H12 m2(L2

c2 + L1Lc2cos(w2)) + I2 D21 m2Lc2gcos(w1 + w2)
H22 m2L2

c2 + I2 P11 −L1sin(w1)− L2sin(w1 + w2)
K11 −m2L1Lc2ẇ2sin(w2) P21 L1cos(w1) + L2cos(w1 + w2)
K21 m2L1Lc2ẇ1sin(w2) P12 −L2sin(w1 + w2)
K12 −m2L1Lc2(ẇ1 + ẇ2)sin(w2) P22 L2cos(w1 + w2)

The Gaussian function is selected as

Qi(E) = − exp
(
(E− υi)

T(E− υi)

2

)
, i = 1, 2, . . . , 16 (44)

where the center υi distribution interval of the Gaussian function is [−1, 1].
The relevant parameters of the controller are chosen as h = 4

5 , z11 = 5, z12 = 7,
s11 = 3.5, s12 = 5.3, k11 = 1.5, k12 = 1.5, c1 = 7, c2 = 0.7, f1 = 2, f2 = 0.1, r1 = r2 = 1,
a1 = a2 = 1, ρ1 = ρ2 = 0.1, λ1 = λ2 = σ1 = σ2 = 1, o1 = o2 = 0.2, bi = oi/(1− λi) + 0.001,
ζ̂i(0) = 0 and E =

[
xT

1 , xT
2 , yT

s , ẏT
s
]T .

The simulation results from Figures 2 and 3 show that all signals are bounded under
output constraints. It is observed from Figure 2a that the joint 1–2 outputs track the given
desired trajectory well. The curves of the tracking errors are depicted in Figure 2b, which
quickly converge to the compact set within 0.2 s. Figure 2c depicts the curves of the input
torque, in which one is the event-triggered control input torque vi(t), and the other is the
control input torque τi(t). Therefore, it shows that the input control signals are bounded.
The time interval of event triggering is portrayed in Figure 3a, and the minimum time
interval is 0.01 s. Thus, the Zeno phenomenon is eliminated successfully. With the same
simulation time and step length, the total triggering time of the traditional TTM is 1000,
while the total triggering times of joint 1 and joint 2 are 223 and 317, respectively, shown
in Figure 3b,c. It can be perceived that the ETM effectively saves 77.7% and 68.3% of
communication resources, respectively.

(a) System outputs

t= 0.20 s

t= 0.87 s

t= 2.36 s

(b) Tracking errors. (c) Control signals.

Figure 2. The simulation results of Example A.

In addition, it can be seen from Figure 2a,c that the joint 1–2 outputs still track the
given desired trajectory well under the premise of considering the constrained force exerted
by humans and the environment. The control signal can also realize dynamic compensation,
so the proposed control method in this paper has a better robustness.

The above designed control method was compared with Lyapunov asymptotic stability
control (LASC) and the PD control method regarding tracking performance; the hyper-
parameter selection in these three control methods was consistent. From the simulation
results in Figure 2b and Table 2, LASC and the PD control method can also control the
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tracking error at 0.05 rad. Clearly, the convergence time of the above-designed control
scheme is faster, which highlights the superiority of the proposed scheme.

0
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(a) Time intervals.
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200
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(b) Joint 1’s numbers.

200
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200

53

200

65

200

75

200

51

(c) Joint 2’s numbers.

Figure 3. The event-triggered interval and number of Example A.

Table 2. Convergence time of different control methods.

Control Design Overshoot (rad) Settling Time (s)

PD 2.36s 0.03
LASC 0.87s 0.04

Proposed control method 0.87s 0.1

4.2. Example B: A Three-DOF Rigid Robotic System

A rigid robotic system with one prismatic degree and two rotary degrees of freedom
is considered. We define x1 = [w1, w2, w3]

T and x2 = [ẇ1, ẇ2, ẇ3]
T . H(x1), K(x1, x2) and

D(x1) are defined as follows

H(x1) =

H11 H12 H13
H21 H22 H23
H31 H32 H33



K(x1, x2) =

K11 K12 K13
K21 K22 K23
K31 K32 K33



D(x1) =

 D11
D21
D31


where the elements in these matrices are defined in Table 3.

