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Abstract: Geometric function theory, a subfield of complex analysis that examines the geometrical
characteristics of analytic functions, has seen a sharp increase in research in recent years. In particular,
by employing subordination notions, the contributions of different subclasses of analytic functions
associated with innovative image domains are of significant interest and are extensively investigated.
Since <(1 + sinh(z)) ≯ 0, it implies that the class S∗sinh introduced in reference third by Kumar et al.
is not a subclass of starlike functions. Now, we have introduced a parameter λ with the restriction
0 ≤ λ ≤ ln(1+

√
2), and by doing that, <(1+ sinh(λz)) > 0. The present research intends to provide

a novel subclass of starlike functions in the open unit disk U , denoted as S∗sinh λ, and investigate its
geometric nature. For this newly defined subclass, we obtain sharp upper bounds of the coefficients
an for n = 2, 3, 4, 5. Then, we prove a lemma,in which the largest disk contained in the image
domain of q0(z) = 1 + sinh(λz) and the smallest disk containing q0(U ) are investigated. This lemma
has a central role in proving our radius problems. We discuss radius problems of various known
classes, including S∗(β) and K(β) of starlike functions of order β and convex functions of order
β. Investigating S∗sinh λ radii for several geometrically known classes and some classes of functions
defined as ratios of functions are also part of the present research. The methodology used for finding
S∗sinh λ radii of different subclasses is the calculation of that value of the radius r < 1 for which the
image domain of any function belonging to a specified class is contained in the largest disk of this
lemma. A new representation of functions in this class, but for a more restricted range of λ, is also
obtained.

Keywords: starlike functions; Janowski starlike function; sine hyperbolic function; radii problems

MSC: 30C45; 30C50

1. Introduction and Definitions

Complex analysis is one of the major disciplines nowadays due to its numerous
applications not just in mathematical science, but also in other fields of study. Among
the other disciplines, geometric function theory is an intriguing area of complex analysis
that involves the geometrical characteristics of analytical functions. It has been observed
that this area is crucial to applied mathematics, particularly in fields like engineering,
electronics, nonlinear integrable system theory, fluid dynamics, modern mathematical
physics, partial differential equation theory, etc. The foundation of function theory is the
theory of univalent functions, and as a consequence of its wide application, new fields
of research have emerged with a variety of fascinating results. Below, in the first section,
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we briefly discuss the basics of function theory, which will help in understanding the
terminology used in our results.

Denote A as the class of all analytic functions f in U = {z ∈ C : |z| < 1}, which are
normalized and of the form

f (z) = z +
∞

∑
k=2

akzk (1)

and denote S as the subfamily ofA, which consists of univalent functions in U . Also, denote
An as the class of analytic functions f of the form f (z) = z + an+1zn+1 + an+2zn+2 + · · ·
defined in the open unit disk U . As such, we have A = A1. A domain D in the complex
plane C is starlike with respect to w0 ∈ D if any line segment or ray joining w0 to a point
w ∈ D lies in D. Any function that maps U onto such a domain D is starlike with respect
to w0. We denote S∗ as the class of functions that are starlike with respect to 0. The class
S∗ of functions f is analytically defined as S∗ = { f ∈ A : <(z f ′(z)/ f (z)) > 0, z ∈ U}.
Similarly, a set D in C is convex if it is starlike with respect to each of its points. Any
function that maps U onto such a domain D is known as a convex function, and a class of
all such functions is denoted by K. Analytically, a function f ∈ K if and only if z f ′(z) ∈ S∗.
Also, recall that the relation of subordination between the analytic functions f and g is
symbolically written as f (z) ≺ g(z), and it holds if there exists a Schwarz function w with
|w(z)| < |z| and w(0) = 0 such that f (z) = g(w(z)). In addition, if g is univalent, then the
relation f (z) ≺ g(z) holds if and only if f (U ) ⊂ g(U ).

The general families of univalent functions f inA for which the quantities z f ′(z)/ f (z)
or 1 + z f ′′(z)/ f ′(z) are subordinate to a univalent function φ with a positive real part were
discussed by Ma and Minda [1], who defined S∗(φ) = { f ∈ A : z f ′(z)/ f (z) ≺ φ(z) z ∈ U}
and K(φ) = { f ∈ A : 1 + z f ′′(z)/ f ′(z) ≺ φ(z) z ∈ U}, where <(φ(z)) > 0, φ′(0) > 0,
and U were mapped onto a star-shaped domain with respect to 1, and symmetric about
the real axis. Several well-known classes can be obtained by specializing the function
φ. For φ(z) = (1 + Mz)/(1 + Nz),−1 ≤ N < M ≤ 1, the class S∗(φ) is denoted by
S∗[M, N] and is known as the class of Janowski starlike functions [2]; more specifically, if
φ(z) = [1+ (1− 2α)z]/(1− z) and 0 ≤ α < 1, the class S∗(φ) reduces to the class S∗(α) of
starlike functions of order α. In a similar way, the classK(φ) for φ(z) = (1+ Mz)/(1+ Nz),
−1 ≤ N < M ≤ 1, and φ(z) = [1 + (1− 2α)z]/(1− z), where 0 ≤ α < 1, is denoted by
K[M, N] and K(α), which are known as Janowski convex functions [2] and convex func-
tions of order α, respectively. For α = 0, the classes S∗(α) andK(α) reduce to the prominent
classes S∗ and K of starlike and convex functions, respectively. In the present study, we
discuss S∗sinh λ radii for some already defined classes S∗(φ) of starlike functions for different
choices of φ, which will be mentioned in the text wherever required.

In [3], Kumar et al. introduced a subclass of Ma–Minda type functions by choosing
φ(z) = 1 + sinh(z) associated with sine hyperbolic functions. Since <(1 + sinh(z)) ≯ 0
and z ∈ U , the defined class does not belong to the family S∗. To address this prob-
lem, Raza et al. [4] introduced a subclass of S∗ by considering φ(z) = 1 + λ sinh(z),
where 0 < λ < 1/ sinh(1). In a similar way, a subclass S∗sinh λ can be defined by taking
φ(z) = 1 + sinh(λz), where 0 ≤ λ ≤ ln(1 +

√
2). We define it as follows:

S∗sinh λ =

{
f ∈ A :

z f ′(z)
f (z)

≺ 1 + sinh(λz) = q0(z), z ∈ U
}

.

Remark 1. Since <(1 + sinh(λz)) > 0 and 0 ≤ λ ≤ ln(1 +
√

2) in U , S∗sinh λ ⊂ S
∗.

Remark 2. We also see that q0(U ) * 1 + λ sinh(U ) and 1 + λ sinh(U ) * q0(U ), where 0 ≤
λ ≤ ln(1 +

√
2); therefore, there is no inclusion relation between the class S∗sinh λ and the class

defined in [4].
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From the definition, we see that a function f ∈ S∗sinh λ if and only if there exists an
analytic function q satisfying the subordination relation q(z) ≺ q0(z) = 1 + sinh(λz), with
z ∈ U , such that

f (z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

. (2)

A few examples of functions of our newly defined class S∗sinh λ are given below. Let us
consider the following functions:

q1(z) = 1 +
λz
3

, q2(z) =
4 + 2λz
4 + λz

, q3(z) =
7 + 7λz
7 + λz

, q4(z) = 1 + sin(1)λz.

