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Abstract: We propose a vehicle routing problem with time windows (VRPTW) with compatibility-
matching constraints and total completion time as the objective function, with applications in home
healthcare routing and scheduling. Mixed integer linear programming is provided with total com-
pletion time minimization as the objective function. The solution approach has two objectives, total
completion time (primary objective) and total distance (secondary objective). A heuristic is proposed
comprising three phases: initializing to find an initial feasible routing (inserting the procedure with a
modified K-means algorithm), swapping and moving the procedure to find a local optimal routing,
and shooting the procedure to move away from the local optimum. Proof of feasibility for the
inserting procedure is provided to prevent unnecessary insertions. Phases 2 and 3 will be repeated as
needed to ensure solution quality. Solving our model with the proposed heuristic algorithm increases
the total distance by 90.00% but reduces the total completion time by 25.86%. To test our model and
heuristic, we examined a system with 400 home-healthcare cases in Chiang Mai. The heuristic quickly
solved the problem. When total completion time is minimized, some caretakers serve up to twice
as many patients as their coworkers; when total distance is minimized, workload discrepancies can
increase up to seven-fold.

Keywords: vehicle routing problem; time windows; compatibility; total completion time; home
healthcare system

MSC: 90-08; 90-10

1. Introduction

According to projections, the percentage of Thai nationals aged 65 years or older will
surpass 28% in less than 30 years. This threshold is significant as it marks a country as
a ‘super-aged country’ [1]. Projections by the Office of the National Economic and Social
Development Board under the Office of the Prime Minister in Bangkok anticipate a rise
in the population of elderly individuals living independently and experiencing health
issues [2]. Home healthcare (HHC) is a crucial component of a proactive healthcare system,
particularly for population segments who suffer from chronic illnesses or are bedridden
and need long-term care [3]. Providing care for these individuals may involve treatments by
psychiatrists, delivery of injections or wound care by nurses, and delivery of rehabilitation
programs by physical therapists, as well as arrangement of health-related guidance. From
the perspective of sustainability and quality-of-life enhancement, visiting the elderly at
home to deliver care represents a more effective utilization of human resources compared
to having them visit the hospital individually.

Chiang Mai is Thailand’s second largest city after Bangkok, in both population
density and economic significance. Additionally, it is the primary medical hub of the
country’s northern region. According to a recent study [4], Chiang Mai’s elderly pop-
ulation is currently estimated to be 20% of its total population. Approximately 38%,
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or 675,440 individuals out of a total population of 1,779,254, reside within the city center,
a similar percentage to contemporary trends in other major urban areas around the world.
The urban area of the city of Chiang Mai has 310,771 households, and approximately 20%
of the population have medical requirements and have duly enrolled themselves at one
of the 15 healthcare facilities dispersed across the city. Assuming that 10% of the house-
holds registered for healthcare services require regular visits from healthcare personnel,
it follows that each health center will be required to schedule appointments for approx-
imately 400 clients, and this number is increasing over time. Trying to reduce the cost
while managing the scheduling and routing of this care service requires specific strategies
and techniques. According to a report by Glinskaya et al. [5], most elderly individuals in
Thailand experience the aging process within their own households and receive care from
their families. However, the conventional familial care structure faces growing challenges
from the rise in the elderly population in relation to the working-age population. According
to projections, the number of Thais aged 80 and above will increase more than six-fold,
to approximately 2.5 million, over the next two decades. This group will require assistance.

The growing need for aged care services offers potential for business investment
and employment opportunities. It is essential to have the ability to address problems in
the provision of affordable and adequate care for elderly individuals with long-term care
requirements, covering care delivered at home, within communities, and in institutional set-
tings. From a financial perspective, the total cost must be minimized, but home healthcare
is a people-centered business and focusing on cost reduction alone can result in unsatisfied
staff and retention problems. One approach to solving this dilemma is to consider multiple
objectives simultaneously. The contributions of this paper are to better capture the nature
of the home visits, improve caretakers’ workflow efficiency, and suggest a better solution
to routing and scheduling. We consider models that cover all four major aspects of these
undertakings: (1) compatibility matching of patients and healthcare staff (compatibility),
(2) routing for healthcare staff to visit their clients (routing), (3) meeting applicable service
conditions, such as the time availability of patients and staff (time windows), and (4) the
total costs of the whole system (costs). We focus on routing and scheduling and incorporate
all four major aspects of home healthcare. The objective function is set to only minimize
the total completion time exclusively rather than minimizing total distance to the exclusion
of all else. Moreover, we provide single objective model formulation based on vehicle
routing problems with time windows and a solution approach that focuses primarily on
total completion time followed by total distance. Our model still minimizes the single
objective function, but the proposed solution method primarily minimizes total completion
time, while also trying to minimize total distance if possible. The reason is to prevent
the possibility that there exists a solution that has the same total completion time but a
different total distance. The solution approach contains routing operators modified to suit
the objective function as well as a proof to ensure feasibility, which will reduce the overall
computational time.

A VRPTW problem in any of its variations falls in the NP-hard category, requiring
the use of customized heuristics in its resolution. A home healthcare system presents a
highly complicated problem with numerous factors to be considered. As much of the exist-
ing literature on the vehicle routing problem with time windows (VRPTW) is focused on
minimizing the distance travelled, we decided to develop a model that prioritizes the mini-
mization of total completion time. This alternative would enhance the model’s suitability
for real-world applications, as waiting-time minimization and a balanced allocation of jobs
per vehicle are significant in the context of VRPTW. The process of assigning a healthcare
worker to a client requires that such factors as arrival time, finishing time, and processing
time be taken into consideration. The objective function can include various components
such as travel cost, penalty cost, fixed cost, and staff overtime cost. Among the various
objective functions considered, Wirnitzer et al. [6] employed Gurobi optimization version
5.6 to minimize the number of nurses assigned to each tour and per patient, as well as the
number of nurse switches per patient. Nasir and Kuo [7] employed a genetic algorithm
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to minimize the combined costs of travel and staff assignment. In contrast, Kandakoglu
et al. [8] aimed to minimize a weighted sum of various factors, including the total distance
travelled by nurses, overall travel expense, and overtime expense, as well as the maximum
workload and number of working staff, in order to achieve a balanced distribution of
workload. The problem is solved using the Gurobi optimization software version 8.0.
In their research, Braekers et al. [9] studied the minimization of two objectives; the first
objective applies to minimizing the total travel costs accrued by nurses and the associated
overtime costs, while the second involves minimizing the combined penalty cost resulting
from assigning an undesirable nurse to a patient and the inconvenience scores associated
with nurses’ job assignments. The problem is solved using a large neighborhood search
algorithm. The authors Cissé et al. [10] and Mascolo et al. [11] provided comprehensive
analyses on state-of-the-art HHC routing and scheduling problems by studying the lit-
erature on home visits in HHC systems. Goodarzian et al. [12] provided state-of-the-art
operations research including models and applications in home healthcare systems.

The VRPTW has garnered significant attention in the research community due to
its practical relevance and applicability to real-world scenarios. Numerous heuristic ap-
proaches have been extensively investigated, and researchers remain captivated by them.
Of the recently suggested techniques for addressing the VRPTW, which are above the
complexity of the NP-hard VRP, the majority fall under the category of metaheuristics.
The benchmark instances provided in reference [13], commonly referred to as Solomon’s
instances, can be utilized for evaluating constructed heuristics. The dataset consists of a
total of 100 customers and one depot node. Additionally, a distance matrix is provided,
representing the distances between each pair of nodes. Every individual customer node
is assigned a specific time window, demand, and service time. The primary goal is to
minimize the total distance travelled. There are three categories of Solomon’s instances.
After plotting these instances, the customers in Group C instances are dispersed in groups
or clusters. These instances are similar to real-world problems where customers live in
geographically scattered villages. Group R instances have relatively random placement,
corresponding to customers living in a large city. The customers in Group RC are randomly
clustered, i.e., they appear in groups but their placement within these groups is more or
less random.