Table 3. Definition of elements in H(x1), K(x1, x2) and D(x1).

Elements Definition Elements Definition

H11 m3 p2
3sin2(w2) + m3 p2

1 + m2 p2
1 + I1 K13

m3w3sin2(w2)ẇ1
H12 m3w3 p1cos(w2) −m3 p1w3sin(w2)ẇ2
H13 m3 p1sin(w2) K21 −m3w2

3sin(w2)cos(w2)ẇ1
H21 m3w3 p1cos(w2) K22 m3w3ẇ3
H22 m3w2

3 + I2 K23 m3 p1cos(w2)ẇ1 −m3w3ẇ2
H23 0 K31

−m3w3sin2(w2)ẇ1
H31 m3 p1sin(w2) +m3 p1cos(w2)ẇ2
H32 0 K32 −m3w3ẇ2 + m3 p1cos(w2)ẇ2
H33 m3 K33 0

K11
m3w2

3sin(w2)cos(w2)ẇ2 D11 0
+m3w2

3sin2(w2)ẇ3 D21 −m3gw3cos(w2)

K12
m3w2

3sin(w2)cos(w2)ẇ1 D31 −m3gsin(w2)
−m3 p1w3sin(w2)(ẇ1 + ẇ2)
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The parameters for the three-DOF rigid robotic system were chosen as m1 = m2 = 2 kg,
m3 = 1 kg, p1 = 0.3 m, p2 = 0.4 m, p3 = 0.5 m , I1 = 1

4 m1 p2
1, I2 = 1

4 m2 p2
2, g = 9.8 m/s2,

P(x1) = I3×3 and Z(ts) = [sin(ts) + 1, 2cos(ts) + 0.5, sin(ts) + 1]T . The output constraint
interval is defined as |xi| ≤ 1.5 rad. The initial position and velocity are considered as
x1i(0) = 0.1 and x2i(0) = 0. The desired trajectory is given as ys = [sin(2ts)− 0.3arctan(t)+
0.1, sin(2ts)− 0.3arctan(t) + 0.1, sin(2ts)− 0.3arctan(t) + 0.1]T , where ts ∈ [0, 10].

The relevant parameters of the controller are designed as h = 3
5 , z11 = 9, z12 = z13 = 13,

s11 = s12 = s13 = 0.5, k11 = k12 = k13 = 1.5, c1 = 8, c2 = c3 = 11, f1 = f2 = 2,
f3 = 1.5, r1 = r2 = r3 = 0.5, a1 = a2 = a3 = 0.5, ρ1 = ρ2 = ρ3 = 1, λ1 = 0.1,
σ1 = σ2 = σ3 = 1, o1 = 0.7, λ2 = λ3 = o2 = o3 = 0.2, bi = oi/(1− λi) + 0.001, ζ̂i(0) = 0
and E =

[
xT

1 , xT
2 , yT

s , ẏT
s
]T . The basis function is the same as Example A.

According to the simulation results of Figures 4–6, the three-DOF robotic system
achieves the expected performance. The system effectively reduces the communication
resources while ensuring that the joint outputs maintain within the predefined constraint
interval, and the Zeno phenomenon is eliminated successfully. Moreover, the tracking
errors quickly converge to a bounded and adjustable compact set within finite time; in
particular, the system’s convergence speed significantly accelerated.

(a) System outputs (b) Tracking errors. (c) Control signals.

Figure 4. The simulation results of Example B.
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Figure 5. The event-triggered interval of Example B.
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Figure 6. The event-triggered number of Example B.
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5. Conclusions

This paper investigates a category of uncertain robotic systems with output constraints
and proposes an adaptive neural network event-triggered control method. By incorporating
the logarithm-type BLF and the fast finite-time stability criterion into the backstepping con-
trol framework, this approach ensures that the system output is kept within the constraint
interval while the tracking errors rapidly converge to a bounded and adjustable compact
set in finite time. Simultaneously, the ETM is designed to reduce communication resource
consumption by decreasing the control signal update frequency, and Zeno behavior does
not successfully occur. Ultimately, the simulation results present evidence of the efficacy of
this control method. Meanwhile, artificial neural networks have gradually become a new
research hotspot in the field of nonlinear system control, which will be considered in our
future related research work.
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