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Abstract: This paper studies the estimation problem for semi-varying coefficient heteroscedastic
instrumental variable models with missing responses. First, we propose the adjusted estimators for
unknown parameters and smooth functional coefficients utilizing the ordinary profile least square
method and instrumental variable adjustment technique with complete data. Second, we present
an adjusted estimator of the stochastic error variance by employing the Nadaraya–Watson kernel
estimation technique. Third, we apply the inverse probability-weighted method and instrumental
variable adjustment technique to construct the adaptive-weighted adjusted estimators for unknown
parameters and smooth functional coefficients. The asymptotic properties of our proposed estimators
are established under some regularity conditions. Finally, numerous simulation studies and a real
data analysis are conducted to examine the finite sample performance of the proposed estimators.

Keywords: adaptive-weighted adjusted estimation; heteroscedastic; Nadaraya–Watson kernel estimation;
semi-varying coefficient instrumental variable models
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1. Introduction

As an important category of statistical regression models, the varying-coefficient
partially linear model possesses strong explanatory power and flexibility. It has been used
widely in scientific research, such as econometrics, biomedicine and engineering technology.
Its general mathematical expression is:

Y = X>θ(U) + Z>β + ε, (1)

where Y is the response variable, and X ∈ RP and Z ∈ Rq are covariates. To prevent the
“curse of dimensionality” problem, the covariate U is confined to be one-dimensional. θ(·) =
[θ1(·), . . . , θp(·)]> is a p× 1 smooth functional coefficients vector, β = (β1, β2, . . . , βq)> is
a q × 1 constant coefficients vector, and ε is the model error, which is independent of
(X, Z, U). The mean of ε is zero, and the variance is designated as a heteroscedasticity
structure, which satisfies Var(ε|X, Z, U) = σ2(U). As an extension of classical linear
regression models, varying-coefficient partially linear models have been investigated by
many scholars with the hypothesis of homoscedasticity; please see [1–8]. However, in
regression analysis, we may omit some important explanatory variables, and the sample
observation data may be measured with errors. For such cases, the model error can be
heteroscedastic. In recent years, statisticians have developed many statistical inference
methods for model (1) with heteroscedasticity. For instance, Shen et al. [9] introduced
a re-weighted estimation procedure for unknown parameters based on the generalized
least squares method. Zhao et al. [10] proposed a two-stage iterative estimation method
by using the orthogonal projection technique, which can individually estimate unknown
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parameters and functional coefficients. Zhao et al. [11] proposed a re-weighted estimation
procedure when the covariates contain an additive measurement error. Zhang and Li [12]
proposed a weighted estimation and testing method when the covariates suffer from
an additive measurement error. Yuan and Zhou [13] introduced an adaptive-weighted
estimation method for model (1), which can increase the estimation accuracy of their
proposed estimators.

However, the above works have not considered the endogenous problem of covariates.
In practice, there may be endogenous explanatory variables in model (1); see [14,15]. In
such cases, the above methods will promote the generation of endogenous bias, which leads
to the inconsistency of obtained estimators. Therefore, the instrumental variable method
will provide an effective way to eliminate endogeneity bias. In the past ten years, the semi-
parametric instrumental variable model has been widely studied by many statisticians.
For instance, Cai and Xiong [16] suggested a three-stage estimation approach for semi-
varying coefficient models with endogenous covariates. Zhao and Li [17] developed
an effective variable selection approach for the classical varying coefficient models with
endogenous covariates. Zhao and Xue [18] considered the interval estimation for semi-
parametric instrumental variable models by using the empirical likelihood method. Yuan
et al. [19] proposed an effective method to identify important variables by combining the
SCAD penalty method and instrumental variable adjustment technique for semi-varying
coefficient models with endogenous covariates. Zhao et al. [20] applied the popular
empirical likelihood approach to study the effective interval estimation for semi-varying
coefficient instrumental variable models with the orthogonal decomposition technique. For
more related research, please refer to the literature [21–24]. In this paper, the covariates U
and Z are assumed to be exogenous, but the covariates X is endogenous, and ζ ∈ Rr is
an instrumental variable related to X. Similar to [16], the dimension of ζ is designated as
greater than or equal to the dimension p of X for identifiability, and X and ζ are specified
to satisfy the following parametric model:

X = Ψζ + e, (2)

where Ψ is an unknown constant matrix with dimension p× r, and the error term e satisfies
E(e|ζ, Z, U) = 0. E(ε|X, Z, U) 6= 0 since thecovariates are endogenous, which indicates that
X is associated with the model error ε. Moreover, we further suppose that E(ε|ζ, Z, U) = 0.

In applications, the missing data can occur in many areas, such as market surveys,
medical research, opinion polls, and other scientific experiments. When we encounter
the missing data, the classical statistical inference methods cannot be used directly. Thus,
scholars have developed corresponding methods to solve the problem of missing data.
The main methods included the complete sample method, inverse probability weighted
technique, and imputation technique. Rubin [25] discussed the complete sample method
in detail, but this method will reduce the estimation effectiveness, especially when the
observed data are missing at random. Robins et al. [26] suggested an inverse probability-
weighted method by assigning the weights to the observed data, which can effectively
diminish the deviation caused by the missing data. Wang and Rao [27], and Wang et al. [28]
developed the imputation methods for linear and semi-parametric regression models,
respectively. Up to now, many scholars have studied the statistical inference for model (1)
with missing data, but few scholars considered heteroscedasticity and endogeneity. For
instance, Li and Xue [29] constructed an imputation estimator for unknown parameters
with a missing response. When the explanatory variables are missing at random, Chen
et al. [30] constructed the inverse probability weighted estimation of unknown constant and
functional coefficients. For more recent works on missing data research for model (1), the
reader can refer to [31–33], among others. In this paper, the response variable is specified
to be missing, and other explanatory variables can be fully observed. An indicator variable
δ is introduced to describe the missing mechanism. If Y is obtainable, we denote δ = 1, and
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otherwise δ = 0. Furthermore, we suppose that the missing data mechanism is randomly
missing, which is expressed as:

P(δ = 1|U, X, Z, Y) = P(δ = 1|U, X, Z) = π(U, X, Z), (3)

where π(·) is referred to as the propensity score.
Although many scholars have discussed the statistical inference procedures for var-

ious semi-parametric models with endogenous covariates, the existing works have not
considered the heteroscedasticity and missing data. Therefore, we consider the estima-
tion problem for models (1) and (2) with heteroscedasticity and a missing response. The
adaptive-weighted adjusted estimators of unknown parameters and functional coefficients
are proposed using the profile least squares method, instrumental variables adjustment
technique, Nadaraya–Watson kernel estimation, inverse probability-weighted method, and
weighted least squares method, and we also establish the asymptotic properties of the
proposed estimators.