The aforementioned properties can be seen in a conventional system in the real world.
The application and utility of VRPTW in addressing practical problems have led to signifi-
cant research efforts in developing heuristics for its solution, and a substantial number of
researchers remain engaged in investigating and advancing the field of VRPTW heuristics.
A model was proposed by Ahn and Shin [14] for the purpose of minimizing the total
distance in the vehicle routing problem with time windows (VRPTW). This model is based
on the utilization of insertion and saving heuristics. Rochat and Taillard [15] introduced
an algorithm that relied on a probabilistic tabu search and used probabilistic techniques
to enhance the effectiveness of the tabu search. Additionally, they presented the solutions
obtained with their algorithm. Li and Lim [16] implemented a metaheuristic approach
using the simulated annealing algorithm and incorporated K-restart strategies as a means
of enhancing the local search process. The performance of their algorithm, evaluated in
the Solomon benchmark instances, shows that it has the potential to enhance existing
solutions reported in the literature. Following this, Pisinger and Popke [17] introduced
the concept of an adaptive large neighborhood search (ALNS) and applied it to evaluate
Solomon instances, as well as Gehring and Homberger benchmark instances [18], specif-
ically focusing on scenarios involving over 100 customers. Low et al. [19] employed a
genetic algorithm and conducted tests on the modified Solomon instances. The problem
was adapted to align with the specific context of production and scheduling. After that,
Khoo and Mohammad [20] proposed the parallelization of ruin and recreated strategies
and the use of a genetic algorithm as a means to address the vehicle routing problem with
time windows (VRPTW). Addressing a variant of multiple depots vehicle routing problem,
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Bi et al. [21] applied the ant lion optimizer to solve two types of logistic modes in meal
delivery routing with two objectives, customer satisfaction and cost.

Table 1 presents the minimum values of the objective function obtained from the most
recent literature. Note that only works that consider hard time windows, i.e., the service
providers need to wait for customers to become available, are presented. The problem type
is denoted by the letters C, R, or RC in the first column, representing instances with nodes
in clusters, randomly placed nodes, and clusters with randomly placed nodes inside each
cluster, respectively. The objective function values obtained from the most recent literature
are shown in Table 1. The first value in the table represents the total distance, followed by
the required number of vehicles (in brackets). Note that some corresponding solutions are
unavailable or inaccessible. We have underlined the works that provide solutions based
on objective function values. The optimal results, according to the authors, are marked
with “*” next to the objective value. For each instance, the minimum objective value (total
distance) across all publications, regardless of the associated solutions, is shown in boldface.
It is notable that all works with corresponding solutions have objective function values that
are relatively higher. Note also that some of the work may truncate the distance between a
node to one digit, resulting in a lower objective value than others.

Table 1. The best objective function values from the literature on Solomon’s instances.

Instance [15] [22] [23] [24] [25] [26] [27] [20] [28]

C101 s 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C102 828.94 (10) 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C103 828.06 (10) 826.3 * (10) - 826.3 * (10) 828.06 (10) 828.06 (10) 828.06 (10) 828.07 (10) 826.3 (10)
C104 824.78 (10) 822.9 * (10) - 822.9 * (10) 824.78 (10) 825.65 (10) 824.78 (10) 824.78 (10) 822.9 (10)
C105 828.94 (10) 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C106 828.94 (10) 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C107 828.94 (10) 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C108 828.94 (10) 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C109 828.94 (10) 827.3 * (10) - 827.3 * (10) 828.94 (10) 828.94 (10) 828.94 (10) 828.94 (10) 827.3 (10)
C201 591.56 (3) - 589.1 * (-) 589.1 * (3) 591.56 (3) 591.56 (3) 591.56 (3) 591.56 (3) 589.1 (3)
C202 591.56 (3) - 589.1 * (-) 589.1 * (3) 591.56 (3) 591.56 (3) 591.56 (3) 591.56 (3) 589.1 (3)
C203 591.17 (3) - - 588.7 * (3) 591.17 (3) 591.17 (3) 591.17 (3) 591.17 (3) 588.7 (3)
C204 590.60 (3) - - - 590.60 (3) 596.55 (3) 590.60 (3) 590.60 (3) 588.1 (3)
C205 588.88 (3) - 586.4 * (-) - 588.88 (3) 588.88 (3) 588.88 (3) 588.88 (3) 586.4 (3)
C206 588.49 (3) - 586.0 * (-) 586.4 * (3) 588.49 (3) 588.49 (3) 588.49 (3) 588.49 (3) 586.0 (3)
C207 588.29 (3) - 585.8 * (-) 586.0 * (3) 588.29 (3) 588.29 (3) 588.29 (3) 588.29 (3) 585.8 (3)
C208 588.32 (3) - - 585.8 * (3) 588.32 (3) 588.32 (3) 588.32 (3) 588.32 (3) 585.8 (3)
R101 1650.80 (19) 1637.7 * (20) 1637.7 * (20) 1637.7 * (20) 1642.88 (20) 1664.13 (20) 1642.87 (20) 1642.88 (20) 1637.7 (20)
R102 1486.12 (17) 1466.6 * (18) 1466.6 * (18) 1466.6 * (18) 1472.81 (18) 1487.07 (18) 1472.62 (18) 1472.82 (18) 1467.7 (18)
R103 1213.62 (14) 1208.7 * (14) 1208.7 * (14) 1208.7 * (14) 1213.62 (14) 1237.05 (14) 1213.62 (14) 1213.62 (14) 1220.3 (15)
R104 982.01 (10) - - - 976.61 (11) 1010.24 (11) 986.10 (11) 976.61 (11) 984.5 (10)
R105 1377.11 (14) 1355.3 * (15) 1355.3 * (15) 1355.3 * (15) 1360.78 (15) 1390.12 (15) 1360.78 (15) 1360.78 (15) 1373.1 (16)
R106 1252.03 (12) 1234.6 * (13) 1234.6 * (13) 1234.6 * (13) 1240.47 (13) 1254.22 (13) 1241.52 (13) 1239.37 (13) 1259.3 (14)
R107 1159.86 (10) 1064.6 * (11) 1064.6 * (11) 1064.6 * (11) 1073.34 (11) 1100.52 (11) 1076.13 (11) 1072.12 (11) 1084.6 (12)
R108 980.95 (9) - - - 947.55 (10) 975.34 (10) 948.57 (10) 938.20 (10) 952.30 (11)
R109 1235.68 (11) - 1146.9 * (13) 1146.9 * (13) 1151.84 (13) 1166.09 (13) 1151.84 (13) 1151.84 (13) 1165.9 (13)
R110 1080.36 (11) - 1068.0 * (12) 1068.0 * (12) 1072.41 (12) 1112.21 (11) 1092.35 (12) 1072.41 (12) 1091.2 (12)
R111 1129.88 (10) - 1048.7 * (12) 1048.7 * (12) 1053.50 (12) 1079.82 (12) 1053.50 (12) 1053.50 (12) 1065.3 (12)
R112 953.63 (10) - - - 953.63 (10) 976.99 (10) 960.68 (10) 958.03 (10) 971.80 (11)
R201 1281.58 (4) - - 1143.2 * (8) 1149.68 (9) 1173.75 (7) 1148.49 (9) 1147.80 (8) 1146.6 (8)
R202 1088.07 (4) - - - 1034.35 (8) 1046.16 (5) 1049.74 (7) 1034.97 (6) 1035.8 (7)
R203 948.74 (3) - - - 874.87 (6) 890.50 (5) 900.08 (5) 874.87 (6) 877.00 (6)
R204 869.29 (2) - - - 736.52 (4) 760.82 (3) 772.33 (4) 735.80 (5) 742.40 (5)
R205 1063.24 (3) - - - 955.82 (5) 954.16 (5) 970.89 (6) 954.16 (5) 957.20 (5)
R206 912.97 (3) - - - 879.86 (4) 889.39 (4) 898.91 (5) 884.85 (5) 894.40 (6)
R207 814.78 (3) - - - 799.86 (4) 822.90 (4) 834.93 (4) 797.99 (4) 808.60 (5)
R208 738.60 (2) - - - 705.45 (4) 719.17 (3) 723.61 (3) 705.33 (4) 718.70 (4)
R209 944.64 (3) - - - 859.39 (5) 874.95 (5) 879.51 (6) 860.11 (5) 870.30 (5)
R210 967.50 (3) - - - 910.70 (5) 930.42 (5) 932.89 (7) 905.21 (6) 916.00 (6)
R211 949.49 (2) - - - 755.96 (4) 761.10 (4) 787.51 (5) 753.15 (4) 758.60 (5)
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Table 1. Cont.