Also, since q0(z) = 1 + sinh(λz) is univalent in U , qi(0) = 1 = q0(0) and qi(U ) ⊆ q0(U )
for all i = 1, 2, 3, 4; this implies that, for each i = 1, 2, 3, 4, the relation qi ≺ q0 holds. Thus,
from (2), the functions

f1(z) = zeλz/3, f2(z) = z +
λz2

4
, f3(z) = z

(
7 + λz

7

)6
, f4(z) = zesin(1)λz,

belong to the class S∗sinh λ corresponding to each of the functions qi respectively.
Now, we recall some known basics classes, which will be used in the upcoming results.

In this regard, we first define an important class of analytic functions p for z ∈ U whose
real part is positive. It is denoted by P and has the series representation of the form

p(z) = 1 +
∞

∑
k=1

pkzk, z ∈ U . (3)

Let

Pn[M, N] =

{
pn(z) = 1 +

∞

∑
k=n

pnzn : pn(z) ≺
1 + Mz
1 + Nz

,−1 ≤ N < M ≤ 1

}
.

Then, clearly Pn(α) = Pn[1 − 2α,−1] and Pn = Pn(0). The class of all functions f ∈
An, for which z f ′(z)/ f (z) ≺ (1 + Mz)/(1 + Nz), is denoted by S∗n [M, N], and that for
z f ′(z)/ f (z) ≺ [1 + (1− 2α)z]/(1− z) is denoted by S∗n (α). The classM(β) consists of
functions f ∈ A satisfying the relation <[z f ′(z)/ f (z)] < β; β > 1 was introduced by
Uralegaddi et al. [5]. Also, let

S∗sinh λ,n = An ∩ S∗sinh λ, 0 ≤ λ ≤ ln(1 +
√

2),

S∗n (α) = An ∩ S∗(α), S∗L,n = An ∩ S∗L ,

andMn(β) = An ∩M(β).
In this paper, we work on finding the radii of starlikeness and convexity, as well as

S∗sinh λ radii for certain subclasses of starlike functions, mentioned above, which mostly
have simple geometric interpretations. Besides these subclasses, we also discuss the S∗sinh λ
radii for some families of A whose functions have been expressed as a ratio between two
functions. We denote these families by Fi (i = 1, 2, 3, 4). In the literature, the very early
studies in this direction were due to Kaplan [6] and Read [7], who introduced the class of
close-to-convex functions and close-to-starlike functions, respectively. Advanced studies in
this direction can be seen, for example, in [8–14].

2. Preliminaries

This section is devoted to some results regarding the coefficient bounds for class P .
These are useful in determining the bounds on coefficients of the Taylor series of our newly
defined class.
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Lemma 1 ([1]). If p ∈ P and is of the form (3), then for any complex number µ,

|pn| ≤ 2, f or n ≥ 1, (4)

and ∣∣∣p2 − µp2
1

∣∣∣ ≤ 2max{1; |2µ− 1|}. (5)

Lemma 2 ([15]). Let p ∈ P be given by (3), with 0 ≤ B ≤ 1 and B(2B− 1) ≤ D ≤ B. Then,∣∣∣p3 − 2B p1 p2 + Dp3
1

∣∣∣ ≤ 2.

Lemma 3 ([16]). Let a, b, c, and d be such that 0 < c < 1, 0 < d < 1, and

8d(1− d)
[
(cb− 2a)2 + {c(d + c)− b}2

]
+ c(1− c)(b− 2dc)2 ≤ 4c2(1− c)2d(1− d).

If p is in P and is of the form (3), then∣∣∣∣ap4
1 + dp2

2 + 2cp1 p3 −
3
2

bp2
1 p2 − p4

∣∣∣∣ ≤ 2.

Lemma 4 ([17]). If p ∈ Pn(α), then for |z| = r,∣∣∣∣ zp′(z)
p(z)

∣∣∣∣ ≤ 2(1− α)nrn

(1− rn)(1 + (1− 2α)rn)
.

Lemma 5 ([18]). If p ∈ Pn[M, N], then for |z| = r,∣∣∣∣p(z)− 1−MNr2n

1− N2r2n

∣∣∣∣ ≤ (M− N)rn

1− N2r2n .

In particular, if p ∈ Pn(α), then for |z| = r,∣∣∣∣p(z)− 1 + (1− 2α)r2n

1− r2n

∣∣∣∣ ≤ 2(1− α)rn

1− r2n .

3. Main Results

This section has two subsections. In the first subsection, we derive bounds on the
coefficients of the Taylor series for the functions in the class S∗sinh λ. We give extremal
functions for all the results for which the equalities hold. The main tool for this discussion
involves some inequalities that have already been proven for the coefficients of the functions
in the class P . We then prove a lemma in which we find the disk of the largest radius
with its center on the real axis and contained in the domain Ωsinh λ = q0(U ), where
q0(z) = 1 + sinh(λz). In the same lemma, we also obtain the disk of the smallest radius
with its center on the real axis such that the domain Ωsinh λ is contained in it. At the end of
the first subsection, we give a new representation for functions in the class S∗sinh λ but for a
more restricted range of λ.

3.1. Coefficient Bounds and Inclusion Lemma

Theorem 1. Let f ∈ S∗sinh λ and be of the form (1). Then, for 0 ≤ λ ≤ ln(1 +
√

2),

|an| ≤
λ

n− 1
, for n = 2, 3, 4, 5.
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These results are sharp for

f (z) = z exp

 z∫
0

sinh
(
λtn−1)
t

dt

 = z +
λ

n− 1
zn +

λ2

2(n− 1)2 z2n−1 + · · · .

Proof. If f ∈ S∗sinh λ, then, by the definition of class S∗sinh λ,we have

z f ′(z)
f (z)

= 1 + sinh(λw(z)), z ∈ U , (6)

where w(0) = 0, and |w(z)| < 1. Now, using the definition of class P , we have the relation

w(z) =
p(z)− 1
p(z) + 1

.

Therefore,

1 + sinh(λw(z)) = 1 + sinh
(

λ(p(z)− 1)
p(z) + 1

)
= 1 +

λ

2
p1z +

(
λ

2
p2 −

λ

4
p2

1

)
z2 +

(
λ

8
p3

1 −
λ

2
p1 p2 +

λ

2
p3 +

λ3

48
p3

1

)
z3

+

(
3
8

λp2
1 p2 −

λ

2
p1 p3 −

λ

16
p4

1 −
λ

4
p2

2 −
λ3

32
p4

1 +
λ

2
p4 +

1
16

λ3 p2
1 p2

)
z4 + · · · .