The rest of the paper is organized as follows. In Section 2, we introduced an adaptive-
weighted adjusted estimation method to obtain the estimators for unknown parameters
and functional coefficients, and the corresponding asymptotic properties are established.
In Section 3, numerous simulation studies are conducted to demonstrate the effectiveness
and feasibility of the proposed estimators. A real data analysis is performed as well in
Section 4. Section 5 summarizes the research results of this paper with some conclusions.
The technical proofs are presented in Appendix A.

2. Estimation Methods and Main Results
2.1. Adjusted Profile Least Squares Estimation

In this subsection, we apply the local linear smoothing technique and instrumental
variable adjustment technique to estimate unknown parameters β and smooth functional
coefficients θ(·). Assume that {Yi, Xi, Ui, Zi, ζ i, δi}n

i=1 are independent and identically
distributed (i.i.d.) samples, which come from the semi-varying coefficient heteroscedastic
instrumental variable models (1)–(3); then, we have:{

δiYi = δiX>i θ(Ui) + δiZ>i β + δiεi,

Xi = Ψζ i + ei, i = 1, 2, . . . , n.
(4)

For any u in the small neighborhood of u0, each functional coefficients θj(u) (j =
1, 2, . . . , p) can be expanded by the Taylor expansion as follows:

θj(u) ≈ θj(u0) + θ′j(u0)(u− u0), j = 1, 2, . . . , p.

If β is given, then the estimator of θj(u0) is given by minimizing the following weighted
least squares objective function:

n

∑
i=1

{
Yi − Z>i β−

p

∑
j=1

[
θj(u0) + θ′j(u0)(Ui − u0)

]
Xij

}2

Kh1(Ui − u0)δi, (5)

where Kh1(·) = K(·/h1)/h1, K(·) is a kernel function, which is chosen as a symmetric
probability density function, and h1 is a bandwidth. For ease of presentation, we denote:

Y = (Y1, Y2, . . . , Yn)
>, X = (X1, X2, . . . , Xn)

>, Z = (Z1, Z2, . . . , Zn)
>,

∆0 = diag(δ1, δ2, . . . , δn), M = [X>1 θ(U1), . . . , X>n θ(Un)]
>,

wh1(u0) = diag[Kh1(U1 − u0), Kh1(U2 − u0), . . . , Kh1(Un − u0)],
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Xh1(u0) =

 X>1 h−1
1 (U1 − u0)X>1

...
...

X>n h−1
1 (Un − u0)X>n

.

Thus, the first formula of model (4) can be transformed into:

∆0Y − ∆0Zβ = ∆0M + ∆0ε. (6)

By minimizing the weighted least squares objective (5), the estimators of functional
coefficients θ(u0) are given by:

θ̃(u0, β) = (Ip, 0p){X>h1
(u0)wh1(u0)∆0Xh1(u0)}−1X>h1

(u0)wh1(u0)∆0(Y − Zβ), (7)

where Ip and 0p denote the identity matrix and zero matrix with dimension p× p. It is
noteworthy that the explanatory variable X in this paper is an endogenous variable, which
indicates that E(ε|X) 6= 0. Thus, the estimators of the functional coefficients in (7) are
inconsistent. Then, we make a correction for θ̃(u0, β) by applying the available instrumental
variables ζ. For model (2), we can easily obtain:

E(Xζ>) = ΨE(ζζ>).

Therefore, a usual moment estimator of the unknown constant matrix Ψ is given by:

Ψ̂ =

(
n

∑
i=1

Xiζ
>
i

)(
n

∑
i=1

ζ iζ
>
i

)−1

.

Let X̂i = Ψ̂ζ i. Invoking (7), the adjusted estimators of functional coefficients θ(u) are
given by:

θ̂(u0, β) = (Ip, 0p){X̂>h1
(u0)wh1(u0)∆0X̂h1(u0)}−1X̂>h1

(u0)wh1(u0)∆0(Y − Zβ), (8)

where X̂h1(u0) has the same structure as Xh1(u0), but replacing the variable Xi with X̂i.
Then, invoking (8), the estimator of M is given by:

M̂(β) = (X̂>1 θ̂(U1, β), . . . , X̂>n θ̂(Un, β))> , S(Y − Zβ) (9)

and:

S =


(X̂>1 , 0){X̂h1(U1)wh1(U1)∆0X̂h1(U1)}−1X̂>h1

(U1)w>h1
(U1)∆0

...
(X̂>n , 0){X̂h1(Un)wh1(Un)∆0X̂h1(Un)}−1X̂h1(Un)w>h1

(Un)∆0

,

where 0 denotes a zero vector with dimensions 1× p. Replacing M with M̂(β) in (6),
we obtain:

∆0(I− S)Y = ∆0(I− S)Zβ + ∆0ε. (10)

For the model (10), a least squares approach is implemented, and then the adjusted estima-
tors of unknown parameters β are given by:

β̂ = (Z̃>∆0Z̃)−1Z̃>0 ∆0Ỹ , (11)

where Ỹ = (I− S)Y , Z̃ = (I− S)Z. Combining (8) and (11), the adjusted estimators of
functional coefficients θ(u) at u0 are given by:

θ̂(u0, β̂) = (Ip, 0p){X̂>h1
(u0)wh1(u0)∆0X̂h1(u0)}−1X̂>h1

(u0)wh1(u0)∆0(Y − Zβ̂). (12)
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2.2. Adaptive-Weighted Adjusted Profile Least Squares Estimation

In this subsection, we develop an adaptive-weighted adjusted estimation method
for unknown parameters and functional coefficients based on weighted least squares
estimation. First of all, according to the estimators of model residuals, we suggest an
adjusted Nadaraya–Watson kernel estimation method for the variance function. By (11)
and (12), we can estimate the residual error by:

ε̂ = (ε̂1, ε̂2, . . . , ε̂n)
> = ∆0(Y − M̂(β̂)− Zβ̂). (13)

Note that Var(εi|Xi, Zi, Ui) = σ2(Ui), and by using the Nadaraya–Watson kernel
estimation method, an adjusted estimator of variance function σ2(u0) is given by:

σ̂2(u0) =

n
∑

i=1
δi ε̂

2
i Kh̃(Ui − u0)

n
∑

i=1
δiKh̃(Ui − u0)

, (14)

where Kh̃(·) and Kh1(·) have the same structure, except that the bandwidth h̃ is replaced by
h1. Furthermore, replacing u0 by Ui (i = 1, . . . , n), we can obtain:

σ̂2(Ui) =

n
∑

k=1
δk ε̂2

kKh̃(Uk −Ui)

n
∑

k=1
δkKh̃(Uk −Ui)

, i = 1, . . . , n. (15)

The estimator σ̂2(u0) of the variance function σ2(u0) is consistent. The proof of this property
is similar to that of Theorem 1 in [9]; thus, we omit the details.