Instance [15] [22] [23] [24] [25] [26] [27] [20] [28]

RC101 1623.58 (15) - 1619.8 * (14) 1619.8 * (14) 1643.41 (16) 1636.92 (15) 1639.97 (16) 1623.58 (15) 1647.5 (16)
RC102 1477.54 (13) - 1457.4 * (14) 1457.5 * (14) 1461.23 (14) 1488.36 (14) 1466.84 (14) 1461.23 (14) 1473.5 (14)
RC103 1262.02 (11) - 1258.0 * (11) 1258.2 * (11) 1277.54 (12) 1306.42 (14) 1264.71 (11) 1261.67 (11) 1282.5 (12)
RC104 1135.83 (10) - - - 1136.81 (10) 1140.70 (10) 1135.52 (10) 1135.52 (10) 1159.2 (11)
RC105 1733.56 (13) - 1513.7 * (15) 1513.7 * (15) 1518.58 (16) 1590.25 (16) 1518.60 (16) 1518.58 (16) 1554.9 (15)
RC106 1384.92 (12) - - - 1381.23 (13) 1408.70 (13) 1377.35 (16) 1376.99 (13) 1398.2 (14)
RC107 1230.95 (11) - - - 1212.83 (12) 1254.26 (12) 1212.83 (12) 1212.83 (12) 1251.0 (12)
RC108 1170.70 (10) - - - 1117.53 (11) 1254.26 (12) 1117.53 (11) 1118.07 (11) 1132.5 (11)
RC201 1438.89 (4) - - 1261.8 * (9) 1265.56 (9) 1306.34 (7) 1274.54 (9) 1265.56 (9) 1268.8 (9)
RC202 1165.57 (4) - - - 1095.64 (8) 1118.05 (8) 1113.53 (8) 1095.64 (8) 1096.3 (8)
RC203 1079.57 (3) - - - 928.51 (5) 951.08 (5) 945.96 (5) 926.82 (5) 934.40 (5)
RC204 806.75 (3) - - - 786.38 (4) 796.14 (4) 799.67 (4) 788.66 (4) 793.60 (4)
RC205 1333.71 (4) - - - 1157.55 (7) 1181.86 (7) 1161.81 (7) 1157.55 (7) 1162.7 (8)
RC206 1212.64 (3) - - - 1054.61 (7) 1080.50 (7) 1059.89 (7) 1054.61 (7) 1070.2 (7)
RC207 1085.61 (3) - - - 966.08 (6) 982.58 (5) 976.40 (7) 969.80 (6) 967.70 (6)
RC208 833.97 (3) - - - 779.31 (4) 785.93 (4) 795.40 (5) 778.93 (4) 778.90 (4)

* is optimal results according to the authors. Underline is the works that provide the solutions based on the
objective function value.

The remaining sections of this paper are structured as follows: Section 2 presents
model construction, with the model being modified from the vehicle routing problem with
time windows. Section 3 describes the solution approach. The results and simulation
analysis are presented in Section 4. The case study is shown Section 5. Section 6 presents
the conclusions.

2. Model Construction

The routing and scheduling in a home healthcare system (HHC) is based on the vehicle
routing problem, where the vehicles visit all customer nodes. Each node can be visited by
only one vehicle within the time frame. This particular problem involves a collection of
vehicles (caretakers), denoted as {1, 2, . . . , m}, and a set of time intervals associated with
each caretaker. The main goal is to determine the optimal routes for each caretaker, starting
and ending at the depot location, in order to minimize the total completion time required
to complete all tasks. Each patient is set to receive a single visit within a designated time
frame, and each caretaker is obligated to start and finish their duties within the specified
window.

The concept in a HHC system can be represented mathematically as a complete graph
denoted as G = (N, E). In this graph, N represents the set of clients or patients, ranging
from 0 to n, written as N = {0, 1, . . . , n}. The value 0 corresponds to the starting location of
the route (depot node), which is the health center. E represents the set of edges in the graph,
indicating the connections between different clients or patients. The provided data include
the distances (duration of travel between each pair of points), as well as the amount of time
required to deliver service at the respective point. The compatibility for visiting between
the nodes and vehicles is given, which takes the value 1 if the caretaker is allowed to visit
the patient, and otherwise, 0. The mathematical programming problem is formulated as
a vehicle routing problem with time windows (VRPTW) including strict limitations on
time, inspired by situations where patients have time-sensitive medical requirements and
caretakers who arrive before the designated time windows will be required to wait.

The parameters used in the HHC system are as follows:
Indices:

0 The starting point of the route, which can be the health center
i,j The patients i, j ∈ {1, 2, . . . , n}
k The caretaker k ∈ {1, 2, . . . , m}
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Parameters:

tij The travel time from patient i to patient j
pj The service time for patient j
ej The start time (or available time) of patient j
lj The finish time of patient j
qj The requirement of patient j
Q The capacity of all vehicles
M A sufficiently large number[
rjk

]
A compatibility matching matrix (n×m) whose element rjk = 1 means patient j can
be served by caretaker k; otherwise, rjk = 0

Variables:

xk
0j 1 if caretaker k travels from the origin to patient j; otherwise, 0

xk
ij 1 if caretaker k travels from node i to patient j; otherwise, 0

xk
j0 1 if patient j is the last patient visited by caretaker k; otherwise, 0

tj Starting (available) time of patient j
cj Completion time of patient j
uj Variables for subtour elimination

The problem, which can be formulated as a mixed integer linear program, is given
below. The problem aims to minimize total completion time, with each caretaker following
restrictions, including routing and time constraints.

minimize
n

∑
j=0

cj (1)

The routing constraints:
n

∑
j=1

xk
0j = 1, ∀k ∈ K (2)

n

∑
j=1

xk
j0 = 1, ∀k ∈ K (3)

m

∑
k=1

n

∑
i=0,i 6=j

xk
ij = 1, ∀j ∈ N\{0} (4)

m

∑
k=1

n

∑
j=0,i 6=j

xk
ij = 1, ∀i ∈ N\{0} (5)

n

∑
i=0,i 6=j

xk
ij −

n

∑
l=0,l 6=j

xk
jl = 0, ∀j ∈ N\{0}, ∀k ∈ K (6)

The subtour elimination constraint combined with capacity constraints:

ui − uj + qj ≤ Q
(

1− xk
ij

)
, ∀i, j ∈ N\{0}, i 6= j, ∀k ∈ K (7)

qj ≤ uj ≤ Q, ∀j ∈ N\{0} (8)

The compatibility constraints:

n

∑
i=0,i 6=j

xk
ij ≤ rjk, ∀j ∈ N, ∀k ∈ K (9)

The starting time and time windows constraints:

ti + pi + dij −M
(

1− xk
ij

)
≤ tj, ∀i ∈ N, i 6= j, ∀j ∈ N, ∀k ∈ K (10)
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ej ≤ tj ≤ lj, ∀j ∈ N (11)

The calculation of completion time:

ti + pi ≤ ci, ∀i ∈ N, ∀k ∈ K (12)

The variable constraints:

xk
ij ∈ {0, 1}, ∀i, j ∈ N, i 6= j, ∀k ∈ K (13)

A detailed description of the constraints is as follows: routing constraints (2)–(8) relate
to the organization of caretaker routes. Constraints (2) and (3) guarantee that each caretaker
starts and ends their route at the designated starting point. Constraints (4) and (5) ensure
that each patient is visited and departed by only one caretaker. Constraint (6) ensures
that a caretaker departs from a patient after completing their service and proceeds to the
next patient. Constraints (7) and (8) are designed to eliminate subtours. Constraints (9)
are compatibility-matching constraints limiting the caretaker’s ability to travel only to
particular patients. The activation of constraints (10) occurs when caretaker k switches from
going to patient i to going to patient j (xk

ij = 1). In other words, the sum of the duration of
patient i’s completion time (or the expected start time and service duration at patient i) and
the travel time from patient i to patient j must be shorter than the starting time window
for patient j. Constraints (11) make sure that the start time of patient j falls within his/her
specific time window. Constraints (12) apply to the calculation of the completion times for
all patients. Lastly, constraints (13) guarantee the requirements of integrality and positivity.

3. Solution Approach

As mentioned earlier, VRPTW is an extension of the vehicle routing problem which
lies in the NP-hard problem category; as such, VRPTW is also an NP-hard problem. Given
the NP-hard nature of the proposed problem, the exact approach cannot solve or even
provide a solution when the number of nodes increases.

Our proposed algorithm begins with Phase 1, where the jobs are partitioned into
clusters using a K-means algorithm. The number of clusters is predefined. Subsequently,
within each cluster, the insertion procedure is employed to organize jobs in a manner that
ensures there are no cases of tardiness or lateness among the assigned jobs. Positions that
are unable to take on any job candidates will be considered tardy. Starting with two clusters
and increasing when the inserting procedure cannot find a feasible solution, Phase 1 is
iterated until all remaining tasks have been allocated; otherwise, the problem is infeasible.
Phase 2 is subsequently implemented to enhance the solution by reassigning tasks (moving
and swapping) either within or between clusters to achieve a more optimal outcome. When
the process of swapping and moving does not lead to an improvement in the solution, it is
referred to as a local optimal state for the current solution. Phase 3 involves implementing
a shooting procedure, which aims to enhance the solution by randomly repositioning jobs
before the next use of Phase 2. The implementation of Phase 3 is conditional upon obtaining
the designated number of iterations. The procedures are summarized in Section 3 and
described in detail in the following section.

