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Abstract: We discuss two queueing-inventory systems with catastrophes in the warehouse. Catas-
trophes occur according to the Poisson process and instantly destroy all items in the inventory. The
arrivals of the consumer customers follow a Markovian arrival process and they can be queued in an
infinite buffer. The service time of a consumer customer follows a phase-type distribution. The system
receives negative customers which have Poisson flows and as soon as a negative customer comes into
the system, he causes a consumer customer to leave the system, if any. One of two inventory policies
is used in the systems: either (s, S) or (s, Q). If the inventory level is zero when a consumer customer
arrives, then this customer is either lost (lost sale) or joins the queue (backorder sale). The system
is formulated by a four-dimensional continuous-time Markov chain. Ergodicity condition for both
systems is established and steady-state distribution is obtained using the matrix-geometric method.
By numerical studies, the influence of the distributions of the arrival process and the service time
and the system parameters on performance measures are deeply analyzed. Finally, an optimization
study is presented in which the criterion is the minimization of expected total costs and the controlled
parameter is warehouse capacity.

Keywords: queueing-inventory system; catastrophe; negative customer; (s, S)-type policy; (s, Q)-type
policy; matrix geometric method; MAP arrival; phase-type distribution
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1. Introduction

Until the early 1990s of the last century, in the theory of operations research, models
of queuing systems (QS) and models of inventory control systems (ICS) were studied
separately. In other words, it was believed that in ICS there is no server for releasing items
to consumers (i.e., a self-service rule is used), and in QS, only an idle server is required
to service customers (i.e., no additional items are required). However, in real ICSs, the
release of items to consumer customers (c-customers) requires the presence of a service
station in which the incoming c-customer is processed, and the processing time is often a
positive random variable. A classic example of such systems is the widespread systems
of gas stations. These ICSs with positive service time can also be considered as QSs, in
which in order to service c-customers, in addition to an idle server, a positive level of
certain inventory is required. Note that ICSs with positive service time are called queuing-
inventory systems (QIS) in [1,2]. However, QIS models were first proposed earlier in [3,4]
and have been intensively studied by various authors over the past three decades. For a
detailed overview of known results on QIS models, see [5–7].

To classify QISs models, their various properties can be taken as a basis. Based on
the type of QIS model being studied, the lifetime of the system’s inventory is taken as the
basis for the classification. The vast majority of work on QIS assumes that the system’s
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inventory never deteriorates. However, in real situations, system inventories often lose
their quality over time and after a certain time (deterministic or random) they become
unsuitable for use. Such systems are called systems with perishable inventory and have
been studied in detail in numerous works, see, for example, [8–16]. Note that inventory
damage can occur instantly as a result of some accidents, like power outage, equipment
failures, staff negligence, etc. A sequence of accidents can be considered as an arrival of
destructive customers.

QIS models with destructive customers hardly have been studied, although, as in-
dicated above, they are accurate models of systems in real life. In papers [17–20], the
authors assumed that the arrival of destructive customers causes the level of the inventory
is reduced only by one. However, there are many realistic QISs in which upon arrival of
destructive customers all items damage together. Below this type of systems is called QISs
with catastrophes in warehouse. It is necessary to distinguish between models of QIS with
catastrophes in the warehouse and models of QIS with common lifetime (e.g., foods or
medicines with the same expiry date), see [21–27]. In models of QISs with common lifetime,
it is assumed that all items in the warehouse have the same age at any given time. In
other words, all items of inventory is considered arrived by one batch of orders. However,
in the model of QIS with catastrophes in the warehouse, this assumption is not required.
Note that similar models of QS (but not QIS) with catastrophes are widely investigated in
available literature. In lieu of reviewing work related to models of QS with catastrophes,
we highlight representative papers [28–34] and refer readers to their reference lists. In
QS, disaster events immediately destroy the system. Namely, all customers waiting in the
queue and obtaining service are removed from the system.