Then, we consider how to deal with missing data. In general, the selection probability
function π(Ui, Xi, Zi) defined in (3) is usually unknown. We can employ nonparametric es-
timation methods to estimate it, such as kernel estimation and local polynomial estimation,
but these methods may cause the curse of dimensionality. Therefore, similar to the method
in [31], we suppose that the selection probability function satisfies:

π(Ui, Xi, Zi, w) =
exp(w0 + w1Ui + w>2 Xi + w>3 Zi)

1 + exp(w0 + w1Ui + w>2 Xi + w>3 Zi)
,

where w = (w0, w1, w>2 , w>3 )> is the unknown parameter vector, and the estimator ŵ
of w can be attained by the quasi-likelihood estimation method. We also assume Vi =
(Ui, X>i , Z>i )>, and then the estimator π(Ui, Xi, Zi, ŵ) = π(Vi, ŵ).

Based on the estimator of variance function σ̂2(Ui) and selection probability function
π(Vi, ŵ), the adaptive-weighted adjusted estimators for functional coefficients are given
by minimizing:

n

∑
i=1

{
Yi − Z>i β−

p

∑
j=1

[θj(u0) + θ′j(u0)(Ui − u0)]Xij

}2

σ̂−2(Ui)
δi

π(Vi, ŵ)
Kh2(Ui − u0), (16)

where Kh2(·) = K(·/h2)/h2 with bandwidth h2.
Minimizing the objective Function (16), the adaptive-weighted estimators of functional

coefficients can be expressed as:

θ̃w(u0, β) = (Ip, 0p){X>h2
(u0)wh2(u0)Σ̂

−1∆̂Xh2(u0)}−1X>h2
(u0)wh2(u0)Σ̂

−1∆̂(Y − Zβ),

where Σ̂ = diag[σ̂2(U1), σ̂2(U2), . . . , σ̂2(Un)], ∆̂ = [δ1/π(V1, ŵ), . . . , δn/π(Vn, ŵ)]. Since
the explanatory variable X is endogenous, the instrumental variable adjustment technique
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is used to make a correction for θ̃(u0, β). Then, the adaptive-weighted adjusted estimators
of functional coefficients θ(u0) are given by:

θ̂w(u0, β) = (Ip, 0p){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂(Y − Zβ), (17)

where X̂h2(u0) and X̂h1(u0), wh2(u0) and wh1(u0) have the same form except that h1 is
replaced by h2, respectively. Then, the estimator of M is given by:

M̂w = (X̂>1 θ̂w(U1, β), . . . , X̂>n θ̂w(Un, β))> , Ŝ(Y − Zβ), (18)

where:

Ŝ =


(X̂>1 , 0){X̂>h2

(U1)wh2(U1)Σ̂
−1∆̂X̂h2(U1)}−1X̂>h2

(U1)w>h2
(U1)Σ̂

−1∆̂

...
(X̂>n , 0){X̂>h2

(Un)wh2(Un)Σ̂−1∆̂X̂h2(Un)}−1X̂>h2
(Un)w>h2

(U1)Σ̂
−1∆̂

.

Substituting M̂w into (1), we have:

(I− Ŝ)Y = (I− Ŝ)Zβ + ε. (19)

In order to eliminate the impact of heteroscedasticity, left-multiplying the matrix Σ̂−1/2

to (19), we obtain:
Σ̂−1/2(I− Ŝ)Y = Σ̂−1/2(I− Ŝ)β + Σ̂−1/2ε, (20)

where Σ̂−1/2 = diag[σ̂−1(U1), σ̂−1(U2), . . . , σ̂−1(Un)].
By employing the inverse probability-weighted method and combining the idea of

weighted least squares, we can derive the estimators of unknown parameters β by minimizing

Q(β) = [(I− Ŝ)Y − (I− Ŝ)Xβ]>Σ̂−1∆̂[(I− Ŝ)Y − (I− Ŝ)Xβ].

Solving the minimum problem with respect to β, the proposed adaptive-weighted
adjusted estimator of β is given by:

β̂w = (Ẑ>Σ̂−1∆̂Ẑ)−1Ẑ>Σ̂−1∆̂Ŷ , (21)

where Ŷ = (I− Ŝ)Y , Ẑ = (I− Ŝ)Z. Moreover, substituting β̂w into (17), we give the
proposed adaptive-weighted adjusted estimators of functional coefficients θ(u0) as follows:

θ̂w(u0, β̂w) = (Ip, 0p){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂(Y − Zβ̂w). (22)

2.3. Asymptotic Properties

In this subsection, we establish the asymptotic properties of the proposed estimators.
First, some regularity conditions are needed. These conditions are mild, and similar condi-
tions can be found in [9–11], and other varying-coefficient partially linear heteroscedastic-
ity literature.

(C1) The random variable U has a bounded support U and its density function f (u) is
Lipschitz-continuous and has a second-order continuous derivative. Moreover, f (u)
is bounded away from zero.

(C2) The kernel K(·) is a symmetric probability density function with a compact support
and is Lipschitz-continuous.

(C3) For each u ∈ U , the matrix Π(u) = E(ζ1ζ>1 |U = u) is invertible, and the matrices
Π(u), Π−1(u), and Ξ(u) = E(ζ1Z>1 |U = u) are Lipschitz-continuous.

(C4) For each u ∈ U , the functional coefficients {θj(u), j = 1, 2, . . . , p} are Lipschitz-
continuous and have continuous second derivatives.

(C5) There is a s > 2, such that E‖ζ1‖2s < ∞,E‖Z1‖2s < ∞.
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(C6) There is a δ < 1− s−1, such that limn→∞n2δ−1hi = ∞, i = 1, 2.
(C7) The variance function σ2(·) has a continuous second derivative and is uniformly

bounded on the domain.
(C8) For the bandwidth hi (i = 1, 2), nh2

i → ∞, nh8
i → 0 and [log(1/hi)]

2/(nh2
i ) → 0

as n → ∞. In addition, hi and h̃ satisfy O(cni )O(c̃n) = o(n−1/2), where cni = h2
i +

[log(1/hi)/(nhi)]
1/2, i = 1, 2, c̃n = h̃2 + [log(1/h̃)/(nh̃)]1/2.

(C9) On the base of (Xi, Zi, Ui), π(·) has a second-order continuous derivative. Moreover,
π(·) is bounded away from zero.

Conditions (C1)–(C6) are quite generally required in the semi-varying coefficient
model. Conditions (C7) and (C8) are mainly to obtain the consistent estimator of the
variance function, which can be found in [9]. Condition (C9) provides a guarantee for the
inverse probability weighted technique.

Theorem 1. Suppose that regularity conditions (C1)–(C9) hold; for each u0 ∈ U , we have:

sup
u0∈U

|σ̂2(u0)− σ2(u0)| = op(c̃n).

Theorem 2. Suppose that regularity conditions (C1)–(C9) hold; then, the proposed adaptive-
weighted adjusted estimator of β satisfies:

√
n(β̂w − β)

D−→ N(0, Λ−1
1 Λ2Λ−1

1 ), n→ ∞,

where Λ1 = E
{

σ−2(U1)[Z1 − Ξ>(U1)Ψ
>(ΨΠ(U1)Ψ

>)−1Ψζ1]
⊗

2}, Λ2 = E{π(V1, w)−1

× σ−4(U1)(e>1 θ(U1) + ε1)
2[Z1 − Ξ>(U1)Ψ

>(ΨΠ(U1)Ψ
>)−1Ψζ1]

⊗
2}, and H

⊗
2 = HH>.