As presented in Section 2, our model is a single objective function, which aims to
exclusively minimize the total completion time. Since total completion time is the combina-
tion of the starting time, service time, and distance between nodes, minimizing the total
completion time can result in a reduction in the total distance. In contrast, minimizing the
total distance does not take the service time into account. Minimizing the total completion
time will therefore result in simultaneous reduction of both operation time and distance.
Moreover, minimizing only the total completion time obviously increases the total distance
(minimizing one objective leads to an increase in another objective), which in turn will
increase the overall cost of the system. For this reason, we modify the algorithm to consider
more than one aspect rather than turn it into a problem with multiple objective functions.
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Note that this approach can be reversed, i.e., using total distance as the primary objective
function and total completion time as the secondary objective function.

The remainder of this section is organized as follows: the solution representation is
given in Section 3.1. The modified K-means clustering is described in Section 3.2. Section 3.3
explains the inserting procedure. The local search procedures (swapping and moving
procedures) are given in Sections 3.4 and 3.5. Finally, the algorithm, including Phases 1, 2,
and 3, is summarized.

3.1. Solution Representation

For convenience’s sake, the solution in this problem is defined as a single vector which
starts and ends at node “0”. Next to node 0 is the subsequent node that the vehicle travels
to in the sequence. The representation contains all routes where each vehicle is separated
by “0”. For example, suppose the solution has the first vehicle start from the depot node
and travel to node 1, 5, and 4, respectively, before returning to the depot node; the second
route starts from the depot and travels to node 6 and 2; and the third route starts from the
depot, goes to node 3, and then returns to the depot node. The solution which has two
vehicles can be written as [0, 1, 5, 4, 0, 6, 2, 0, 6, 0], as shown in Figure 1.
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Definition 1. The routing sequence with k vehicles can be written as R = [R1, R2, . . . , Rk], where

each route i is represented by Ri =

[
0, σi

1, σi
2, . . . , σi

|Ri|
, 0
]

, and |Ri| represents the number of

visiting nodes, excluding depot, in route i.

Definition 2. The starting time of the job, t
(

σi
j

)
, is the minimum between the combination of the

starting time of the immediately processed job with the service time and the travel distance, i.e.,
t
(

σi
j

)
= t
(

σi
j−1

)
+ pσi

j−1
+ dσi

j−1,σi
j
, and the lower time window of the jobs.

Definition 3. The completion time of a job σi
j , written as c

(
σi

j

)
, is the combination of its starting

time and its service time, i.e., c
(

σi
j

)
= t
(

σi
j

)
+ pσi

j
.
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Example 1. The routing sequence is as shown in Figure 1, with 3 routes and 6 nodes. The first
vehicle starts from the depot and travels to nodes 1, 5, and 4, and then returns to depot. Ve-
hicle 2 starts from the depot and travels to node 6 and node 2. Vehicle 3 travels from the
depot node, goes to node 3, and then returns to the depot. The routes can be written as fol-
lows: R1 = [0, 1, 5, 4, 0], R2 = [0, 6, 2, 0], R3 = [0, 3, 0]. The routing sequence can be written as
R = [R1, R2, R3] = [0, 1, 5, 4, 0, 6, 2, 0, 3, 0]. Note that the duplicate zero in the routing sequence
is deleted. From the definition, the three routes can be described as:

Route R1, σ1
1 = 1, σ1

2 = 5, σ1
3 = 4, and |R1| = 3.

Route R2, σ2
1 = 6, σ2

2 = 2, and |R2| = 2.
Route R3, σ3

1 = 1 and |R3| = 1.

3.2. Modified K-Means Clustering

K-means clustering is a classification method for classifying data by identifying the
features. Classification methods can be divided into hierarchical clustering and partitioned
clustering. In hierarchical clustering, data are clustered using a dendrogram of an agglom-
erative method and a divisive method. The partitioned clustering method clusters data
based on the heuristic approach using a single criteria function (feature function) to all
data objects [29]. In this study, the K-means algorithm, a partitioned clustering method,
is selected for clustering the nodes based on the distance function. The K-means algorithm
is selected because it is one of the most common methods for clustering, and because of its
simple calculation, ease of implementation, and efficiency.

The procedure of K-means proceeds as follows: the number of clusters, called k,
must be predefined before the start of algorithm. The k centroids are then generated,
each one representing a cluster. After that, each remaining node is added to the nearest
compatible cluster. The process will iterate by changing the centroids and recalculating the
distance again until there is no change in the centroids. Due to the objective function to
minimize total completion time and the time window constraints, we present a modified
K-means clustering which changes the feature function from distance to the average upper
time windows, indicated as (1) and (2), respectively, in the pseudocode. The first version
is the original version of K-means, while the second version is the modified version.
The pseudocode is given below (Algorithm 1).

Algorithm 1: Modified K-means clustering

1. Input: The set of all nodes N0 = {1, 2, . . . , n}, the number of clusters (k).
2. Randomly generate k nodes within the space, set as centroids Kc = {c1, c2, . . . , ck}.
3. While the set centroid is changed do
4. Define the set of clusters as K = {K1, K2, . . . , Kk} where Ki = ∅ for i ∈ {1, 2, . . . , k}.
5. For i in the set of all nodes (N) do
6.
7.

(1) Add node i to the compatible cluster Kj (rij = 1) that has the shortest distance between
centroid cj and node i.

(2) Add node i to the compatible cluster Kj (rij = 1) that has the lowest of the average of
upper time windows between all nodes in that cluster and node i.

8. End For
9.
10.

(1) Find new set of centroid nodes by the average of each position of node in the cluster.
(2) Find new set of centroid nodes by the average of position of three nodes in the cluster: the

previous center, the node that has maximum upper bound, and the node that has minimum
upper bound.

11. End While
12. Return: Set of clustered nodes.
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3.3. Inserting Procedure

The inserting procedure aims to create an initial solution by inserting the incoming
jobs in the best position until there are no jobs left. The algorithm aims to create a route
from the solution obtained from the K-means clustering. Due to the restriction of the hard
time windows, both lower and upper, some of the inserts may not be feasible to apply. We
provide some conditions that ensure a node will be inserted into the routing position.

For each cluster, the first step is to sort and reorder all jobs’ upper time windows in
ascending order in the cluster. Each job (customer node) will then be inserted one by one
until there are no jobs left. In each iteration, there is more than one possible position to
insert. As the aim is to minimize total completion time, the best insertion must therefore
be in the position that increases it the least. One way to obtain the best solution is to
insert jobs into all possible positions and then check for feasibility and objective value;
after that, the best inserting position will be obtained. Since the possible inserting position
increases at each iteration, in factorial, considering all jobs will cause the execution time
to increase. It is better to check inserting conditions before fully checking feasibility and
calculate objective value after insertion. In this study, two conditions are provided, each
requiring only small calculation steps.

Suppose that the current cluster has n number of jobs (nodes) to be scheduled. In the
middle of the procedure, let the current partial routing sequence at cluster i
be Ri =

[
0, σi

1, σi
2, . . . , σi

n−k, 0
]

and the remaining k jobs waiting to be inserted be
Ki = {jk+1, . . . , jn}. The next candidate to be inserted is the job jk+1. To check the fea-
sibility, each constraint in the proposed model must be satisfied. However, while the
procedure has not completely inserted all remaining jobs, some of the constraints are not
satisfied. The steps in the inserting procedure will ensure the feasibility of the routing
constraints, and the feasibility of compatibility constraints is ensured by the clustering.
The feasibility of the solution can therefore be obtained by checking only time windows
constraints, i.e., Constraints (10) and (11).

Lemma 1. Consider a routing sequence Rk =
[
0, σk

1 , σk
2 , . . . , σk

i−1, σk
i , . . . , σk

|Rk |
, 0
]
. A job j

can feasibly insert in a position between job σk
i−1 and σk

i , i.e., the inserted routing sequence

R∗k =
[
0, σk

1 , σk
2 , . . . , σk

i−1, j, σk
i , . . . , σk

|Rk |
, 0
]
, if two of the following conditions are satisfied:

the lower time window of job j does not exceed the completion time of job σk
i−1, i.e., ej ≤ c

(
σk

i−1

)
and the upper time window of job j is after the lower time window of job σk

i , i.e., lj ≥ ek
σi

, andthe
completion time of job σk

i−1 together with the distance from job σk
i−1 to job j, j to σk

i , and the service time

of job j does not exceed the lower time window of σk
i . That is, c

(
σk

i−1

)
+ dσk

i−1,j + pj + dj,σk
i
≤ eσk

i
.

Proof. Suppose job j is inserted in the position between job σk
i−1 and σk

i .