To increase the adequacy of the QIS model under study to real situations, we also
take into account the possibility of negative customers (n-customers) arriving at the service
station. Negative customers can be interpreted as customers that agitate c-customers in the
system so that they do not buy the inventory in that system. In other words, n-customers
do not require the inventory, but their arrival force one c-customer leaves the system.

One of the main shortcomings of the known works devoted to QIS is that they analyze
models with either backorders or lost sales, i.e., QIS models that simultaneously use both
backorders and lost sales are practically not considered. However, in realistic QIS an arrived
c-customer either joins the queue (backorder) or loses the system without inventory (lost
sale) if upon its arrival an inventory level is zero, i.e., the hybrid sale rule is frequently used
in realistic QISs. Regardless of popularity, models of QISs with hybrid sales are poorly
understood due to their complexity.

Ref. [35] first studied the model of single-server perishable QIS (without destructive
customers) with a capacited waiting room under (s, Q), Q = S − s > s + 1, inventory
policy. They assumed that both types of c-customers and n-customers arrive in the system
according to a Markovian arrival process and the service time of c-customers, lead time
and lifetime of each item have exponential distributions with finite means; an n-customer
at an arrival epoch removes the random number of waiting c-customers. The authors
obtained the joint probability distribution of the number of c-customers in the system and
the inventory level. A similar double sources model of QIS was considered in a recent
paper [36].

The motivation for this study is that models of QIS with warehouse catastrophes under
realistic assumptions have been practically unstudied. In a recent paper [37] assumed
that all kinds of customers arrived according to independent Poisson processes and all
other underlying random variables to be exponentially distributed (Poisson/exponential
assumptions); authors studied models in steady-state under various replenishment policies.
This paper is a continuation of the research begun in [37] under more realistic assumptions
related to system operation, i.e., here we assume that c-customers arrive according to MAP,
n-customers arrive according to a Poisson process, the service times to be of phase-type
distribution (PH-distribution), and lead times to be exponentially distributed. Under these
assumptions, we use matrix-analytic methods to analyze the QISs with catastrophes in
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a warehouse under two replenishment policies: (s, S) and (s, Q) policies. Note that the
indicated replenishment policies are defined as follows. In both policies, it is assumed that
the warehouse capacity is S, S < ∞, and the reorder level is s, s < S, and a replenishment
order is not offered if the current (observed) inventory level is more than s. In an (s, Q)
policy, the order size is fixed and equal to Q = S− s. In this case, the constraint on the
value of s is defined as follows: s < Q. This constraint is accepted to avoid perpetual order
placement for replenishment. However, in an (s, S) policy, the order size is variable, i.e.,
here replenishment size is that much to bring the inventory level to S at the replenishment
epoch. In policy (s, S) there are no restrictions on the value of s, as in policy (s, Q), i.e., here
the parameter s can take any value from 0 to S− 1.

More specifically, the main differences between our model and the model considered in
known works are as follows: (i) we consider model of QISs with catastrophes in warehouse;
(ii) the model with infinite queue for c-customers is investigated; (iii) service time of
c-customers have phase time (PH) distribution; (iv) only c-customers represents MAP
flow; (v) hybrid sale rule is used, i.e., some customers may join the queue (backorder
scheme) or be lost (lose sale scheme) according to the Bernoulli scheme if the inventory
level is zero at the time of their arrival.

The paper is organized as follows. In Section 2 the proposed queueing-inventory
system is exhaustively described. Section 3 shows the structure of the generator matri-
ces for the underlying processes and provides the steady-state analysis of the systems.
That is, Section 3.1 includes matrices and analysis for the model-1 under (s, S)-policy,
and Section 3.2 includes ones for the model-2 under (s, Q)-policy. Expressions for vari-
ous essential performance measures to assess both system efficiencies are formulated in
Section 4. Section 5 presents a numerical analysis to highlight separately the qualitative
behaviour of the queueing-inventory system under each inventory policy; the effect of the
system parameters on the performance measures under various arrival process and service
time distribution in Section 5.1 and optimization study for the each inventory policy in
Section 5.2. Finally, concluding remarks are given in Section 6.