Theorem 3. Suppose that regularity conditions (C1)–(C9) hold; then, the proposed adaptive-
weighted adjusted estimator of θ(u0) satisfies:

√
nh2

[
θ̂w(u0, β̂w)− θ(u0)−

1
2

h2
2µ2θ′′(u0)

]
D−→ N(0, Λ(u0)), n→ ∞,

where Λ(u0) = v0 f−1(u0)E
{

π(V1, w)−1(e>1 θ(U1) + ε1)
2}(ΨΠ(u0)Ψ

>)−1
,

µ2 =
∫

u2Kh2(u)du, v0 =
∫

K2
h2
(u)du.

Theorems 2 and 3 give the asymptotic distribution of our proposed adaptive-weighted
adjusted estimators. These results can be utilized to conduct statistical inference for un-
known parameters and functional coefficients. Additionally, the above theorems expand
the application scale of semi-varying coefficient models to satisfy the modeling require-
ments of applications. By assuming that the missing responses and endogenous covariates
are nonexistent, the asymptotic variance of our proposed estimators possess the same struc-
ture as that of the estimators in [13]. On the other hand, when the missing response and
heteroscedasticity are not considered, the asymptotic variance of our proposed estimators
is the same as that of the estimators in [16].

3. Simulation Studies

In this section, we carry out some simulations to evaluate the finite sample perfor-
mance of the proposed adaptive-weighted adjusted estimation method. We generate the
data from the semi-varying coefficient heteroscedastic instrumental variables model:

Y = Z1β1 + Z2β2 + Xθ(U) + ε,
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where the explanatory variables Z1 and Z2 are both independently drawn from N(2, 1),
the univariate U is independently drawn from U(0, 1), the explanatory variable X is an
endogenous variable generated from the model X = ζ + kε, where ζ in an instrumental vari-
able generated from normal distribution N(1, 1), and k is taken as 0.2 and 0.4 to represent
different levels of endogeneity. We set the parameters β1 = 1.5, β2 = 2, θ(U) = sin(2πU).
The model error ε∼N(0, σ2(U)) with σ2(U) = 0.25 + [c sin(2πU)]2 for c = 2, 4, respec-
tively. The Gaussian kernel K(x) = 1/

√
2π exp(−x2/2) is adopted. The leave one out

cross-validation (LOOCV) method is applied to choose h1, which is derived by minimizing

CV(h1) =
1
n

n

∑
i=1

δi[Yi − Xi θ̂[−i](Ui)− Z>i β̂[−i]],

where β̂[−i] and θ̂[−i](·) are the adjusted profile least-squares estimators, which are given
in (11) and (12), respectively. We choose bandwidths h̃ and h2 by a similar method. To
compare the performance of the proposed adaptive-weighted adjusted estimators under
different missing probabilities, two selection probability functions are chosen as follows:

π1(x, u, z) =P(δ = 1|X = x, U = u, Z = (z1, z2))

=[1 + exp(−1 + 1.1x− z1 − 0.4z2 − 0.7u)]−1,

π2(x, u, z) =P(δ = 1|X = x, U = u, Z = (z1, z2))

=[1 + exp(−1 + 1.5x− 0.8z1 − 0.4z2 − 0.5u)]−1.

The corresponding average response rates are about 0.9 and 0.8 when c = 2 and k = 0.2. To
show the performance of our proposed adaptive-weighted adjusted profile least square
estimation based on the instrumental variable adjustment technique (represented as IAW-
PLS), we contrast it with the two approaches below: (1) the naive adaptive-weighted profile
least square estimation, denoted by NAWPLS; (2) the instrumental variable weighted
profile least square estimation, denoted by IWPLS. The former omits the endogeneity of
the explanatory covariate, and it is derived by combining the inverse probability-weighted
method and adaptive-weighted profile least squares method in [13]. The latter ignores
the heteroscedasticity of the model error and combines the inverse probability-weighted
method and instrumental variable adjustment method in [16]. We set the sample size as
50, 100, 200, and 300. The results are based on 500 replications for each case. For paramet-
ric components, we use the following measures to compare the performance of different
methods: (1) Mean: the average of the estimated value; (2) MSE: mean square errors for the
corresponding estimators. The results are shown in Tables 1 and 2 for π = π1, π2, c = 2, 4,
k = 0.2, 0.4 and n = 50, 100, 200, 300, respectively.

According to Tables 1 and 2, we have the following results.

(1) The IAWPLS and IWPLS estimators are asymptotically unbiased, but the NAWPLS
estimators are biased. For fixed π, c, k, with the increase of n, the MSEs of all three
estimators decrease.

(2) For fixed π, c, k, when the sample size n = 50, the MSEs of our proposed IAWPLS
estimators are slightly larger than those of NAWPLS in some cases, but obviously
smaller than those of the NAWPLS and IWPLS estimators when the sample size is
greater than 100.

(3) For fixed c, k, n, with the increase in the missing probability, the MSEs of all three
estimators increase.

(4) For fixed π, k, n, with the increase in c, the MSEs of all three estimators increase.
(5) For fixed π, c, n, with the increase in k , the MSEs of all three estimators increase.

Subsequently, we further consider the behavior of the adaptive-weighted adjusted es-
timation method for the variance functions and functional coefficients. The corresponding
estimated values are computed at n = 200 equally spaced values Ui = i/n ∈ [0, 1], and the
mean value of 500 simulations at every point Ui is taken for the ultimate estimated values.
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Due to the similarity of the estimated curves for different sample sizes and missing probabili-
ties, we only plot the estimated curves of the variance functions and functional coefficients
when c = 2, 4, k = 0.2, 0.4, n = 200, and π = π1. The estimated curves are shown in
Figures 1 and 2. To demonstrate the effectiveness of the proposed estimation method for the
variance function, two methods are taken for contrast: (1) the adjusted Nadaraya–Watson
kernel estimation method based on instrumental variable adjustment techniques; (2) the naive
Nadaraya–Watson kernel estimation method, which ignores the endogeneity of explanatory
variables and uses the standard Nadaraya–Watson kernel estimation.

Table 1. Sample means and MSEs for β1 based on the IAWPLS, NAWPLS, and IWPLS methods.