Since ej ≤ c
(

σk
i−1

)
, job j can start immediately after arriving at node σk

i .
Moreover, the starting time of job j is equal to the combination between the completion

time of job σk
i−1, i.e.,

c
(

σk
i−1

)
+ dσk

i−1,j = s(j). (14)

The possible starting time of job σk
i , defined as s∗

(
σk

i

)
, is thus the completion time of

job j together with the service time and the travel distance, i.e.,

s(j) + pj + dj,σk
i
= s*

(
σk

i

)
. (15)

From Equations (14) and (15), and Condition 2,

s*
(

σk
i

)
= s(j) + pj + dj,σk

i
= c
(

σk
i−1

)
+ dσk

i−1,j + pj + dj,σk
i
≤ eσk

i
;
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thus, s*
(

σk
i

)
≤ eσk

i
.

From the definition of the problem, if the vehicle arrives before the lower time window,
it must wait and cannot provide service until the time is reached. That is, the vehicle must
start at time eσk

i
or,

s
(

σk
i

)
= eσk

i
. (16)

Next, we ascertain the feasibility of the inserted routing sequence by checking only
Constraints (10) and (11), i.e., eσ ≤ s(σ) ≤ lσ for all σ ∈ R∗k . Since the starting time of
each of the jobs processed before job j, i.e., σa for a = 1, 2, . . . , i− 1, has not been changed,
Constraints (10) and (11) are satisfied for job a for a = 1, 2, . . . , i − 1. For job j, from
Equation (14), s(j) = c

(
σk

i−1

)
+ dσk

i−1,j, and Condition 1, ej ≤ c
(

σk
i−1

)
, we have ej ≤ s(j).

From lj ≥ ek
σi

and Equation (16), we have s(j) ≤ ek
σi
≤ lj. Constraints (10) and (11) are

therefore satisfied for job j.
From (16), the new starting time of job σk

i is the lower time window, which must be
less than the starting time before inserting job j. The starting time, after inserting job j,
of each job processed after job σk

i therefore remains the same. Thus, Constraints (10) and

(11) are satisfied for all job σ ∈
{

σk
i , σk

i+1, . . . , 0
}

.
Constraints (10) and (11) are satisfied for route R∗k , and therefore the routing sequence

is feasible. �

Lemma 2. A job j cannot be inserted into any position in a routing sequence Rk =
[
0, σk

1 , σk
2 , . . . ,

σk
i−1, σk

i , . . . , σk
|Rk |

, 0
]

if the starting time (starting time together with service time) of each of the
jobs in the routing sequence and its service time combined with the double minimum distance
from the job to each node exceeds its upper time windows. That is, for each i ∈ {1, 2, . . . , |Rk|},
s
(

σk
i−1

)
+ pj + 2min

i∈Ri

(
dij
)
> lσk

i
.

Proof. Similar to Lemma 1, the feasibility can be checked only on Constraints (10) and (11).
Suppose the inserting of job j is feasible.
The routing, when inserting job j into some position, will always have at least one

job processed after job j. Let σi−1 and σj be jobs in routing sequence Rk that are processed
before and after job j, respectively.

The starting time of job σi is:

s(σi) = s(j) + pj + djσi , (17)

and the starting time of job j is:

s(j) = s
(
σj−1

)
+ pσi−1 + djσi−1 . (18)

From (17) and (18),

s
(
σj−1

)
+ pσi−1 + djσi−1 + pj + djσi ≤ s(j) + pj + djσi = s(σi). (19)

Then, from the assumption,
lσi < s

(
σj−1

)
+ pj + 2min

i∈Ri

(
dij
)
≤ s
(
σj−1

)
+ pσi−1 + djσi−1 + pj + djσi = s(σi),

which contradicts the feasibility of the problem; therefore, the insertion is infeasible. �

The pseudocode for the inserting procedure is given below (Algorithm 2).
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Algorithm 2: Inserting Procedure

1. Input: The set of nodes N = {0, 1, . . . , n}.
2. Set the number of clusters k = 2
3. Apply Algorithm 1 (K−means) to cluster all jobs, set as K = {K1, K2, . . . , Kk}.
4. Check the feasibility condition from Lemma 2. If the cluster is infeasible, regenerate clusters again using

the sec ond criteria in Algorithm 1. If the cluster is still infeasible, increase the number of clusters by
k = k + 1 and repeat the process in line 3.

5. For cluster Ki ∈ K do
6. Define empty route Ri = [0, 0].
7. For job j in the cluster Ki do
8. Insert job j in the position that satisfies conditions in Lemma 1.

If there is more than one candidate, prioritize the one having lowest total completion time
first, followed by the one with minimum distance.
Elseif there is no position that satisfies Lemma 1, insert job j into the best feasible position in
the current route giving the lowest total completion time.
Else generate a new cluster and increase the number of clusters by 1.
End If

9. Delete job j from cluster Ki .
10. End For
11. End For
12. Return: Routing sequence R = [R1, R2, . . . , Rk ].

3.4. Local Search Algorithms

After applying the inserting procedure, we now obtain an initial solution, and this is
the end of Phase 1. After this, the local search, or neighborhood search, seeks to find an
improved solution by searching around their neighborhoods. In this study, moving and
swapping procedures are selected as the local search algorithm.

3.4.1. Moving Procedure

The moving procedure will be applied to find the best new solution by moving some
jobs to other positions in a routing sequence. The move can occur on the same route
or to another route. That is, the move is equivalent to deleting followed by inserting.
The conditions from Lemmas 1 and 2 can therefore also be applied to check the feasibility.
In each iteration, the job with the lowest upper time window that has never been moved is
selected to move. The selected job will be checked for feasibility by Lemma 1 and 2 before
calculating the objective value. The pseudocode is given below (Algorithm 3).

Algorithm 3: Moving Procedure

1. Input: The routing sequence R = {R1, R2, . . . , Rk}.
2. Generate candidate set CD that is the sorted upper time window of all nodes.
3. For job j ∈ CD do
4. Remove job j from its original position in R.
5. For routing Ri in the routing sequence R do
6. Insert job j into the position that satisfies conditions in Lemma 1.

If there is more than one candidate, prioritize the one having lowest total completion time
first, followed by the one with minimum distance.
Elseif there is no position that satisfies Lemma 1, insert job j into the best feasible position in
the current route giving the lowest total completion time.
Else generate a new cluster and increase the number of clusters by 1.
End If

7. Save the increment of total completion time and distance for the routing sequence to (∆ci , ∆di).
8. End For
9. Insert job j into the routing with the lowest ∆c; if there is more than one candidate, choose the one

with the lowest ∆d.
10. End For
11. Return: Routing sequence R = [R1, R2, . . . , Rk ].

3.4.2. Swapping Procedure

The swapping procedure aims to switch the positions of two jobs when switching
results in a feasible routing sequence with total completion time reduction. If the upper
time windows are close to each other, the swapping processes will likely return a feasible
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routing sequence. The candidate list is modified to be the list of two jobs sorted by the
differences of their upper time windows, i.e.,

CD = ((j1, j2)|j1, j2 ∈ R× R),

where: ∣∣lj1 − lj2

∣∣ ≤ ∣∣lj3 − lj4

∣∣ ≤ . . . ≤
∣∣ljn−1 − ljn

∣∣.
The pseudocode is given below (Algorithm 4).

Algorithm 4: Swapping Procedure

1. Input: The routing sequence R = {R1, R2, . . . , Rk}.
2. Generate candidate set CD that is the sorted upper time window of all nodes.
3. For job (j1, j2) ∈ CD do
4. Remove jobs j1, j2 from their original positions in R.

Switch the positions of job j1 and job j2.
5. If the solution after switching the jobs is not feasible or the new total completion time is increased

do
6. Switch the positions of job j1 and job j2 back to their original positions.

End If
7. End For
8. Return: Routing sequence R = [R1, R2, . . . , Rk ].

3.5. Shooting Procedure

The procedure contains two main search mechanisms, indicated as (1) and (2), which
are the random search and the tabu search. The tabu search, a metaheuristic search
introduced by Glover [30], explores solutions that are in its neighborhoods, that have not
been visited before. The search can therefore avoid the cycling of the visits and also reduce
the search space, which means it can avoid sticking in the local optimum.

If the local search (Phase 2) cannot improve the solution further, we consider the
solution to be stuck in a local optimum. To get away from the local optimum, we constructed
the shooting procedure to find a new local optimum. The idea of the procedure is to
randomly swap or move some jobs to another position in the routing sequence without
considering the objective value or feasibility of routing. The infeasible jobs will then
be removed from the routing and inserted into a feasible position using the inserting
procedure and then local search procedure will be applied. To obtain the best performance,
the tabu search will be applied once the random search can no longer find an improved
solution, rather than at the start of the procedure. Additionally, if the procedure fails to
find an improved solution after several attempts, it will deploy the tabu search strategy
(2), which will then reject the swapping and moving that have been tried before to widen
the exploration. The tabu list is updated each iteration by adding nodes that immediately
process before and after the moving and swapping nodes. These processes will continue
until either the maximum iteration number is reached, or the total completion time does
not change for m iterations. The pseudocode is given below (Algorithm 5).