Also,

z f ′(z)
f (z)

= 1 + a2z + (2a3 − a2
2)z

2 + (3a4 − 3a2a3 + a3
2)z

3

+(4a5 − 2a2
3 + 4a2

2a3 − 4a2a4 − a4
2)z

4 + · · · .

By substituting these values in (6) and comparing the coefficients, we have

a2 =
λ

2
p1, (7)

a3 =
λ

4

(
p2 −

(1− λ)

2
p2

1

)
, (8)

a4 =
λ

6

[
p3 −

(
4− 3λ

4

)
p1 p2 +

(
4λ2 − 9λ + 6

24

)
p3

1

]
, (9)

a5 = −λ

8

[
− 1

144

(
7λ3 − 27λ2 + 33λ− 18

)
p4

1 +
1
3
(3− 2λ)p1 p3

+
1
4
(2− λ)p2

2 −
1
24

(
9λ2 − 22λ + 18

)
p2

1 p2 − p4

]
. (10)

By using (7) and (4), we have |a2| ≤ λ. For the bound on |a3|, in (8), we use (5) for µ = 1−λ
2

to obtain |a3| ≤ λ
2 . Now, from (9), we have

|a4| =
λ

6

∣∣∣p3 − 2Bp1 p2 + Dp3
1

∣∣∣, (11)

where

B =

(
4− 3λ

8

)
, D =

(
4λ2 − 9λ + 6

24

)
.

We also see that

B− D =

(
1
4
− 1

6
λ2
)
> 0, 0 ≤ λ ≤ ln

(
1 +
√

2
)

,
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and

B(2B− 1)− D =

(
11
96

λ2 − 1
4

)
< 0, 0 ≤ λ ≤ ln

(
1 +
√

2
)

.

Therefore, by employing Lemma 2 to Equation (11), we have the required result.
Finally, let

a = − 1
144

(
7λ3 − 27λ2 + 33λ− 18

)
, b =

1
36

(
9λ2 − 22λ + 18

)
,

c =
(3− 2λ)

6
, d =

(2− λ)

4
.

Thus, (10) takes the form

a5 = −λ

8

(
ap4

1 ++dp2
2 + 2cp1 p3 −

3
2

bp2
1 p2 − p4

)
. (12)

Clearly, 0 < c < 1 and 0 < d < 1. Also, the following inequality holds for all λ ∈ [0,
ln(1 +

√
2)].

8d(1− d)
[
(cb− 2a)2 + {c(d + c)− b}2

]
+ c(1− c)(b− 2dc)2 < 4c2(1− c)2d(1− d).

Therefore, all the conditions of Lemma 3 are satisfied; thus, from (12), we have

|a5| ≤
λ

4
.

Lemma 6. Let Ωsinh λ = {w ∈ C : w(z) = 1 + sinh(λz), z ∈ U}. Then,

{w ∈ C : |w− 1| < sin(λ)} ⊂ Ωsinh λ ⊂ {w ∈ C : |w− 1| < sinh(λ)},

where 0 ≤ λ ≤ ln(1 +
√

2).

Proof. Consider the distance of (1, 0) from the boundary of Ωλ sinh as

h(x) = [sinh(cos(x)) cos(λ sin(x))]2 + [cosh(λ cos(x)) sin(λ sin(x))]2.

Since h(x) = h(−x), we therefore consider 0 ≤ θ ≤ π. Now, we see that h′(x) = 0 has
0, π

2 and π roots in [0, π]. Also, we see that h′(x) < 0 for 0 < θ < π
2 and h′(x) > 0 for

π
2 < θ < π. This implies that

max h(x) = h(0) = h(π) = [sinh(λ)]2

and
min h(x) = h

(π

2

)
= [sin(λ)]2.

Hence, we have the required result.

Lemma 7. Let q0(z) = 1 + sinh(λz), where 0 ≤ λ ≤ ln(1 +
√

2). Then, for r ∈ (0, 1),

min
|z|=r
<q0(z) = q0(−r), max

|z|=r
<q0(z) = q0(r).

Proof. For z = reix, where r ∈ (0, 1), we have

<q0(z) = 1 + sinh(λr cos(x)) cos(λr sin(x)) = h(x).
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Now, h′(x) = 0 has 0 and π roots in [0, π]. We also see that h′′(0) < 0, whereas h′′(π) > 0.
Hence, we conclude that

max
0≤x≤π

h(x) = h(0) = 1 + sinh(λr), min
0≤x≤π

h(x) = h(π) = 1− sinh(λr).

Remark 3. From the above result, it is evident that, for f ∈ S∗sinh λ,

1− sinh(λ) < < z f ′(z)
f (z)

< 1 + sinh(λ).

Keeping in view the above inequalities, we define an analytic function Gλ(z) and a
vertical strip Ωλ, with 0.783 ≤ λ ≤ ln(1 +

√
2) and 7π/20 ≤ β < 52π/105, as follows:

Gλ(z) =
sinh(λ) + sin(λ)

πi
log
(

1 + eiβz
1 + e−iβz

)
,

and
Ωλ = {w : sin(λ) < <(w) < sinh(λ)}.

Thus, Gλ(z) is univalent and convex in the open unit disk U , and it maps U onto Ωλ.

Theorem 2. Let f ∈ A and 0.783 ≤ λ ≤ ln(1 +
√

2). Then, f ∈ S∗sinh λ if and only if

z f ′(z)
f (z)

− 1 ≺ Gλ(z) =
sinh(λ) + sin(λ)

πi
log
(

1 + eiβz
1 + e−iβz

)
,

where 7π/20 ≤ β < 52π/105.

Proof. Let f ∈ S∗sinh λ. Then, from Remark 3, z f ′(z)/ f (z)− 1 lies in the vertical strip Ωλ.
Furthermore, Gλ(U ) = Ωλ. Now, as Gλ is univalent, hence by subordination principle, the
result follows.

Now, we are in a position to give a new representation to the functions of our
class S∗sinh λ.

Theorem 3. If 0.783 < λ < ln(1 +
√

2), then f ∈ S∗sinh λ for all z ∈ U if and only if

f (z) = z exp
[

sinh(λ) + sin(λ)
πi

∫ z

0

1
t

log
(

1 + eiβw(t)
1 + e−iβw(t)

)
dt
]

,

where 7π/20 ≤ β < 52π/105, and w is an analytic function, with w(0) = 0 and |w(z)| < 1 for
z ∈ U .

Proof. According to Theorem 2 and the definition of subordination f ∈ S∗sinh λ, there exists
a Schwarz function w that is an analytic such that w(0) = 0 and |w(z)| < 1 for z ∈ U , and

z f ′(z)
f (z)

− 1 =
sinh(λ) + sin(λ)

πi
ln
(

1 + eiβw(z)
1 + e−iβw(z)

)
or

f ′(z)
f (z)

− 1
z
=

sinh(λ) + sin(λ)
πi

1
z

ln
(

1 + eiβw(z)
1 + e−iβw(z)

)
.