π c k n
IAWPLS NAWPLS IWPLS

Mean MSE Mean MSE Mean MSE

π1

2 0.2 50 1.5107 0.0355 1.4335 0.0329 1.5153 0.0607
100 1.5070 0.0128 1.4379 0.0141 1.5124 0.0261
200 1.5062 0.0056 1.4366 0.0089 1.5081 0.0121
300 1.5019 0.0036 1.4424 0.0064 1.5023 0.0094

0.4 50 1.5182 0.0429 1.3808 0.0377 1.5289 0.0778
100 1.5129 0.0164 1.3898 0.0232 1.5192 0.0383
200 1.5091 0.0074 1.3920 0.0165 1.5115 0.0203
300 1.5030 0.0046 1.3954 0.0140 1.5041 0.0113

4 0.2 50 1.5231 0.1056 1.2857 0.2360 1.5226 0.2382
100 1.5058 0.0367 1.3025 0.0716 1.5214 0.1063
200 1.4963 0.0143 1.3116 0.0510 1.5146 0.0481
300 1.5019 0.0094 1.3172 0.0430 1.5062 0.0323

0.4 50 1.5274 0.1598 1.2252 0.1324 1.5264 0.3682
100 1.5110 0.0449 1.2361 0.0917 1.5255 0.1377
200 1.5088 0.0182 1.2468 0.0749 1.5227 0.0813
300 1.5053 0.0105 1.2517 0.0686 1.5204 0.0510

π2

2 0.2 50 1.5187 0.0352 1.4274 0.0364 1.5245 0.0630
100 1.5050 0.0169 1.4289 0.0186 1.5112 0.0346
200 1.4974 0.0072 1.4316 0.0109 1.5009 0.0151
300 1.5027 0.0049 1.4386 0.0077 1.5028 0.0112

0.4 50 1.4929 0.0535 1.3581 0.0502 1.4994 0.1011
100 1.5083 0.0202 1.3785 0.0264 1.5187 0.0438
200 1.5044 0.0079 1.3871 0.0184 1.5140 0.0221
300 1.5032 0.0058 1.3882 0.0163 1.5093 0.0153

4 0.2 50 1.5438 0.1646 1.2972 0.1531 1.5601 0.3148
100 1.5180 0.0417 1.3103 0.0723 1.5446 0.1141
200 1.5159 0.0192 1.3054 0.0538 1.5262 0.0625
300 1.5062 0.0124 1.3210 0.0442 1.5165 0.0491

0.4 50 1.5455 0.2016 1.2323 0.1424 1.5895 0.4071
100 1.5397 0.0555 1.2566 0.0871 1.5802 0.1955
200 1.5226 0.0271 1.2469 0.0784 1.5559 0.1111
300 1.5223 0.0181 1.2482 0.0725 1.5511 0.1043

Figure 1 shows that the proposed adjusted Nadaraya–Watson kernel estimators are
asymptotically unbiased, but the naive Nadaraya–Watson kernel estimators are biased,
and the deviation increases with the increase of c or k. Note that the performance of our
proposed adjusted Nadaraya–Watson kernel estimators may be affected by larger c and
k. From Figure 2, we find that the estimated curves obtained by the IAWPLS and IWPLS
methods both approach the true curves, but the estimated curves obtained by the NAWPLS
method are biased, and the deviation increases with the increase of c or k.
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Table 2. Sample means and MSEs for β2 based on the IAWPLS, NAWPLS, and IWPLS methods.

π c k n
IAWPLS NAWPLS IWPLS

Mean MSE Mean MSE Mean MSE

π1

2 0.2 50 1.9900 0.0350 1.9224 0.0344 1.9810 0.0573
100 1.9911 0.0134 1.9292 0.0157 1.9882 0.0288
200 1.9962 0.0058 1.9374 0.0092 1.9927 0.0121
300 2.0009 0.0039 1.9423 0.0067 2.0015 0.0093

0.4 50 1.9875 0.0475 1.8815 0.0384 1.9836 0.0820
100 1.9898 0.0171 1.8880 0.0234 1.9885 0.0384
200 1.9960 0.0070 1.8877 0.0171 1.9971 0.0200
300 2.0014 0.0045 1.8896 0.0152 2.0079 0.0117

4 0.2 50 2.0024 0.1140 1.7800 0.1347 2.0073 0.2454
100 2.0017 0.0354 1.8183 0.0623 1.9927 0.1010
200 2.0148 0.0159 1.8275 0.0447 2.0154 0.0525
300 2.0065 0.0089 1.8270 0.0392 2.0043 0.0336

0.4 50 1.9688 0.1469 1.7602 0.1441 1.9604 0.3306
100 1.9893 0.0488 1.7568 0.0829 1.9933 0.1606
200 2.0001 0.0195 1.7594 0.0702 2.0082 0.0887
300 1.9996 0.0118 1.7596 0.0645 1.9995 0.0554

π2

2 0.2 50 1.9764 0.0349 1.9124 0.0362 1.9805 0.0602
100 1.9994 0.0181 1.9349 0.0189 1.9985 0.0339
200 2.0021 0.0073 1.9414 0.0098 1.9999 0.0155
300 1.9979 0.0047 1.9396 0.0075 2.0023 0.0105

0.4 50 2.0004 0.0520 1.8870 0.0409 2.0089 0.0970
100 1.9956 0.0177 1.8896 0.0242 2.0035 0.0406
200 1.9970 0.0087 1.8872 0.0183 2.0002 0.0230

300 2.0024 0.0056 1.8919 0.0157 2.0018 0.0164

4 0.2 50 1.9750 0.1558 1.7766 0.1635 1.9782 0.3179
100 1.9977 0.0405 1.8048 0.0739 1.9958 0.1295
200 1.9880 0.0178 1.8085 0.0529 1.9887 0.0647
300 1.9898 0.0120 1.8103 0.0472 1.9911 0.0497

0.4 50 1.9523 0.2195 1.7392 0.1803 1.9487 0.4049
100 1.9748 0.0688 1.7389 0.0978 1.9570 0.2404
200 1.9781 0.0241 1.7510 0.0763 1.9552 0.1095
300 1.9933 0.0171 1.7532 0.0695 1.9933 0.0171

Owing to the estimated curves obtained by the IAWPLS and IWPLS methods being
close to each other, we further utilize the root mean squared error (RMSE) to evaluate the
effectiveness for functional coefficients:

RMSE =

{
1
N

N

∑
k=1
‖θ̂(Uk)− θ(Uk)‖2

}1/2

,

where Uk (k = 1, 2, . . . , N) are the selected split points defined on the bounded support
U . In this case, we set N = 100 and assume that Uk takes equal intervals on the interval
[0, 1]. We calculate RMSE of the functional coefficients estimators. Results are presented in
Table 3 for π = π1, π2, c = 2, 4, k = 0.2, 0.4 and n = 50, 100, 200, 300.

According to Table 3, we find that the proposed IAWPLS estimation method for
functional coefficients has smaller RMSEs than those of NAWPLS and IWPLS methods
for given π, k, c, n. The RMSEs of all three estimators decrease with the increase of n.
Nevertheless, the RMSEs increase with the increase of c, k or missing probability.
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Figure 1. Plot of the variance function estimates through the use of the adjusted Nadaraya–Watson
kernel estimation method (denoted using dashed lines) and the naive Nadaraya–Watson kernel
estimation method (denoted using dot-dashed lines); the solid lines represent the true curves.
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Figure 2. Plot of the functional coefficient estimates through the use of the IAWPLS method (denoted
using dot-dashed lines), the NAWPLS method (denoted using dashed lines), and the IWPLS method
(denoted using dotted lines); the solid lines represent the true curves.
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Table 3. Sample RMSEs for θ(·) based on the IAWPLS, NAWPLS, and IWPLS methods.