Algorithm 5: Shooting Procedure

1. Input: The routing sequence R = {R1, R2, . . . , Rk}.
2. (1) Randomly swap (move) any pair of jobs for k times.

(2) Randomly swap (move) any pair of jobs for k times if it is not in the TabuList.
3. Add the nodes that immediately visit before and after the moving nodes to the TabuList.
4. Remove the infeasible jobs from the routing R, add to the remaining list, RE.
5. For job j ∈ RE do
6. Apply inserting procedure to job j to the compatible routing.

If the inserting procedure cannot find a feasible position for job j, stop the procedure and return to
the original solution.

End For
7. Apply swapping procedure and moving procedure
8. Return: Routing sequence R = [R1, R2, . . . , Rk ].
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To summarize, the heuristic is divided into three phases: the initializing phase, the
improvement phase, and the randomization phase. The summary flowchart is given
in Figure 2. Phase 1 includes K-means clustering followed by the inserting procedure.
K-means clustering will apply a strategy to select the centroids based on distance. If the
inserting procedure cannot find a feasible solution, the K-means clustering will apply a
strategy to select centroids based on the average upper bound. Phase 2 improves the
solution obtained from Phase 1 using the swapping and moving procedures until there is
no change in the total completion time. Phase 3 seeks to improve the solution by randomly
modifying the solution, or randomly modifying only if the solution is not in the tabu list,
without considering the feasibility or total completion time, then applying the inserting
procedure to fix the feasibility and reapplying Phase 2 again. Phase 3 will be attempted
until the maximum number of iterations is reached, or the objective value does not change
for a certain number of iterations.
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4. Experimental Results

To demonstrate its performance, the heuristic is implemented using the Julia program-
ming language [31,32] and executed on AMD Ryzen 9 12-Core processors with a CPU
clock speed of 3.8 GHz and RAM of 64 GB. The problem is solved several times to obtain
the parameter settings. The settings are as follows: the number of vehicles will start as
two and continue to increase by one when the algorithm cannot find any feasible solution;
the maximum number of iterations is set to 500; the number of iterations to attempt when
the objective value (total completion time) does not change is set to five (used in Phase 3);
and the number of random swaps and moves is set to 10 (used for Phase 3).

Solomon instances are used to measure the algorithm efficiency. The benchmark
instances are classified into three groups: clustered (C-type), random (R-type), and random
clustered (RC-type). The numbers that follow the distribution of nodes are “1” and “2”,
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indicating narrow time windows and wide time windows, respectively. Each instance
includes 100 customers, time windows for each customer, the demand for each customer,
and the distance between each pair of customer nodes. Note that in the benchmark, one
unit of distance is equal to one unit of traveled time.

The simulation results are divided into two settings: the results using the total distance
as the primary objective function and the results using the total completion time as the
primary objective function. The first simulation setting seeks to test the efficiency of using
our proposed objective function (total completion time) instead of comparing total distance.
Since there is no benchmark instance using the total completion time as the objective
function to demonstrate our algorithm’s efficiency, the second aims to test the efficiency of
the proposed algorithm by using the total distance as the objective function to solve the
problem. Therefore, the results can be directly compared to Solomon’s instances.

Table 2 presents the results for total distance minimization as the objective function.
Each problem is solved using the proposed algorithm, while the objective function is
changed from the total completion time to the total distance. Columns 3 to 5 show the
calculated total completion times from the results associated with the distances shown
in column 6 to 8, respectively. The results show that the algorithm can find the solution
that is, on average, within 9.04% of the best known total distance from the literature and
can, moreover, find the optimal solution in all clustered cases. Note that in most cases,
reducing the total distance results in reduced total completion time as well. Moreover,
Phase 2 can reduce the total distance from Phase 1 by 29.1% on average, while Phase 3
achieves a reduction of only 3% from Phase 2.

Table 2. Comparisons of total completion times and total distances for each phase using the total
distance as the objective function.

Instance Number of
Vehicles

Objective Function to Minimize Total Distance Best
Known

Total Completion Time (Associated
with Total Distance) Total Distance

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

C101 10 46,708.5 46,708.5 46,708.5 827.3 827.3 827.3 827.3
C102 10 66,170.9 64,529.1 46,708.5 1166.2 953.9 827.3 827.3
C103 10 66,321.3 65,275.3 47,718.7 1123.2 883.9 826.3 826.3
C104 10 70,654.4 67,154.7 47,366.7 1086.3 889.7 822.9 822.9
C105 10 65,382.7 63,469.5 46,708.5 1279.3 1033.1 827.3 827.3
C106 10 64,345.5 46,708.5 46,708.5 941.0 827.3 827.3 827.3
C107 10 62,414.6 62,660.1 46,708.5 1196.3 1064.6 827.3 827.3
C108 10 65,734.0 63,820.7 46,708.5 999.6 901.5 827.3 827.3
C109 10 63,203.7 46,708.5 46,708.5 938.9 827.3 827.3 827.3
C201 3 175,896.9 175,511.5 155,221.0 825.2 678.3 589.1 589.1
C202 3 175,413.0 174,082.3 155,221.0 1072.1 681.5 589.1 589.1
C203 3 172,474.4 161,382.4 155,266.1 1295.3 758.6 588.7 588.7
C204 3 192,759.2 154,606.0 155,216.2 1341.6 791.7 590.6 590.6
C205 3 178,335.1 172,008.5 155,180.2 1101.1 673.1 586.4 586.4
C206 3 173,859.6 171,608.2 155,183.2 1396.6 714.0 586.0 586.0
C207 3 171,321.9 168,964.1 156,185.4 1109.8 689.7 585.8 585.8
C208 3 173,535.7 166,018.2 157,201.4 1209.4 679.2 585.8 585.8
R101 20 17,075.5 15,169.5 15,169.5 2586.7 1827.9 1827.9 1637.7
R102 18 15,231.7 15,590.9 15,590.9 2240.8 1673.1 1673.1 1466.6
R103 15 13,879.7 14,546.0 14,546.0 1989.9 1422.0 1422.0 1208.7
R104 10 13,192.5 14,279.9 14,279.9 1527.5 1204.1 1204.1 976.61
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Table 2. Cont.

Instance Number of
Vehicles

Objective Function to Minimize Total Distance Best
Known

Total Completion Time (Associated
with Total Distance) Total Distance

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

R105 16 14,219.4 14,014.3 14,014.3 1819.5 1576.6 1576.6 1355.3
R106 14 13,800.8 14,462.4 14,462.4 1805.4 1367.6 1367.6 1234.6
R107 12 13,270.4 14,023.1 14,023.1 1622.8 1176.1 1176.1 1064.6
R108 11 11,958.2 13,392.7 13,392.7 1532.1 1016.3 1016.3 938.2
R109 13 13,228.0 12,865.0 12,865.0 1550.6 1296.9 1296.9 1146.9
R110 12 13,078.7 12,868.2 12,868.2 1621.2 1237.5 1237.5 1068.0
R111 12 13,654.8 14,186.8 14,186.8 1658.9 1211.1 1211.1 1048.7
R112 11 12,816.3 12,776.7 12,776.7 1421.9 990.5 990.5 953.63
R201 8 48,872.8 48,912.5 48,912.5 1686.3 1297.8 1297.8 1143.2
R202 7 53,436.5 50,022.4 50,022.4 1592.6 1096.6 1096.6 1034.4
R203 6 49,275.0 48,349.2 48,349.2 1558.9 949.7 949.7 874.87
R204 5 49,075.2 41,745.6 41,745.6 1700.2 863.3 863.3 735.8
R205 5 45,477.3 46,508.8 46,508.8 1717.8 1039.4 1039.4 954.16
R206 6 46,932.5 46,668.1 46,668.1 1696.1 998.6 998.6 879.86
R207 5 45,948.3 43,573.2 43,573.2 1657.4 914.1 914.1 797.99
R208 4 41,766.1 38,064.3 38,064.3 1555.2 792.7 792.7 705.33
R209 5 46,829.5 44,337.1 44,337.1 1740.9 917.5 917.5 859.39
R210 6 47,285.4 46,121.9 46,121.9 1628.0 1012.7 1012.7 905.21
R211 5 46,686.0 46,065.0 46,065.0 1577.0 858.2 858.2 753.15