At this point, we define some notation for use in the sequel. e is a unit column vector;
ej is a unit column vector of dimension j; ej(i) is a unit column vector with 1 in the ith
position and 0 elsewhere and Ik is an identity matrix of order k. The symbols ⊗ and ⊕
represent the Kronecker product and the Kronecker sum, respectively. If A is a matrix of
order m × n and if B is a matrix of order p × q, then the Kronecker product of the two
matrices is given by A⊗ B, a matrix of order mp× nq; the Kronecker sum of two square
matrices, say, G of order g and H of h, is given by G⊕H = G⊗ Ih + Ig ⊗H, a square matrix
of order gh. The transpose notation is denoted by ′.

2. Model Description

We analyze a queueing-inventory system with negative customers and catastrophes
in the warehouse as demonstrated in Figure 1.

𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷0,𝐷𝐷1)𝑚𝑚 Queue
(Infinite capacity)

Supplier

Served c-customer
departs.

Service process:
PH(𝛽𝛽,𝑇𝑇) of order 𝑛𝑛arrival of c-customer

arrival of n-customer (Poisson with 𝜆𝜆−)

i)   If QL > 0, one c-customer is pushed out from the queue.
ii)  If QL = 0 and the server is busy, the c-customer in the server is pushed out.
iii) If no customer in the system, n-customer does not affect.

Catastrophes
(Poisson with 𝜅𝜅)

Damaging of 
all inventory

Replenishment
with exp(𝜂𝜂)

Inventory:
𝑠𝑠, 𝑆𝑆 -policy / 𝑠𝑠,𝑄𝑄 -policy

order

i) Backorder sale scheme:
If IL = 0, the c-customer joins the queue w.p. 𝜃𝜃1
ii) Lost sale scheme:
If IL = 0, the c-customer leaves the system unserved w.p. 𝜃𝜃2

Figure 1. Block diagram of the QIS with negative customer and catastrophe in warehouse.
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• The c-customers (consumer customers) arrive in the system according to the Marko-
vian arrival process (MAP) with representation (D0, D1)m. The underlying Markov
chain of the MAP is governed by the matrix D (= D0 + D1). Such that, the entries of
matrix D0 denote the transition rates without arrival while the entries of matrix D1
denote the transition rates with arrival. So, the arrival rate of c-customers is given by
λ+ = δD1e where δ is the stationary probability vector of the generator matrix D and
it is satisfied

δD = 0, δe = 1. (1)

For more details about MAP, phase-type distributions and their usefulness in the
modeling of QIS, the reader may refer to [38–44].

• The service times of the c-customers follow PH-distribution with representation
(β, T)n where β is the initial probability vector, βe = 1, and T is a sub-generator
matrix. The matrix T holds the transition rates among the n transient states and T0

is a column vector containing the absorption rates into state 0 from the transient
states. It is clear that Te + T0 = 0. The phase-type distribution has the service rate
µ = 1/[β(−T)−1e].

• The system also receives n-customers (negative customers) that the arrivals occur
according to the Poisson process with rate λ−. When an n-customer arrives in the
system, there are three possible cases; (i) there is at least one c-customer in the queue
(QL > 0), and only the c-customer is pushed out from the queue (i.e., the servicing
of the c-customer in the server continues), (ii) the queue has no c-customer (QL = 0)
and the server is busy with a c-customer, then the c-customer in the server is forced
out of the system. However, in this case, the inventory level does not change, since
stocks are released after the completion of servicing a c-customer is assumed, and
(iii) there are no c-customers in the system. The arrived n-customer has no effect on
the operation of the system.