π c k n IAWPLS NAWPLS IWPLS

π1

2 0.2 50 0.4113 0.5122 0.4348
100 0.2703 0.4154 0.2845
200 0.1974 0.3665 0.2043
300 0.1666 0.3657 0.1710

0.4 50 0.4413 0.6413 0.4713
100 0.2843 0.5921 0.3020
200 0.2121 0.5615 0.2205
300 0.1775 0.5600 0.1819

4 0.2 50 0.7796 1.1731 0.8454
100 0.4833 1.0768 0.5332
200 0.3495 1.0242 0.3827
300 0.2854 1.0083 0.3107

0.4 50 0.8237 1.3033 0.9124
100 0.5442 1.2269 0.6099
200 0.3816 1.2144 0.4253
300 0.3208 1.2050 0.3562

π2

2 0.2 50 0.5148 0.5856 0.5424
100 0.3174 0.4392 0.3376
200 0.2380 0.3876 0.2473
300 0.2005 0.3746 0.2066

0.4 50 0.5494 0.7295 0.5908
100 0.3509 0.6042 0.3740
200 0.2532 0.5756 0.2674
300 0.2176 0.5659 0.2296

4 0.2 50 0.9109 1.2606 0.9901
100 0.6003 1.1050 0.6560
200 0.4252 1.0332 0.4671
300 0.3603 1.0185 0.3962

0.4 50 1.0109 1.3693 1.1332
100 0.6934 1.2575 0.7847
200 0.5296 1.2201 0.5875
300 0.4517 1.2134 0.5030

4. Real Data Analysis

We applied our adaptive-weighted adjusted estimation method to the National Longi-
tudinal Survey of Young Men (NLSYM) dataset, which includes 3010 samples from 1976.
This dataset has been used widely to analyze the endogeneity issues for parametric and
semi-parametric models, such as in [18,21,23,34]. We aim to study the potential relationship
between the log of hourly wage in cents (Y) and six other explanatory variables: the years
of schooling (Z1), the dummy variable black (Z2), south (Z3), the standard metropolitan
statistical area (Z4, smsa), age (U), and work experience (X), constructed as U − Z1 − 6;
further details regarding the variables in the dataset can be found in [34]. Similar to [20,34],
we constructed the following semi-varying coefficient model:

Y = Xθ(U) + Z1β1 + Z2β2 + Z3β3 + Z4β4 + ε.

Based on the idea of [34], we took a four-year university as the corresponding instru-
mental variable since the years of schooling are not randomly assigned or endogenous. For
the missing data, we used the following selection probability model to randomly delete
approximately 11% of the responses:

π(x, u, z) =P(δ = 1|X = x, U = u, Z = (z1, z2, z3, z4))

=[1 + exp(−1 + 1.5x− 0.4z1 − 0.4z2 − 0.5z3 − 0.7z4 − 0.5u)]−1.
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In addition, the Gaussian kernel function was chosen in this case, and the bandwidths
h1, h2, and h̃ were all selected as 0.3 for ease of calculation. We first applied the adjusted
profile least-squares method to obtain the initial estimators for unknown parameters and
functional coefficients. Then, the model fitting values Ŷ and residuals Y − Ŷ could be
derived using a simple calculation, and a scatter plot of Ŷ to Y− Ŷ is presented in Figure 3.
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Figure 3. Plot of the model residuals for NLSYM data.

Figure 3 demonstrates that the model residuals show a certain linear trend instead
of random variation. Therefore, we concluded that there should be a heteroscedasticity
structure. To further reveal the heteroscedasticity, an adjusted Nadaraya–Watson kernel
estimation method is suggested for estimating the variance function, and the estimated
curve is presented in Figure 4.
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Figure 4. Plot of the variance function estimate for NLSYM data.

From Figure 4, we found that the variance function shows a significant downward
trend with the increase of age U, indicating the existence of heteroscedasticity in this
specified model. Then, we employed the proposed adaptive-weighted adjusted estimation
method to estimate unknown parameters and functional coefficients. For comparison,
the three estimation methods IAWPLS, NAWPLS, and IWPLS were included, and the
simulation results for unknown parameters and functional coefficients are shown in Table 4
and Figure 5, respectively.
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Table 4. The estimates for the parameters’ vector based on the IAWPLS, IWPLS, and NAWPLS
methods for NLSYM data.

β1 β2 β3 β4

IAWPLS 0.0806 −0.6135 1.5279 0.4864
IWPLS 0.0841 −0.5959 1.6003 0.5702

NAWPLS 0.3069 −0.1681 0.1772 −0.1093
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Figure 5. Plot of the functional coefficient estimates through the use of the IAWPLS method (solid
lines), the NAWPLS method (dashed lines), and the IWPLS method (dotted lines) for NLSYM data.

According to Table 4 and Figure 5, we found that although the IAWPLS estimators
and IWPLS estimators are relatively close to each other, the IWPLS estimation method
slightly overestimated the parameters vector. In addition, there is a significant deviation
in the NAWPLS estimators compared with the other estimators. Overall, our proposed
estimation method can effectively eliminate the endogeneity and heteroscedasticity for
semi-varying coefficient models with missing data.

5. Conclusions

In this paper, we study an estimation problem for semi-varying coefficient instrumen-
tal variable models with missing data, and the model error is subject to heteroscedasticity
simultaneously. An adaptive-weighted adjusted estimation procedure is proposed based on
the instrumental variable adjustment technique. The consistency of the variance function
estimator is established, and the asymptotic distribution of unknown parameters and func-
tional coefficient estimators is also demonstrated under some regular conditions. Moreover,
numerous simulation studies and a NLSYM data analysis further demonstrate the effective-
ness of the proposed estimation method. However, we only discuss the estimation problem
of the semi-varying coefficient instrumental variables model with heteroscedasticity and
missing data in this study. More interesting research topics can be explored in the future, in-
cluding variable selection and model averaging issues. In addition, high-dimensional data
have become a focus in statistical research. How to develop statistical inference methods
and theories for a semi-varying coefficient heteroscedastic instrumental variables model
with high-dimensional data is an interesting research direction. These issues will be studied
in future work.
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Appendix A

Lemma A1 (Mack and Silverman [35]). Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. random
vectors, where Yi (i = 1, . . . , n) are scalar random variables. Assume that E|Yi|s < ∞ and
supx

∫
|y|s f (x, y)dy < ∞, where f (x, y) denotes the joint probability density of random variables

X and Y, and K(·) is a bounded positive function and defined on a bounded support. Moreover,
K(·) satisfies a Lipschitz condition. Given n2r−1h→ ∞ for some r < 1− s−1, we have:

sup
x

∣∣∣∣∣ 1n n

∑
i=1

[Kh(Xi − x)Yi −E(Kh(Xi − x)Yi)]

∣∣∣∣∣ = Op

({
log(1/h)

nh

}1/2
)

.