RC101 16 14,745.0 14,644.5 14,644.5 2105.7 1843.1 1843.1 1619.8
RC102 14 15,027.7 14,728.6 14,728.6 2037.9 1613.5 1613.5 1457.4
RC103 12 13,433.8 14,831.6 14,831.6 1862.0 1433.1 1433.1 1258.0
RC104 11 12,685.2 12,985.7 12,985.7 1489.6 1226.9 1226.9 1135.5
RC105 15 15,050.8 14,847.3 14,847.3 2145.7 1717.2 1717.2 1513.7
RC106 14 14,298.1 13,730.5 13,730.5 1884.7 1523.3 1523.3 1378.0
RC107 12 13,540.3 13,970.5 13,970.5 1760.2 1361.9 1361.9 1212.8
RC108 11 13,903.3 14,340.4 14,340.4 1773.2 1421.6 1421.6 1117.5
RC201 9 46,255.2 46,783.3 46,783.3 1957.5 1409.6 1409.6 1261.8
RC202 8 51,022.2 47,113.7 47,113.7 1884.0 1315.5 1315.5 1095.6
RC203 5 50,050.6 51,088.5 51,088.5 1738.5 1064.1 1064.1 926.82
RC204 4 41,403.8 40,090.2 40,090.2 1612.2 819.5 819.5 786.38
RC205 8 45,620.5 45,992.3 45,992.3 1921.4 1383.9 1383.9 1157.6
RC206 7 43,675.6 44,489.7 44,489.7 1868.3 1161.4 1161.4 1054.6
RC207 6 45,548.0 44,417.7 44,417.7 1759.8 1053.7 1053.7 966.08
RC208 4 42,070.2 47,748.1 47,748.1 1704.2 924.9 924.9 778.93

To demonstrate the efficacy of the methodologies employed and the importance of
using the total completion time as the objective function (the primary objective, with total
distance as a second objective), a comparative analysis is conducted on our proposed
solution and the best solution from Solomon’s benchmark instances, as shown in Table 1.
Note that some of the best known solutions are not available, preventing us from calcu-
lating the total completion time associated with the best distance solutions. To obtain
that information, we apply our algorithm to optimize the total distance and obtain the
corresponding travel time. Table 3 presents the most widely recognized solutions for total
distance, along with the corresponding total completion time of the caretaker. Note that
the number of vehicles is the same as that shown in Table 2. Column 7 shows the solution
of our algorithm by minimizing the total distance, and the corresponding calculated total
completion time is shown in column 8. Columns 2–4 show the results from our algorithm
for the total completion time minimization objective function, while columns 5–7 show the
total distance calculated from the corresponding solution from columns 2–4. This value is
consistently smaller in all cases when compared to the solutions provided by Solomon’s
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instances. However, it is important to note that the total distance traveled is expected to
increase. Moreover, when the algorithm minimizes the total completion time for instance
C101, Phase 1 (the initial solution) obtains the best solution for total distance, and then the
algorithm obtains the best new solution in which the total distance increases by 14.13%
and total completion time decreases by 0.05%. In this case, we found that some caretakers
travel more distance to cover a node that is currently available.

Table 3. Comparisons of the total completion time and total distance for each phase using the total
completion time as the objective function.

Instance

Objective Function to Minimize Total Completion Time Objective Function to
Minimize Total Distance

Total Completion Time Total Distance (Associated with Total
Completion Time) Total

Distance
Total

Completion
TimePhase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

C101 46,708.5 46,469.9 45,365.7 827.3 944.2 942.4 827.3 46,708.5
C102 45,086.2 37,576.4 36,038.8 1161.6 1719.7 1716.8 827.3 46,708.5
C103 47,241.2 43,291.3 42,065.3 1206.4 1233.2 1230.4 826.3 47,718.7
C104 51,939.6 42,616.3 41,333.9 1089.4 1154.6 1151.9 822.9 47,366.7
C105 45,310.2 42,130.3 40,521.1 1242.5 1948.8 1945.7 827.3 46,708.5
C106 45,163.7 43,102.3 41,813.9 1024.0 1520.3 1517.6 827.3 46,708.5
C107 44,553.8 40,448.5 39,052.9 1149.4 1616.8 1614.3 827.3 46,708.5
C108 45,796.7 40,560.0 39,269.7 973.2 1399.9 1397.4 827.3 46,708.5
C109 45,237.6 42,291.5 41,026.8 932.1 1021.8 1019.6 827.3 46,708.5
C201 151,405.1 147,642.9 147,113.0 884.3 1686.9 1683.3 589.1 155,221.0
C202 151,495.0 126,593.8 125,942.9 1239.0 2181.2 2167.9 589.1 155,221.0
C203 158,923.8 97,109.1 96,336.1 1293.3 2370.1 2366.2 588.7 155,266.1
C204 156,737.6 91,417.2 89,479.4 1659.2 1637.6 1463.2 590.6 155,216.2
C205 152,232.4 140,234.9 139,484.9 1055.2 3149.9 3146.0 586.4 155,180.2
C206 148,228.9 136,870.1 136,421.6 1102.8 1559.8 1556.1 586.0 155,183.2
C207 148,788.3 127,461.6 126,912.0 1165.7 1980.2 1976.7 585.8 156,185.4
C208 152,350.9 131,323.8 130,248.6 1185.6 1439.3 1267.3 585.8 157,201.4
R101 11,111.4 10,413.8 9657.7 2519.0 2464.9 2459.5 1637.7 10,408.2
R102 10,647.2 8823.4 8039.3 2221.2 2342.8 2336.9 1466.6 10,777.3
R103 10,361.0 7542.0 6849.6 1813.5 2108.6 2103.4 1208.7 11,386.2
R104 8337.5 7196.2 6645.1 1622.0 1641.5 1636.3 976.61 11,307.6
R105 10,341.6 9474.7 8863.5 1904.5 1955.7 1950.6 1355.3 10,296.0
R106 9889.3 8204.7 7655.4 1742.9 1901.9 1896.9 1234.6 10,463.8
R107 9780.1 7853.7 7350.8 1632.4 1621.2 1615.9 1064.6 11,876.1
R108 8788.9 7080.6 6561.3 1483.6 1440.1 1435.6 938.20 10,603.0
R109 10,025.7 8788.7 8314.2 1723.2 1598.4 1593.4 1146.9 10,377.7
R110 9995.5 7624.5 7049.5 1683.6 1588.5 1583.8 1068.0 10,739.7
R111 10,002.5 7836.5 7289.0 1585.3 1635.1 1630.2 1048.7 10,619.6
R112 8984.2 8256.1 7805.4 1405.2 1261.6 1256.6 953.63 10,752.4
R201 42,983.2 39,654.6 39,498.5 1671.7 2235.8 2231.1 1143.2 44,065.3
R202 47,676.9 32,516.2 32,353.0 1597.1 2020.5 2016.0 1034.4 43,462.4
R203 44,592.0 26,909.5 26,759.1 1579.4 1696.2 1691.7 874.87 45,651.9
R204 44,797.4 24,347.7 23,800.8 1704.1 1113.0 1067.1 735.80 51,001.0
R205 41,474.1 35,453.9 35,344.7 1643.4 1741.3 1737.0 954.16 43,690.2
R206 41,127.1 28,848.0 28,708.9 1691.9 1687.7 1683.2 879.86 41,257.9
R207 42,052.1 27,440.0 27,296.9 1661.4 1462.3 1458.0 797.99 53,451.7
R208 51,761.3 23,102.9 22,748.4 1627.9 1001.1 1024.7 705.33 46,639.7
R209 42,820.9 29,626.0 29,474.1 1781.1 1766.0 1761.3 859.39 45,218.1
R210 44,966.5 29,680.5 29,528.4 1688.1 1735.2 1730.4 905.21 45,920.8
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Table 3. Cont.