Therefore,
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ln[ f (z)] = ln(z) +
sinh(λ) + sin(λ)

πi
·
∫ z

0

1
t

ln
(

1 + eiβw(t)
1 + e−iβw(t)

)
dt

This implies the required result.

3.2. Radius Problems

In this second subsection, we discuss S∗sinh λ radii for various known subclasses of
starlike functions. We use Lemma 6 for determining the radius of a disk such that functions
in different classes of analytic functions are contained in our class. We start with radius
problems for S∗sinh λ from the two subclasses Sn and CSn(α) due to Ali et al. [19], which are
given by

Sn =

{
f ∈ An :

f (z)
z
∈ Pn

}
,

CSn(α) =

{
f ∈ An :

f (z)
g(z)

∈ Pn, g ∈ S∗n (α)
}

.

Theorem 4. The sharp S∗sinh λ,n radii for the classes Sn and CSn(α) are given by the following:

(i). RS∗sinh λ,n
(Sn) =

 sin(λ)√
n2 + sin2(λ) + n

1/n

.

(ii). RS∗sinh λ,n
(CSn(α)) =

 sin(λ)√
(1 + n− α)2 + [sin2(λ) + 2(1− α) sin(λ)] + (n + 1− α)

1/n

.

Proof. (i). Let f ∈ Sn. Then, p(z) = f (z)/z ∈ Pn and

z f ′(z)
f (z)

− 1 =
zp′(z)
p(z)

.

By applying Lemma 4, for α = 0, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ = ∣∣∣∣ zp′(z)

p(z)

∣∣∣∣ ≤ 2nrn

1− r2n , for |z| ≤ r.

From Lemma 6, it implies that the disk |z f ′(z)/ f (z)− 1| ≤ 2nrn/(1− r2n) will contain
Ωsinh λ if

2nrn

1− r2n ≤ sin(λ)

holds. That is, f ∈ S∗sinh λ,n if and only if (sin(λ))r2n + 2nrn − sinλ ≤ 0. Thus, the S∗sinh λ,n
radius of Sn is the smallest positive root of the equation

(sin(λ))r2n + 2nrn − sin(λ) = 0,

is in the interval (0, 1). That is,

r ≤

 sin(λ)

n +
√

n2 + sin2(λ)

1/n

= R∗Ssinh λ,n
(Sn).

Furthermore, to show the sharpness of R∗Ssinh λ,n
(Sn), we define the function f0(z) = z(1 +

zn)/(1− zn), which, upon differentiation, gives the following:

z f ′(z)
f (z)

− 1 =
2nzn

1− z2n ,
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and at z = R∗Ssinh λ,n
(Sn), we have ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ = sin(λ).

Hence, the proof of part (i) is completed.
(ii). Let f ∈ CSn(α). Then, define functions h(z) = f (z)/g(z) ∈ Pn and g ∈ S∗n (α)

such that
z f ′(z)

f (z)
=

zg′(z)
g(z)

+
zh′(z)
h(z)

.

Since h ∈ Pn and zg′/g ∈ Pn(α), then according to Lemma 4 and Lemma 5, respectively,
and |z| = r, we have∣∣∣∣ zh′(z)

h(z)

∣∣∣∣ ≤ 2nrn

1− r2n and
∣∣∣∣ zg′(z)

g(z)
− 1 + (1− 2α)r2n

1− r2n

∣∣∣∣ ≤ 2(1− α)rn

1− r2n ,

which by adding gives us the following:∣∣∣∣ z f ′(z)
f (z)

− 1 + (1− 2α)r2n

1− r2n

∣∣∣∣ ≤ 2(1 + n− α)rn

1− r2n . (13)

Also, since 1− r2n ≤ 1+(1− 2α)r2n < 1+ r2n, it implies that [1 + (1− 2α)r2n]/(1− r2n) ≥ 1.
Thus, according to Lemma 6, the disk given in (13) lies in Ω∗sinh λ if

2(1 + n− α)rn

1− r2n ≤ 1 + sin(λ)− 1 + (1− 2α)r2n

1− r2n ,

and
1 + (1− 2α)r2n

1− r2n ≤ 1 + sin(λ)

hold. These two inequalities imply, respectively, that

r ≤

 sin(λ)√
(n + 1− α)2 + [sin2 λ + 2(1− α) sin(λ)] + (n + 1− α)

1/n

= r1

and

r ≤
(√

sin(λ)
2(1− α) + sin(λ)

)1/n

= r2.

Thus,
RS∗sinh λ,n

(CSn(α)) = min{r1, r2} = r1.

Hence,

RS∗sinh λ,n
(CSn(α)) =

 sin(λ)√
(1 + n− α)2 + [sin2 λ + 2(1− α) sin(λ)] + (n + 1− α)

1/n

.

For the sharpness of RS∗sinh λ,n
(CSn(α)), consider the functions below

f0(z) =
z(1 + zn)

(1− zn)(n+2−2α)/n
and g0(z) =

z
(1− zn)2(1−α)/n

.

Then, we have
f0(z)
g0(z)

=
1 + zn

1− zn and
zg′0(z)
g0(z)

=
1 + (1− 2α)zn

1− zn .
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Clearly, <( f0(z)/g0(z)) > 0, while zg′0/g0 ∈ Pn[1− 2α,−1], thereby implying that g0 ∈
S∗n (α); hence, f0 ∈ CS(α). Now, logarithmic differentiation of f0 gives

z f ′0(z)
f0(z)

− 1 =
2(n + 1− α)zn + 2(1− α)z2n

1− z2n .

At z = RS∗sinh λ,n
(CS(α)), we have ∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ).

The proof is thus completed.

Remark 4. For α with 0 ≤ α < 1, observe that RS∗sinh λ,n
(Sn) = RS∗sinh λ,n

(CSn(α)) as α ap-
proaches 1.

Next, we discuss S∗sinh λ radii for some known subclasses of starlike functions S∗L , S∗RL,
S∗C, S∗C, S∗B, and S∗SG, in which z f ′(z)/ f (z) is subordinate to a Ma-and-Minda-type function
involving no parameter. Here, we give a brief introduction to these classes.
The first of these is S∗L , which was introduced by Sokół and Stankiewicz [20] for φ(z) =√

1 + z. The class S∗L can be geometrically interpreted as the set of all those functions f ∈ A,
for which the image of transformation z f ′(z)/ f (z) lies in the right-half of the lemniscate of
Bernoulli |w2 − 1| < 1. The second subclass S∗RL of starlike functions associated with the
left-half of the shifted lemniscate of Bernoulli has been derived by Mendiratta et al. [21].