• A hybrid sales scheme is used in the system. When a c-customer arrives in the system,
if the inventory level is zero (IL = 0), then the c-customer either joins the queue of
infinite capacity with probability θ1 (called backorder sale scheme), or leaves the system
unserved with probability θ2 (called lost sale scheme). Note that θ1 + θ2 = 1. If the
inventory level occurs to be zero with the completion servicing of a c-customer, the
c-customer in the queue (if any) waits for a replenishment.

• In the warehouse part of the system, catastrophic events can occur according to the
Poisson process with parameter κ. When a catastrophic event occurs, all items, even
the item that is at the status of release to the c-customer in the inventory are instantly
destroyed. If the c-customer’s service is interrupted due to a catastrophe, then he
returns to the queue. In other words, the catastrophic event only destroys the items in
the inventory and does not cause c-customers out of the system. Hence, if the number
of items in the inventory is zero, then the disaster has no effect on the operation of
the system.

• Two inventory replenishment policies are considered in this study. That is an (s, S)-
type policy for Model-1 and an (s, Q)-type policy for Model-2. The lead time of order
follows an exponential distribution with parameter η for both replenishment policies.
In an (s, S)-type policy (sometimes this policy is called “Up to S”), when the inventory
level drops to the reorder point s, 0 ≤ s < S, an order is placed for replenishment
and upon replenishment the inventory level becomes S. This policy states that the
replenishment quantity varies in order to fill the maximum capacity of the inventory
when the reorder is placed. In an (s, Q)-type policy, when the inventory level drops to
the reorder point s, s < S

2 , an order quantity of a Q = S− s is placed for replenishment
and upon replenishment the inventory level becomes a sum of the current items in
the inventory and order quantity. This policy states that the replenishment quantity is
always fixed.

The problem is to build mathematical models of the considered system under various
replenishment policies, determine and calculate its key performance measures, and develop
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an approach to minimizing the expected total costs by choosing the appropriate warehouse
size for the system.

3. The Steady-State Analysis

In this section, the steady-state analysis of the queueing-inventory model described in
Section 2 is performed. That is, we discuss Model-1 with (s, S)-type replenishment policy
in Section 3.1 and Model-2 with (s, Q)-type replenishment policy in Section 3.2.

Let K(t), I(t), J1(t) and J2(t) denote, respectively, the number of c-customers in the
system, the inventory level, the phase of the service and the phase of the arrival, at time
t. The process {(K(t), I(t), J1(t), J2(t)), t ≥ 0} is a continuous-time Markov chain (CTMC)
and the state space in the lexicographical ordering is given by

Ω = {(0, i, j2) : 0 ≤ i ≤ S, j2 = 1,. . . , m}⋃
{(k, i, j1, j2) : k > 0, 0 ≤ i ≤ S, j1 = 1,. . . , n, j2 = 1,. . . , m}.

The level {(0, i, j2) : 0 ≤ i ≤ S, j2 = 1,. . . , m} of dimension m(S + 1) corresponds
to the case when there are no c-customers in the system and the inventory level is i. The
arrival process is in one of m phases. The level {(k, i, j1, j2) : k > 0, 0 ≤ i ≤ S, j1 = 1,. . . , n,
j2 = 1,. . . , m} of dimension mn(S + 1) corresponds to the case when there are k c-customers
in the system and the inventory level is i. The service process and the arrival process are in
one of n phases and in one of m phases, respectively.

3.1. Model-1 with (s, S)-Type Replenishment Policy

The infinitesimal generator matrix of the Markov chain governing the queueing-
inventory system under (s, S)-type policy has a block-tridiagonal matrix structure and is
given by

G =


B0 A0
C0 B A

C B A
C B A

. . . . . . . . .

. (2)

The matrices A0 and A in the upper diagonal of the matrix G have dimensions
m(S + 1)×mn(S + 1) and mn(S + 1)×mn(S + 1), respectively.

A0 =


β ⊗ D1θ1

β ⊗ D1
. . .

β ⊗ D1

, A =


In ⊗D1θ1

In ⊗D1
. . .

In ⊗D1

.