Lemma A2 (Shi and Lau [36]). Let T1, . . . , Tn be i.i.d. random variables. If E|Ti|s is bounded for
s > 1, then max1≤i≤n|Ti| = op(n1/s), a.s.

Lemma A3 (Chen et al. [31]). Let τi = (1, X>i , Ui, Z>i )
>, λmin denotes the least eigenvalue of

n
∑

i=1
τiτ
>
i , and assume that supi≥1 ‖τi‖ < ∞ and λmin → ∞; then, the quasi-likelihood estimation

ŵ = (ŵ0, ŵ1, ŵ>2 , ŵ>3 )> of w = (w0, w1, w>2 , w>3 )> satisfies:

√
n(ŵ−w) = A−1n−

1
2

n

∑
i=1

τi(δi − πi) + op(1),

where A = E[τ1τ>1 π1(1− π1)].

Lemma A4. Under regularity conditions (C1)–(C9), we have:

max
1≤i≤n

∣∣∣∣ δi
π(Vi, ŵ)

− δi
π(Vi, w)

∣∣∣∣ = op(n−
1
2+

1
2s ).

Proof of Lemma A4. According to Lemma A3, we use the first-order Taylor expansion
δi/π(Vi, ŵ) at w,

δi
π(Vi, ŵ)

=
δi

π(Vi, w)
+

[
δi

π(Vi, w)

]′
(ŵ−w) + op(|ŵ−w|)

=
δi

π(Vi, w)
− δiπ

′(Vi, w)

π2(Vi, w)
(ŵ−w) + op(1).

By Condition (C9) and Lemma A2, we have:∣∣∣∣ δi
π(Vi, ŵ)

− δi
π(Vi, w)

∣∣∣∣ ≤ max
∣∣∣τ>i ∣∣∣∣∣∣∣−δi[1− π(Vi, w)]

π(Vi, w)

∣∣∣∣|(ŵ−w)|+ op(1) = op(n−
1
2+

1
2s ).

This completes the proof of Lemma A4.

Lemma A5. Under regularity conditions (C1)–(C9), as n→ ∞, it holds that:
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1
n

X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂>h2
(u0) = σ−2(u0) f (u0)ΨΠ(u0)Ψ

> ⊗
(

1 0
0 µ2

)
{1 + Op(cn2)}, (A1)

1
n

X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂Z = σ−2(u0) f (u0)ΨΞ(u0)⊗ (1 0)>{1 + Op(cn2)}, (A2)

1
n

X̂>h2
(u0)wh2(u0)Σ̂−1∆̂M = σ−2(u0) f (u0)ΨΠ(u0)Ψ

>θ(u0)⊗ (1 0)>{1 + Op(cn2)}, (A3)

1
n

X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂ε = Op(cn2), (A4)

where ⊗ denotes the Kronecker product.

Proof of Lemma A5. For any u0 ∈ U , by some simple calculation, we have:

1
n

X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂>h2
(u0) =

1
n


n
∑

i=1
Bi

n
∑

i=1
Bih−1

2 (Ui − u0)

n
∑

i=1
Bih−1

2 (Ui − u0)
n
∑

i=1
Bih−2

2 (Ui − u0)
2

,

where Bi = [δi/π(Vi, ŵ)]σ̂−2(Ui)X̂iX̂>i Kh2(Ui − u0).
We first consider the term of the upper-left corner of the matrix. It is noteworthy that

Ψ̂ is the usual moment estimator of Ψ. According to [16], we obtain Ψ̂ = Ψ + Op(n−1/2).
Therefore, combining Theorem 1, Lemma A4 and condition (C8), we can obtain:

1
n

n

∑
i=1

σ̂−2(Ui)
δi

π(Vi, ŵ)
X̂iX̂>i Kh2(Ui − u0)

=
1
n

n

∑
i=1

σ−2(Ui)
δi

π(Vi, w)
Ψζ iζ

>
i Ψ>Kh2(Ui − u0)

+
1
n

n

∑
i=1

[σ̂−2(Ui)− σ−2(Ui)]
δi

π(Vi, w)
Ψζ iζ

>
i Ψ>Kh2(Ui − u0)

+
1
n

n

∑
i=1

σ−2(Ui)

[
δi

π(Vi, ŵ)
− δi

π(Vi, w)

]
Ψζ iζ

>
i Ψ>Kh2(Ui − u0)

+
1
n

n

∑
i=1

[σ̂−2(Ui)− σ−2(Ui)]

[
δi

π(Vi, ŵ)
− δi

π(Vi, w)

]
Ψζ iζ

>
i Ψ>Kh2(Ui − u0) + Op(n−1/2)

=σ−2(u0) f (u0)ΨΠ(u0)Ψ
> + op(c̃n) + op(n−

1
2+

1
2s ) + op(c̃n)op(n−

1
2+

1
2s ) + Op(n−1/2)

=σ−2(u0) f (u0)ΨΠ(u0)Ψ
> + Op(c̃n2).

By using the same argument as above, other terms in the matrix can be proven, which lead
to the result of (A1). The proofs of (A2)–(A4) are similar to those of (A1). We omit the
details here.

Lemma A6. Under regularity conditions (C1)–(C9), as n→ ∞, we have:

1
n

Ẑ>Σ−1∆Ẑ> → Λ1, a.s.,

where Σ = diag[σ2(U1), σ2(U2), . . . , σ2(Un)], ∆ = diag
[

δ1

π(V1, ŵ1)
, . . . ,

δn

π(Vn, ŵn)

]
, Λ1

is given in Theorem 2.
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Proof of Lemma A6. Invoking (A1) and (A2), it is easy to show that:

(X̂> 0){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)Σ̂

−1∆̂Z

=(Ψζ)>(ΨΠ(u0)Ψ
>)−1ΨΞ(u0){1 + Op(cn2)}.

Then, we have:

ŜZ =

 (Ψζ1)
>(ΨΠ(U1)Ψ

>)−1ΨΞ(U1)
...

(Ψζn)>(ΨΠ(Un)Ψ>)−1ΨΞ(Un)

{1 + Op(cn2)}. (A5)

Then, invoking (A5), some calculations yield:

1
n

Ẑ>Σ−1∆Ẑ =
1
n
(Z− ŜZ)>Σ−1∆(Z− ŜZ) =

1
n

n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηiη
>
i + Op(cn2),

where ηi = Zi − Ξ(Ui)Ψ
>(ΨΠ(Ui)Ψ

>)−1Ψζ i. Then, by a law of large numbers, Lemma
A6 can be easily proven.

Lemma A7. Under regularity conditions (C1)–(C9), then as n→ ∞, we can obtain:

n−1/2Ẑ>Σ−1∆(M̂w + ε̂)
D−→ N(0, Λ2), n→ ∞,

where ε̂ = (I− Ŝ)ε, M̂w = (I− Ŝ)M is given in Theorem 2.