In this subclass, they take φ(z) =
(√

2− (
√

2− 1)
√
(1− z)/(1 + 2(

√
2− 1)z)

)
. Inspired

by the work of Mendiratta et al. [21] in 2016, it was Sharma et al. [8] who introduced the
class S∗C as a special case of the class S∗(φ) by taking φ(z) = 1 + 4z/3 + 2z2/3, and they
studied some properties of the functions in the class S∗C. The class S∗C = S∗(z +

√
1 + z2)

was considered by Raina and Sokól [22]; they proved that f ∈ S∗C if and only if z f ′(z)/ f (z)
lies in the region {w ∈ C : |w2 − 1| < 2|w|}. Ghandhi and Ravichandran [23] obtained
several sufficient conditions for f ∈ S∗C. The fifth class of the present discussion is the
class of starlike functions associated with the Bell numbers, which was introduced by
Kumar et al. [24]. They denoted this class by S∗B and defined it as the class of all functions
f ∈ A, which satisfy the subordination relation z f ′(z/ f (z)) ≺ eez−1. The last of these is
the class S∗SG of Sigmoid starlike functions defined in [25] by taking φ(z) = 2/(1 + e−z).
In [25], the authors presented some basic geometric properties of this function, proved
some inclusion relationships, investigated coefficient bounds, and discussed first-order
differential subordination results.
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Theorem 5. The sharp S∗sinh λ radii for some particular subclasses of starlike functions are

(i). RS∗sinh λ
(S∗L) = (2− sin(λ)) sin(λ),

(ii). RS∗sinh λ
(S∗RL) =

sin(λ)[2+2
√

2+(3+2
√

2) sin(λ)]
−1+2

√
2+2
√

2 sin2(λ)+4 sin(λ)+2 sin2(λ)
,

(iii). RS∗sinh λ
(S∗C) =

−2+
√

4+6 sin(λ)
2 ,

(iv). RS∗sinh λ
(S∗C) = (2+sin(λ)) sin(λ)

2+2 sin(λ) ,

(v). RS∗sinh λ
(S∗B) = ln(1 + ln(1 + sin(λ))),

(vi). RS∗sinh λ
(S∗SG) = ln

(
1+sin(λ)
1−sin(λ)

)
, with 0 ≤ λ < arc sin( e−1

e+1 ).

Proof. (i). If f ∈ S∗L , then z f ′(z)/ f (z) ≺
√

1 + z and, hence, for |z| = r, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ 1−

√
1− r.

Thus, according to Lemma 6, f ∈ S∗sinh λ if the inequality

1−
√

1− r ≤ sin(λ)

holds, and it further simplifies

r ≤ (2− sin(λ)) sin(λ) = RS∗sinh λ
(S∗L).

For the sharpness of RS∗sinh λ
(S∗L), we consider the function below

f0(z) =
4z exp

{
2
√

1 + z− 1
}(

1 +
√

1 + z
)2 .

The logarithmic differentiation of f0 gives z f ′0(z)/ f0(z) =
√

1 + z, which, upon putting
z = −R∗Ssinh λ

(S∗L), yields ∣∣z f ′0(z)/ f0(z)− 1
∣∣ = sin(λ),

and this proves the sharpness of R∗Ssinh λ
(S∗L).

(ii). From the definition of the class S∗RL, we can write z f ′(z)/ f (z) ≺ φ(z) with

φ(z) =
√

2−
(√

2− 1
)√ 1− z

1 + 2(
√

2− 1)z

For z = −r, where |z| = r, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ (1−

√
2) + (

√
2− 1)

√
1 + r

1− 2(
√

2− 1)r

According to Lemma 6, the above disk will contain Ωsinh λ and, hence, f ∈ S∗sinh λ if

(1−
√

2) + (
√

2− 1)

√
1 + r

1− 2(
√

2− 1)r
≤ sin(λ),
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which, after some simplification, gives

r ≤
sin(λ)

[
2 + 2

√
2) + 3 sin(λ) + 2

√
2 sin(λ)

]
−1 + 2

√
2 + 2

√
2 sin2(λ) + 4 sin(λ) + 2 sin2(λ)

= RS∗sinh λ
(S∗RL).

For the sharpness of RS∗sinh λ
(S∗RL), we define the following function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

where

q(z) =
√

2−
(√

2− 1
)√√√√ 1− z

1 + 2
(√

2− 1
)

z
=

z f ′0(z)
f0(z)

.

At z = −RS∗sinh λ
(S∗RL), we have ∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ),

which proves the sharpness of RS∗sinh λ
(S∗RL).

(iii). Let f ∈ S∗C. Then, z f ′(z)/ f (z) ≺ 1 + 4z/3 + 2z2/3 and, hence, for |z| = r,
we have ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ 4

3
r +

2
3

r2.

From Lemma 6, the last inequality implies that f ∈ S∗sinh λ if 4
3 r + 2

3 r2 ≤ sin(λ), or 2r2 +
4r− 3 sin(λ) ≤ 0. Thus, RS∗sinh λ

(S∗C) is the smallest positive root of the equation 2r2 + 4r−
3 sin(λ) = 0, which is

RS∗sinh λ
(S∗C) =

√
2(2 + 3 sin(λ))− 2

2
.

For the sharpness of RS∗sinh λ
(S∗C), we define the following function

f0(z) = z exp
(

4z + z2

3

)
such that

z f ′0(z)
f0(z)

= 1 +
4
3

z +
2
3

z2,

which, at z = RS∗sinh λ
(S∗C), yields ∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ),

and this proves the sharpness of RS∗sinh λ
(S∗C).

(iv). Let f ∈ S∗C. Then, z f ′(z)/ f (z) ≺ z +
√

1 + z2. Hence, for |z| = r, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r +

√
1 + r2 − 1.

According to Lemma 6, the above disk will contain Ωsinh λ and, hence, f ∈ S∗sinh λ if
r +
√

1 + r2 − 1 ≤ sin(λ) or
√

1 + r2 ≤ (1− r + sin(λ)), which further implies that

r ≤ sin(λ)(2 + sin(λ))
2(1 + sin(λ))

= RS∗sinh λ
(S∗C).

To verify the sharpness of RS∗sinh λ
(S∗C), we consider the function
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f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

with q(z) = z +
√

1 + z2 = z f ′0(z)/ f0(z). At z = RS∗sinh λ
(S∗C), we have

∣∣∣∣ z f ′0(z)
f0(z)

− 1
∣∣∣∣ = sin(λ)(2 + sin(λ))

2(1 + sin(λ))
+

( sin2 λ + 2 sin(λ) + 2
2(1 + sin(λ))

)2
1/2

− 1 = sin(λ).

This proves the sharpness of RS∗sinh λ
(S∗C).

(v). Let f ∈ S∗B. Then, z f ′(z)/ f (z) ≺ eez−1. Therefore, for |z| = r, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ eer−1 − 1.

The above disk will contain Ωsinh λ and, hence, f ∈ S∗sinh λ, if

eer−1 − 1 ≤ sin(λ).

After some simple computation, we have

r ≤ ln(1 + ln(1 + sin(λ))) = RS∗sinh λ
(S∗B).

For the sharpness of RS∗sinh λ
(S∗B), we consider the function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

, q(z) = eez−1.

At z = RS∗sinh λ
(S∗B), we have ∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ).

This proves the sharpness of RS∗sinh λ
(S∗B).