Instance

Objective Function to Minimize Total Completion Time Objective Function to
Minimize Total Distance

Total Completion Time Total Distance (Associated with Total
Completion Time) Total

Distance
Total

Completion
TimePhase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

R211 42,941.7 27,788.0 27,654.8 1581.2 1306.2 1302.0 753.15 46,238.9
RC101 10,822.6 10,263.9 9568.8 2129.6 2172.4 2167.8 1619.8 10,979.1
RC102 10,976.2 9109.4 8390.8 2166.4 2145.1 2140.3 1457.4 11,507.8
RC103 10,315.7 8420.8 7767.2 1814.0 1995.4 1990.8 1258.0 11,693.0
RC104 9673.7 8414.5 7788.4 1494.3 1547.3 1543.9 1135.48 11,227.9
RC105 11,096.6 9298.3 8512.6 2174.6 2442.8 2438.2 1513.7 11,142.7
RC106 10,815.1 9654.0 9041.8 1842.1 1731.6 1727.3 1376.99 11,093.5
RC107 10,078.3 8858.5 8209.1 1780.0 1754.6 1750.8 1212.83 11,163.1
RC108 10,625.3 8922.2 8388.1 1812.9 1478.3 1474.4 1117.53 11,362.6
RC201 40,735.5 37,809.8 37,586.4 1961.5 2521.0 2516.5 1261.80 41,647.9
RC202 45,519.5 32,159.1 31,934.7 1832.3 2032.5 2105.1 1095.64 43,558.9
RC203 45,462.2 27,123.5 26,943.8 1743.0 1926.9 1922.9 926.82 40,691.6
RC204 33,426.9 21,225.2 20,904.2 1497.4 1470.5 1258.6 786.38 44,398.0
RC205 40,434.0 34,394.1 34,223.2 1919.4 2128.0 2123.8 1157.55 42,784.1
RC206 39,235.4 33,022.9 32,827.2 1872.3 2046.0 2042.3 1054.61 41,911.4
RC207 41,213.1 29,106.3 28,531.0 1764.2 1984.8 1973.0 966.08 42,569.6
RC208 38,449.1 28,815.4 27,040.0 1707.1 1352.3 1245.3 778.90 42,289.3

The execution time for Phase 1 is approximately 0.28 s for R-type instances, 0.06 s for
C-type instances, and 0.17 s for RC-type instances. Phase 2 requires a comparable amount
of time to Phase 1, whereas Phase 3 accounts for approximately 99.68% of the time spent. It
should be noted that the duration of execution in Phase 3 is based on the maximum number
of iterations, set at 500 for this particular instance. The average reduction in the objective
function value was 19.40% from Phase 1 to Phase 2 and 3.55% from Phase 2 to Phase 3.

When determining the percentage difference between the total completion times
solved using Solomon’s instances and the completion times obtained from each phase of
our algorithm, we observed that in all instances, the total completion times achieved with
our algorithm were, on average, 25.86% lower. Additionally, the average total distance
traveled increased by 90.00%. Note that there is a small improvement in the total completion
time from Phase 2 to Phase 3, while the algorithm spends the most time in this phase.
In most cases, the total completion time improvement from Phase 2 to Phase 3 may result
in an increase in the total distance. In contrast, several instances in Table 3, C202, C203, R101,
RC105, RC106, and RC204, show a reduction in the total completion time and total distance
simultaneously. This demonstrates that the total distance may decrease simultaneously with
the total completion time when the distribution of nodes is more random than clustered.
The algorithm can find the solution that minimizes the total completion time and try to
reduce the total distance at the same time.

Figure 3 illustrates a representative path within the solutions of the “C101” instance.
Figure 3a displays the routings obtained from the optimal benchmark solution resulting
from minimizing the total distance traveled. Figure 3b shows the solution obtained with
our procedure, where the objective was to minimize the total completion time. Note that,
to prevent confusion when several lines cross each other, the lines from the last node to the
depot node are not shown. The final customer in the purple route of the optimal solution in
Figure 3a transitions to being a customer in the red route illustrated in Figure 3b. The result
leads to an increase in total distance covered, while simultaneously decreasing the total
completion time of the entire system.
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5. Case Study

To examine the advantages of the total completion time objective function, our study
focuses on minimizing the total completion time in a case study simulating the HHC system
in Chiang Mai, Thailand. The proposed heuristic uses the same parameter settings as when
solving Solomon’s instances.

We assume that 400 households currently registered with the largest health center in
central Chiang Mai, an area with over a half a million people and over 300,000 households,
require regular home visits. These prospective customers are dispersed at random across
the map of the city center, where the location of the designated health center is denoted
by a red cross (Figure 4a). It is expected that caretakers will serve all customers in a single
workday. A caretaker will not accept a job that is beyond his or her capabilities, and there
are enough caretakers to attend to all the customers. The times listed for travel between
each pair of nodes come directly from Google Maps. The time windows for each client are
randomly generated, anywhere from zero to eight hours (28,800 s). The amount of time
spent serving each customer is randomly determined, ranging from 5 to 20 min.

Table 4 presents a summary of the results obtained from both objective functions.
The second column, labelled “NC”, shows the number of caretakers needed. The columns
labelled as “Min”, “Max”, and “Avg” correspond to the minimum, maximum, and average
number of patients attended to by a caretaker, respectively. The lower and upper bounds
for the number of patients in relation to the total distance objective function are three and
forty-two, respectively. This implies that in the process of minimizing the total distance,
certain caretakers are required to attend to significantly more patients, up to 14 times
more, than their coworkers. This number drops by a factor of seven when the objective of
minimizing the overall completion time is achieved. Additionally, in seeking to minimize
the completion time, the required number of caretakers will increase to effectively distribute
the workload among them. In the context of caretaker management, we propose that the
total completion time is a more suitable objective function compared to the total distance,
as it leads to a decrease in both the average number and maximum number of patients that
a caretaker serves.
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Table 4. Summary of results for Chiang Mai home visiting with 400 nodes.

Objective Function
Number of Jobs per Caretaker Max Completion Time per

Caretaker (Hours)
Travel Time per

Caretaker (Hours)

NC Min Max Avg Min Max Avg Min Max Avg

Total completion time 34 8 18 11.7 1.5 6.9 4.4 1.3 2.2 1.5

Total distance 34 3 42 16.0 1.4 6.7 4.6 0.2 3.3 1.3

The two routes depicted in Figure 4b illustrate the routing obtained by implementing
our heuristic algorithm. The numerical values assigned to the routes correspond to the
sequential order in which a caretaker performs his/her visits. Both routes show chaos as
a result of the time constraints imposed by patients’ availability (time windows). Upon
completion of service to patient 2 along the blue route, the care staff makes the decision to
attend to patient 3 due to their earlier time window, despite the fact that visiting patient 7
first would result in a shorter travel distance overall.

6. Conclusions and Discussions

In this paper, we study home healthcare routing and scheduling involving the need
for staff members to visit designated patients within predefined time windows and with
compatibility requirements. In this scenario, it is crucial for healthcare staff to start and
finish their service to patients strictly within the designated timeframe, and they are only
able to visit compatible patients. In the event that staff arrives at the patient node before
the designated time, they are required to wait until the scheduled time to deliver care.
The given problem can be reformulated as a vehicle routing problem with time windows
(VRPTW) and compatibility constraints, a problem that originally seeks to minimize the
total distance travelled. To ensure suitability for practical applications, we choose to set
minimizing the completion time as our objective function rather than focus on minimizing
the total distance alone.
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The vehicle routing problem is an NP-hard problem. Adding constraints or changing
the objective function makes the problem even more complex. Our problem on its own is an
NP-hard problem; addressing situations where optimal solutions cannot be obtained in a
reasonable time with an exact algorithm requires that heuristics be developed. The heuristic
employed in our study comprises three distinct phases. The primary phase (Phase 1) aims to
generate a solution from the ground up, with patients systematically clustered and inserted
one by one into positions that minimize the total completion time. The second phase (Phase
2) focuses on enhancing the solution by implementing swap and move operators. Phase
3 seeks to prevent the problem of local optimum by randomly exchanging or moving a
pair of patients that do not violate the tabu list within the solution. Moreover, the heuristic
simultaneously seeks to minimize the total distance as a secondary objective.

To demonstrate the performance of the algorithm, comparisons are made between the
results from our model and an existing benchmark instance which includes 100 customer
nodes. When the total completion time is minimized, the total distance traveled increases.
However, our total completion time tends to be lower generally. We modified our algorithm
to simultaneously reduce the total distance as a second priority. After the initial phase,
the algorithm can, in some instances, find a solution with a reduction in both the total
completion time and total distance. Further, the algorithm is compared to the best known
solutions with total distance minimization as the primary objective. The optimal solution
is found by the algorithm in all clustered cases, and the overall percentage gap is within
10%. From these results, we can see that switching from minimizing the total distance to
minimizing the total completion time will increase the total distance by around 90.00%,
while the total completion time drops by 25.86%. In practice, both objective functions
should be minimized separately, and the decision made by the administrator which of the
solutions will minimize operation costs. Note that the reduction in the total distance may
cause some staff to work longer, a scenario that can be more costly than increasing the total
distance traveled.

Our case study pertains to the home healthcare system in Chiang Mai, Thailand’s
second most populous city. The system consists of 15 health centers serving over
300,000 households. Based on the results from our simulation, we recommend that min-
imizing the total completion time, rather than the total distance, should be prioritized
in order to ensure staff satisfaction, which is vital in a people-centered business with
ever-increasing demand for qualified staff. When total completion time minimization is
prioritized, each caretaker is assigned a roughly equal number of patients, which is not the
case when minimizing the total distance is the primary objective function.
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