The matrices C0 and C in the lower diagonal of the matrix G have dimensions
mn(S + 1)×m(S + 1) and mn(S + 1)×mn(S + 1), respectively.

C0 =


(en ⊗ Im)λ−

T0 ⊗ Im (en ⊗ Im)λ−

. . . . . .
T0 ⊗ Im (en ⊗ Im)λ−

,

C =


Iλ−

T0β ⊗ Im Iλ−

T0β ⊗ Im Iλ−

. . . . . .
T0β ⊗ Im Iλ−

.
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The matrices B0 and B in the main diagonal of the matrix G have dimensions
m(S + 1)×m(S + 1) and mn(S + 1)×mn(S + 1), respectively.

B0 =



D0θ1 − ηI ηI
κI D0 − (η + κ)I ηI
...

. . .
...

κI D0 − (η + κ)I ηI
κI D0 − κI
...

. . .
κI D0 − κI


,

B =



b0 ηI
κI b1 ηI
...

. . .
...

κI b1 ηI
κI b2
...

. . .
κI b2


where b0 = In ⊗ D0θ1 − (η + λ−)I, b1 = (T ⊕ D0) − (η + κ + λ−)I and
b2 = (T⊕D0)− (κ + λ−)I

3.1.1. Stability Condition

Let π = (π0, π1, π2, · · · , πS) be the steady-state probability vector of the finite
generator F = A + B + C. The probability vector πi of dimension mn means that the
inventory level is i, and the service process and the arrival process are in one of the n phases
and in one of the m phases, respectively. That is, π satisfies

πF = 0 and πe = 1. (3)

The steady-state equations in (3) can be rewritten as

π0[(In ⊗ D1θ1) + (In ⊗ D0θ1)− ηI] + π1[(T0β ⊗ Im) + κI]
+[π2 + · · ·+ πS]κI = 0,

πi[(In ⊗D1) + (T⊕D0)− (κ + η)I] + πi+1(T0β⊗ Im) = 0, 1 ≤ i ≤ s,
πi[(In ⊗D1) + (T⊕D0)− κI] + πi+1(T0β⊗ Im) = 0, s + 1 ≤ i ≤ S− 1,

[π0 + · · ·+ πs]ηI + πS[(In ⊗D1) + (T⊕D0)− κI] = 0,

(4)

with the normalizing condition
S

∑
i=0

πie = 1. (5)

Theorem 1. The defined queuing-inventory system under an (s, S)-policy is stable if and only if
the following condition is satisfied:

ρ =
(1− θ2π0e)λ+

µ(1−π0e) + λ−
< 1. (6)

Proof of Theorem 1. The defined queueing-inventory system is a QBD process thus it will
be stable if and only if πAe < πCe (See in [38]). That is,

[
θ1π0 +

S

∑
j=1

π j

]
(In ⊗D1)e < λ− +

S

∑
j=1

π j(T0β⊗ Im)e. (7)
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Adding the equations given in (4), the following equation is obtained

θ1π0(In ⊗D) +
S

∑
j=1

π j
[
(T + T0β)⊕D

]
= 0. (8)

Post-multiplying the equation in (8) by (en ⊗ Im) and using the arrival rate of the c-
customers λ+ = δD1e and the normalizing condition in (4), the left side of the inequality in
(7) is given

[
θ1π0 +

S

∑
j=1

π j

]
(In ⊗D1)e =

[
θ1π0e +

S

∑
j=1

π je
]
λ+ = (1− θ2π0e)λ+. (9)

Post-multiplying the equation in (8) by (In⊗ em) and using the service rate µ = 1/[β(−T)−1e]
and the normalizing condition in (4), we obtain

S

∑
j=1

π j(T0β⊗ Im)e = µ(1−π0e). (10)

The right-side of the inequality in (7) is obtained. So, the proof of Theorem is completed.