(vi). Let f ∈ S∗SG. Then, z f ′(z)/ f (z) ≺ 2/(1 + e−z). Thus, for |z| = r < 1, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ 1− 2

1 + er .

Now, according to Lemma 6, the above disk will contain Ωsinh λ if

1− 2
1 + er ≤ sin λ,

which, upon solving for r, yields

r ≤ ln(
1 + sin λ

1− sin λ
), provided that ln(

1 + sin λ

1− sin λ
) < 1.

That is,

r ≤ ln(
1 + sin λ

1− sin λ
) = RS∗sinh λ

(S∗SG), with 0 ≤ λ < arc sin(
e− 1
e + 1

).

The sharpness is proven for

f0(z) = z exp
∫ z

0

q(t)− 1
t

dt, where q(z) =
2

1 + e−z
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That is, z f ′0(z)/ f0(z) = 2/(1 + e−z), which at z = RS∗sinh λ
(S∗SG) yields

z f ′0(z)
f0(z)

= 1 + sin λ.

Remark 5. Since ln((1+ sin λ)/(1− sin λ)) is greater than one for arc sin((e− 1)/(e + 1)) <
λ ≤ ln(1 +

√
2), this shows that for this interval of λ, S∗SG ⊂ S∗sinh λ.

Corollary 1. For λ = ln(1 +
√

2) :

(i). RS∗sinh λ
(S∗L) = (2− sin

(
ln(1 +

√
2)
)
) sin

(
ln(1 +

√
2)
)
≈ 0.9478395308.

(ii). RS∗sinh λ
(S∗RL) =

sin(ln(1+
√

2))[2+2
√

2+(3+2
√

2) sin(ln(1+
√

2))]
−1+2

√
2+2
√

2 sin2(ln(1+
√

2))+4 sin(ln(1+
√

2))+2 sin2(ln(1+
√

2))
≈ 0.9237689095.

(iii). RS∗sinh λ
(S∗C) =

−2 +
√

4 + 6 sin
(

ln(1 +
√

2)
)

2
≈ 0.468815850.

(iv). RS∗sinh λ
(S∗C) =

(2 + sin
(

ln(1 +
√

2)
)
) sin

(
ln(1 +

√
2)
)

2 + 2 sin
(

ln(1 +
√

2)
) ≈ 0.6035780393.

(v). RS∗sinh λ
(S∗B) = ln

(
1 + ln(1 + sin

(
ln(1 +

√
2)
))
≈ 0.4522791114.

Corollary 2. For λ = 0.48 :

RS∗sinh λ
(S∗SG) = ln

(
1 + sin(0.48)
1− sin(0.48)

)
≈ 0.9991406561.

Now, we discuss S∗sinh λ radii for a few such subclasses of starlike functions in each
of which z f ′(z)/ f (z) is subordinate to a Ma-and-Minda-type function involving a single
parameter. These subclasses are BS∗(α),M(β), SS∗(η), S∗T(ν), and S∗R. The class BS∗(α),
for 0 ≤ α < 1, was introduced by Kargar et al. [26]. They studied coefficient bounds
and obtained subordination results for this class. The classM(β) consists of functions
f ∈ A satisfying the relation <[z f ′(z)/ f (z)] < β; β > 1 was introduced by Uralegaddi
et al. [5]. The third class that will be considered for a S∗sinh λ radius is the class SS∗(η) of
strongly starlike functions, which was studied in [27,28]. The fourth class of this discourse
is the subclass S∗T(ν) of starlike functions, which was introduced by Deniz [29] for φ(z) =
e(z+νz2/2), (ν is an integer, with ν ≥ 1) in connection with the new generalization of
telephone numbers. The fifth class for which we investigate the S∗sinh λ radius is the
class S∗R associated with a rational function, φ(z) = 1 +

[(
zk + z2)/(k2 − kz

)]
, which was

introduced and studied by Kumar and Ravichandran in [30].
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Theorem 6. The sharp S∗sinh λ radii for some particular subclasses of starlike functions are the
following:

(i). RS∗sinh λ
(BS∗(α)) =

{
sin(λ) if α = 0√

1+4α sin2 λ−1
2α sin(λ) if 0 < α < 1

(ii). RS∗sinh λ
(M(β)) = sin(λ)

2(β−1)+sin(λ) , for β > 1,

(iii). RS∗sinh λ
(SS∗(η)) = (1+sin(λ))1/η−1

(1+sin(λ))1/η+1
, (0 < η ≤ 1),

(iv). RS∗sinh λ
(S∗T(ν)) =

√
1+2ν ln(1+sin(λ))−1

ν , ν ∈ N,

(v). RS∗sinh λ
(S∗R) = 2k sin(λ)

1+sin(λ)+
√

1+(6+sin(λ)) sin(λ)
.

Proof. (i). Let f ∈ BS∗(α). Then, z f ′(z)/ f (z) ≺ 1 + z/(1− αz2), with 0 ≤ α < 1. Hence,
for |z| = r, we have ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ r

1− αr2 .

From the use of Lemma 6, we conclude that the above disk will be contained in Ωsinh λ and,
hence, f ∈ S∗sinh λ if r/(1− αr2) ≤ sin(λ).

Case 1 : For α = 0, we have

r ≤ sin(λ) = RS∗sinh λ
(BS∗(α)).

The function g0(z) = zez proves the sharpness.
Case 2 : For 0 < α < 1, the inequality r/(1− αr2) ≤ sin(λ) implies α(sin(λ))r2 + r−

sin(λ) ≤ 0. Thus, RS∗sinh λ
(BS∗(α)) is the smallest positive root of the equation α(sin(λ))r2 +

r− sin(λ) = 0, which, upon solving, yields

r ≤
√

1 + 4α sin2 λ− 1
2α sin(λ)

= RS∗sinh λ
(BS∗(α)).

To prove the sharpness of RS∗sinh λ
(BS∗(α)), we consider the function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

, with q(z) = 1 +
z

1− αz2 =
z f ′0(z)
f0(z)

.

At z = RS∗sinh λ
(BS∗(α)), we have

∣∣∣∣ z f ′0(z)
f0(z)

− 1
∣∣∣∣ = 2α sin(λ)

(√
1 + 4α sin2 λ− 1

)
2α
(√

1 + 4α sin(λ)− 1
) = sin(λ).

Thus, the sharpness of RS∗sinh λ
(BS∗(α)) is verified.

(ii). Let f ∈ M(β). Then, by using Lemma 5 for n = 1, we have∣∣∣∣ z f ′(z)
f (z)

− 1 + (1− 2β)r2

1− r2

∣∣∣∣ ≤ 2(β− 1)r
1− r2 .
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Clearly, the inequality 1 + (1− 2β)r2/(1− r2) ≤ 1 holds. Therefore, according to Lemma 6,
the above disk contains Ωsinh λ, or equivalently, f ∈ S∗sinh λ if

1− sin(λ) ≤ 1 + (1− 2β)r2

1− r2 and
2(β− 1)r

1− r2 ≤ 1 + (1− 2β)r2

1− r2 − 1 + sin(λ).