Proof of Lemma A7. Invoking (A1) and (A3), it is easy to check that:

(X̂> 0){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂M

=(Ψζ)>θ(u0){1 + Op(cn2)}.

Then, invoking (A5), some calculations yield:

n−1/2Ẑ>Σ−1∆M̂w = n−1/2Z>(I− Ŝ)>Σ−1∆(I− Ŝ)M

=n−1/2
n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηi(1 + Op(cn2))[X

>
i θ(Ui)− (Ψζ i)

>θ(Ui)(1 + Op(cn2))]

=n−1/2
n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηi(Ψζ i)

>θ(Ui)Op(cn2) + n−1/2
n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηie>i θ(Ui).

Note that E[ηi(Ψζ i)
>θ(Ui)|Ui] = 0, and then we can prove:

n−1/2
n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηi(Ψζ i)

>θ(Ui)Op(cn2) = Op(n1/2c2
n2
).

Therefore, we derive:

n−1/2Ẑ>Σ−1∆M̂w = n−1/2
n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηie>i θ(Ui) + Op(n1/2c2

n2
). (A6)

In addition, invoking (A1) and (A4), we have:

(X̂> 0){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂ε = Op(cn2).
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Then, invoking (A5), some calculations yield:

n−1/2Ẑ>Σ−1∆ε̂ = n−1/2Z>(I− Ŝ)>Σ−1∆(I− Ŝ)ε

= n−1/2
n

∑
i=1

σ−2(Ui)
δi

π(Vi, wi)
ηiεi + Op(cn2).

(A7)

Hence, combining (A6), (A7), and condition (C8), with the help of the central limit theorem,
the result of Lemma A7 can be obtained.

The proof of Theorem 1 is similar to that of Theorem 1 in [9]. We omit the details here.

Proof of Theorem 2. Note that:
√

n(β̂w − β) =
√

n(β̂w − β̂v) +
√

n(β̂v − β),

where β̂v = (Ẑ>Σ−1∆Ẑ)−1Ẑ>Σ−1∆Ŷ . Then, we need to complete the proof of

√
n(β̂v − β)

D−→ N(0, Λ−1
1 Λ2Λ−1

1 ), n→ ∞ (A8)

and √
n(β̂w − β̂v) = op(1). (A9)

Multiplying both sides of model (1) by (I− Ŝ), we obtain:

Ŷ = Ẑβ + M̂w + ε̂.

Then, we have:
√

n(β̂v − β) = (n−1Ẑ>Σ−1∆Ẑ)−1n−1/2Ẑ>Σ−1∆(M̂w + ε̂).

Invoking Lemma A6 and Lemma A7, we can derive the result of (A8) using the Slutsky
Theorem. Since:

√
n(β̂w − β̂v) =

√
n[(Ẑ>Σ̂−1∆̂Ẑ)−1Ẑ>Σ̂−1∆̂Ŷ − (Ẑ>Σ−1∆Ẑ)−1Ẑ>Σ−1∆Ŷ ]

=
√

n[(Ẑ>Σ̂−1∆̂Ẑ)−1 − (Ẑ>Σ−1∆Ẑ)−1]Ẑ>Σ−1∆(M̂w + ε̂)

+
√

n(Ẑ>Σ̂−1∆̂Ẑ)−1(Ẑ>Σ̂−1∆̂− Ẑ>Σ−1∆)(M̂w + ε̂).

Thus, to obtain the result of (A9), we have to prove:

n−1(Ẑ>Σ̂−1∆̂Ẑ− Ẑ>Σ−1∆Ẑ) = op(1), n−1/2Ẑ>Σ−1∆(M̂w + ε̂) = Op(1),

n−1Ẑ>Σ̂−1∆̂Ẑ = Op(1), n−1/2(Ẑ>Σ̂−1∆̂− Ẑ>Σ−1∆)(M̂w + ε̂) = op(1).

Usng a similar method to the proof of Theorem 3 in [9], it is easy to prove the above
conclusions under regular conditions (C1)–(C9), so the details are omitted here. Then,
combining (A8) and (A9) yields the result in Theorem 2.

Proof of Theorem 3. Recall the definition of θ̂w(u0, β̂w) in (21); we have:

θ̂w(u0, β̂w) =(Ip, 0p){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂(Y − Zβ̂w)

=(Ip, 0p){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂Mζ

+ (Ip, 0p){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂Z(β− β̂w)

+ (Ip, 0p){X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂X̂h2(u0)}−1X̂>h2
(u0)wh2(u0)Σ̂

−1∆̂(ε + e)

,K1 + K2 + K3,
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where:
Mζ = [(Ψζ1)

>θ(U1), (Ψζ2)
>θ(U2), . . . , (Ψζn)

>θ(Un)]
>,

e =(e>1 θ(U1), e>2 θ(U2), . . . , e>n θ(Un))
>.

Let us consider K1 first; for any point Ui in the neighborhood of u0, each functional
coefficients θ(Ui) can be approximated by:

θ(Ui) = θ(u0) + h2θ′(u0)
Ui − u0

h2
+

h2
2

2
θ′′(u0)(

Ui − u0

h2
)2 + op(h2

2).

Then, we have:

Mζ =

 (Ψζ1)
>θ(U1)
...

(Ψζn)>θ(Un)

 = X̂>h2
(u0)

(
θ(u0)

h2θ′(u0)

)
+

h2
2

2


X̂>1 (U1−u0

h2
)2

...
X>n (Un−u0

h2
)2

θ′′(u0) + op(h2
2).

By Lemma 1, we obtain:

K1 = θ(u0) +
h2

2
2

µ2θ′′(u0) + op(h2
2). (A10)

For K2, combining (A1), (A2), Theorem 2, and condition (C8), we can obtain that:√
nh2K2 =

√
nh2(ΨΠ(u0)Ψ

>)−1ΨΞ(u0){1 + Op(cn2)}Op(n−1/2) = op(1). (A11)

Now, we consider K3. Combining (A1), Theorem 1, and Lemma 4, we can derive:√
nh2K3 =σ2(u0) f−1(u0)(ΨΠ(u0)Ψ

>)−1

×
√

nh2
1
n

n

∑
i=1

σ−2(Ui)
δi

π(Vi, w)
X̂iKh2(Ui − u0)(εi + e>i θ(Ui)) + op(1).

Since
√

nh2
1
n

n

∑
i=1

σ−2(Ui)
δi

π(Vi, w)
X̂iKh2(Ui − u0)(εi + e>i θ(Ui)) follows an asymptotic nor-

mal distribution with mean zero and the variance function

v0 f (u0)σ
−4(u0)E{π(V1, w)−1(e>1 θ(U1) + ε1)

2}ΨΠ(u0)Ψ
>.

Then, by the Slutsky Theorem, we have:√
nh2K3

D−→ v0 f−1(u0)E{π(V1, w)−1(e>1 θ(U1) + ε1)
2}(ΨΠ(u0)Ψ

>)−1. (A12)

Combining (A10)–(A12) together with the Slutsky Theorem yields the result in Theorem 3.
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