After some computation, we have

(2(β− 1) + sin(λ))r2 ≤ sin(λ),

and
(2(β− 1) + sin(λ))r2 + 2(β− 1)r− sin(λ) ≤ 0,

which further imply, respectively, that

r ≤

√
sin(λ)

2(β− 1) + sin(λ)
, and r ≤ sin(λ)

2(β− 1) + sin(λ)
.

Hence, RS∗sinh λ
(M(β)) is the minimum of these two, and it is

r ≤ sin(λ)
2(β− 1) + sin(λ)

= RS∗sinh λ
(M(β)).

For the sharpness of RS∗sinh λ
(M(β)), we define the following function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

,

with q(z) = 1 + 2(β− 1)z + [2(β− 1) + sin(λ)]z2. Then, at z = RS∗sinh λ
(M(β)), we have∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ),

which proves the sharpness of RS∗sinh λ
(M(β)).

(iii). If f ∈ SS∗(η), then z f ′(z)/ f (z) ≺ ((1 + z)/(1− z))η , with 0 < η ≤ 1. Therefore,
for |z| = r, we have ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ (1 + r

1− r

)η

− 1.

The above disk is contained in Ωsinh λ as given in Lemma 6 if(
1 + r
1− r

)η

− 1 ≤ sin(λ).

After some simplification, we have

r ≤ (1 + sin(λ))1/η − 1
(1 + sin(λ))1/η + 1

= R∗sinh λ(SS
∗(η)).

To prove the sharpness of R∗sinh λ(SS
∗(η)), we consider the function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

)
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and q(z) =
(

1+z
1−z

)η
=

z f ′0(z)
f0(z)

. At z = R∗sinh λ(SS
∗(η)), we easily obtain

∣∣∣∣ z f ′0(z)
f0(z)

− 1
∣∣∣∣ = sin(λ).

(iv). Let f ∈ S∗T(ν) (ν ∈ N). Then, z f ′/ f (z) ≺ e(z+νz2/2). Therefore, for |z| = r,
we have ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ er+ν r2

2 − 1.

Using Lemma 6, the last given disk is contained in Ωsinh λ and, hence, f ∈ S∗sinh λ if

er+ν r2
2 − 1 ≤ sin(λ). Furthermore, it implies that

r + νr2/2 ≤ ln(1 + sin(λ)).

Thus, RS∗sinh λ
(S∗T) is the smallest positive root of the equation νr2/2+ r− ln(1+ sin(λ)) = 0.

By simple computation, we obtain

RS∗sinh λ
(S∗T) =

√
1 + 2ν ln(1 + sin(λ))− 1

ν
.

For the sharpness of RS∗sinh λ
(S∗T(ν)), we consider the function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

, q(z) = ez+ν z2
2 =

z f ′0(z)
f0(z)

.

At z = RS∗sinh λ
(S∗T(ν)), we have ∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ).

(v). Let f ∈ S∗R. Then, z f ′(z)/ f (z) ≺ 1 +
[(

zk + z2)/(k2 − kz
)]

. For |z| = r, we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ kr + r2

k2 − kr
.

According to Lemma 6, the above disk will be contained in Ωsinh λ, and, hence, f ∈ S∗sinh λ
if (rk + r2)/(k2 − kr) ≤ sin(λ). Furthermore, computation yields r2 + k(1 + sin(λ))r −
k2 sin(λ) ≤ 0. Thus, RS∗sinh λ

(S∗R) is the smallest root of the equation r2 + k(1 + sin(λ))r−
k2 sin(λ) = 0. For the sharpness of RS∗sinh λ

(S∗R), we consider the function

f0(z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

,

and with q(z) = 1 + zk+z2

k2−kz =
z f ′0(z)
f0(z)

, we have∣∣∣∣ z f ′0(z)
f0(z)

− 1
∣∣∣∣ = sin(λ).

Remark 6. For β = 2 and η = 1, in the above parts (ii) and (iii), respectively, we have

RS∗sinh λ
(M(β)) = RS∗sinh λ

(SS∗(η)).
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4. Functions Defined in Terms of Ratio of Functions

Now, we discuss the radius problem of classes denoted byF1,F2,F3,F4 and defined as

F1 =

{
f ∈ An : <

(
f (z)
g(z)

)
> 0 and <

(
g(z)

z

)
> 0, g ∈ An

}
,

F2 =

{
f ∈ An : <

(
f (z)
g(z)

)
> 0 and <

(
g(z)

z

)
>

1
2

, g ∈ An

}
,

F3 =

{
f ∈ An :

∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ < 1 and <

(
g(z)

z

)
> 0, g ∈ An

}
,

F4 =

{
f ∈ An :

∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ < 1, for convex function g ∈ An

}
.

Theorem 7. The sharp S∗sinh λ,n radii for functions in the classesF1,F2 F3, and F4, respectively, are:

(i). RS∗sinh λ
(F1) =

(√
1 + 4n2 csc2 λ− 2n csc λ

)1/n
,

(ii). RS∗sinh λ
(F2) =

(√
9n2 + 4n sin λ + 4 sin2 λ− 3n

2(n + sin λ)

)1/n

,

(iii). RS∗sinh λ
(F3) =

(√
9n2 + 4n sin λ + 4 sin2 λ− 3n

2(n + sin λ)

)1/n

,

(iv). RS∗sinh λ
(F4) =

(√
(n + 1)2 + 4(n− 1 + sin λ) sin λ− (n + 1)

2(n− 1 + sin λ)

)1/n

.

Proof. (i). Let f ∈ F1. Then, there is g ∈ An such that

<
(

f (z)
g(z)

)
> 0, and <

(
g(z)

z

)
> 0.

Let us choose p(z) = f (z)/g(z) and h(z) = g(z)/z. Then, clearly p, h ∈ Pn, and so we
easily obtain ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zp′(z)

p(z)

∣∣∣∣+ ∣∣∣∣ zh′(z)
h(z)

∣∣∣∣.
By applying Lemma 4 for p and h in the above inequality, we have∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ 4nrn

1− r2n .

Now, by using Lemma 6, the function f ∈ S∗sinh λ,n if

4nrn

1− r2n ≤ sin(λ),

or, equivalently,
sin λr2n + 4nrn − sin λ ≤ 0.

Thus, r =
(√

1 + 4n2 csc2 λ− 2n csc λ
)1/n

= RS∗sinh λ,n
(F1) is the smallest positive root of

the equation
sin(λ)r2n + 4nrn − sin(λ) = 0.

For the sharpness of RS∗sinh λ,n
(F1), we consider the following two functions

f0(z) = z
(

1 + zn

1− zn

)2
, and g0(z) = z

(
1 + zn

1− zn

)
.
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Then, it is obvious for f0(z)/g0(z) = (1 + zn)/(1− zn) = g0(z)/z that <( f0(z)/g0(z)) > 0
and <(g0(z)/z) > 0. Its further implies that f0 ∈ F1 and also that

z f ′0(z)
f0(z)

− 1 =
4nzn

1− z2n = sin(λ)

at z = RS∗sinh λ,n
(F1). This proves the sharpness of RS∗sinh λ,n

(F1).
(ii). If f ∈ F2, then there exist a function g ∈ An such that

<
(

f (z)
g(z)

)
> 0, and <

(
g(z)

z

)
>

1
2

.

Let us set p(z) = f (z)/g(z) and h(z) = g(z)/z. Then, clearly p ∈ Pn and h ∈ Pn(1/2).
Also, it yields ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zp′(z)

p(z)

∣∣∣∣+ ∣∣∣∣ zh′(z)
h(z)

∣∣∣∣.
Therefore, by using Lemma 4 for p and h, we have∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ nrn(3 + rn)

1− r2n , for |z| = r.

Now, by virtue of Lemma 6, the function f ∈ S∗sinh λ,n if

nrn(3 + rn)

1− r2n ≤ sin(λ),

or
(n + sin λ)r2n + 3nrn − sin(λ) ≤ 0,

Thus, RS∗sinh λ,n
(F2) is the smallest positive root of the equation

(n + sin λ)r2n + 3nrn − sin(λ) = 0.

To verify the sharpness of RS∗sinh λ,n
(F2), we consider the functions

f0(z) =
z(1 + zn)

(1− zn)2 , and g0(z) =
z

1− zn ,

and with simple computation, we have

f0(z)
g0(z)

=
1 + zn

1− zn , and
g0(z)

z
=

z
1− zn .

Also, <( f0(z)/g0(z)) > 0, and <(g0(z)/z) > 1/2. This proves that f0 ∈ F2 and also we
easily obtain

z f ′0(z)
f0(z)

− 1 =
3nzn + nz2n

1− z2n .

By putting z = RS∗sinh λ,n
(F2), it yields∣∣∣∣ z f ′0(z)

f0(z)
− 1
∣∣∣∣ = sin(λ),

and this confirms the sharpness.
(iii). Let f ∈ F3. Then, by definition, there is g ∈ An such that∣∣∣∣ f (z)

g(z)
− 1
∣∣∣∣ < 1 and <

(
g(z)

z

)
> 0.
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If we put p(z) = g(z)/ f (z) and h(z) = g(z)/z, then the above inequalities becomes∣∣∣∣ 1
p(z)

− 1
∣∣∣∣ < 1⇔ <p(z) >

1
2

and <h(z) > 0.

Hence, p ∈ Pn(
1
2 ) , and h ∈ Pn. By simple computation, we have∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zp′(z)

p(z)

∣∣∣∣+ ∣∣∣∣ zh′(z)
h(z)

∣∣∣∣.
By applying Lemma 4 for p and h, we have∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ 3nrn + nr2n

1− r2n .

Proceeding on the same lines as in above part (ii), we obtain

RS∗sinh λ,n
(F3) =


√

9n2 + 4n sin(λ) + 4 sin2 λ− 3n

2(n + sin(λ))

1/n

.

For the sharpness of RS∗sinh λ,n
(F3), we consider the following functions

f0(z) =
z(1 + zn)2

1− zn and g0(z) =
z(1 + zn)

1− zn .

However, since | f0(z)/g0(z)− 1| = |(1 + zn)− 1| < 1, it implies that <(g0(z)/z) > 0, and,
hence, f0 ∈ F3. Also

z f ′0(z)
f0(z)

− 1 =

(
3nzn − nz2n)

1− z2n = sin(λ),

at z = RS∗sinh λ,n
(F3) and this proves the sharpness of RS∗sinh λ,n

(F3).
(iv). If f ∈ F4, then a convex function g ∈ An exists such that∣∣∣∣ f (z)

g(z)
− 1
∣∣∣∣ < 1.

Or, equivalently, we write it as <(g(z)/ f (z)) > 1/2. Also, since every convex function is
starlike of order 1/2, it therefore follows from Lemma 5 that∣∣∣∣ zg′(z)

g(z)
− 1

1− r2n

∣∣∣∣ ≤ rn

1− r2n . (14)

If we put h(z) = g(z)/ f (z), then h ∈ Pn(1/2). Hence, from f (z) = g(z)/h(z)), we have

z f ′(z)
f (z)

=
zg′(z)
g(z)

− zh′(z)
h(z)

.

Therefore, from the inequality (14) and Lemma 4, we easily have∣∣∣∣ z f ′(z)
f (z)

− 1
1− r2n

∣∣∣∣ ≤ (n + 1)rn + nr2n

1− r2n .

Since 1/(1− r2n) ≤ 1, therefore, accodring to Lemma 6, the above disk will be contained in
Ωsinh λ, and, hence, f ∈ S∗sinh λ,n if

(n + 1)rn + nr2n

1− r2n ≤ 1
1− r2n − (1− sin(λ)),
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or, equivalently, we have

(n + sin(λ)− 1)r2n + (n + 1)rn − sin(λ) ≤ 0.

Thus, RS∗sinh λ,n
(F4) is the smallest positive root of the equation

(n + sin(λ)− 1)r2n + (n + 1)rn − sin(λ) = 0.

For the sharpness of RS∗sinh λ,n
(F4), consider the functions

f0(z) =
z(1 + zn)

(1− zn)1/n , and g0(z) =
z

(1− zn)1/n .

Also, | f0(z)/g0(z)− 1| = |(1 + zn)− 1| < 1, and

<
(

1 +
zg′′0 (z)
g′0(z)

)
= <

(
1 + nzn

1− zn

)
> 0,

thus showing that g0(z) is convex. Thus, f0 ∈ F4. Also,∣∣∣∣ z f ′0(z)
f0(z)

− 1
∣∣∣∣ = ∣∣∣∣ (n + 1)zn − (n− 1)z2n

1− z2n

∣∣∣∣,
which, at z = RS∗sinh λ,n

(F4), yields∣∣∣∣ z f ′0(z)
f0(z)

− 1
∣∣∣∣ = sin(λ),

thus proving the sharpness of RS∗sinh λ,n
(F4).

5. Conclusions

As some portion of the image of the function 1 + sinh(z) is not in the right-half plan,
we introduced λ with 0 ≤ λ ≤ ln(1 +

√
2), as factor of z and obtained the Ma-Minda-type

function 1 + sinh(λz), whose image is entirely in the right-half plane for all values of λ in
the above specified interval. Thus, we defined a new subclass of starlike functions S∗sinh λ.
We obtained first four sharp coefficient bounds and S∗sinh λ radii of some well recognized
subclasses of analytic functions. Still, there are so many directions, for example, Hankel
determinants, for both the functions of this class and for its inverse functions, Fekete-
Szegö type inequality, logarithmic coefficients, partial sums problems, sufficiency criteria,
convolution preserving property and many more in which researchers can show the essence
of their abilities. In addition, with the association of q(z) = 1 + sinh(λz), one can defined
the class of convex functions, close-to-convex functions, bounded turnings and etc.
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