The probability vector π0 in (6) can be calculated by solving the equations given in (4).
Note: In the paper [37], the authors studied the queueing-inventory system which we

have discussed here by considering Poisson arrival and exponentially distributed service
times. They obtained the closed-form solution of the probabilities for the special case. We
suggest the paper in [37] to see the stability condition of the system under Poisson arrival
and exponential service.

3.1.2. The Steady-State Probability Vector of the Matrix G

Let x = (x(0), x(1), x(2), · · · ) denote the steady-state probability vector of the
generator matrix G in (2). That is, x satisfies

x G = 0 and x e = 1. (11)

m(S + 1) dimensional row vector x(0) is further partitioned into vectors represented
as x(0) = [x(0, 0), x(0, 1), · · · , x(0, S)] and the dimension of each vector is m. The vector
x(0, i) gives the steady-state probability that there are no c-customers in the system, the
inventory level is i, 0 ≤ i ≤ S, and the arrival process is in one of the m phases.

mn(S + 1) dimensional row vector x(k), k ≥ 1, is further partitioned into vectors
represented as x(k) = [x(k, 0), x(k, 1), · · · , x(k, S)] and the dimension of each vector is mn.
The vector x(k, i) gives the steady-state probability that there are k c-customers in the
system, the inventory level is i, 0 ≤ i ≤ S, and the service process and the arrival process
are in one of the n phases and m phases, respectively.

Under the stability condition given in (6) the steady-state probability vector x is
obtained (See [38]) as

x(k) = x(1)Rk−1, k > 1, (12)

where the matrix R is the minimal nonnegative solution to the following matrix
quadratic equation

R2C + RB + A = 0, (13)

and the vector x(0) and x(1) are obtained by solving

x(0)B0 + x(1)C0 = 0,
x(0)A0 + x(1)[B + RC] = 0,

(14)
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subject to the normalizing condition

x(0)e + x(1)(I−R)−1e = 1. (15)

3.2. Model-2 with (s, Q)-Type Replenishment Policy

The infinitesimal generator matrix of the Markov chain governing the queueing-
inventory system under (s, Q)-type policy has a block-tridiagonal matrix structure and is
given by

G̃ =


B̃0 A0
C0 B̃ A

C B̃ A
C B̃ A

. . . . . . . . .

. (16)

The matrices A0, A, C0 and C are the same in both generator matrices in (2) and (16).
Considering a different replenishment policy only the modification occurs in the main
diagonal. The matrices B̃0 and B̃ in the main diagonal of the matrix G̃ are given by

B̃0 =



D0θ1 − ηI ηI
κI D0 − (η + κ)I ηI
...

. . . . . .
κI D0 − (η + κ)I ηI
κI D0 − κI
...

. . .
κI D0 − κI


,

B̃ =



b0 ηI
κI b1 ηI
...

. . . . . .
κI b1 ηI
κI b2
...

. . .
κI b2


where b0 = In ⊗ D0θ1 − (η + λ−)I, b1 = (T ⊕ D0) − (η + κ + λ−)I and
b2 = (T⊕D0)− (κ + λ−)I

3.2.1. Stability Condition

Let π̃ = (π̃0, π̃1, π̃2, · · · , π̃S) be the steady-state probability vector of the finite
generator F̃ = A + B̃ + C. The probability vector π̃i of dimension mn means that the
inventory level is i, the service process and the arrival process are in one of n phases and in
one of m phases, respectively. That is, π satisfies

π̃F̃ = 0 and π̃e = 1. (17)

The steady-state equations in (17) can be rewritten as
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π̃0[(In ⊗ D1θ1) + (In ⊗ D0θ1)− ηI] + π̃1[(T0β ⊗ Im) + κI]
+[π̃2 + · · ·+ π̃S]κI = 0,

π̃i[(In ⊗D1) + (T⊕D0)− (κ + η)I] + π̃i+1(T0β⊗ Im) = 0, 1 ≤ i ≤ s,
π̃i[(In ⊗D1) + (T⊕D0)− κI] + π̃i+1(T0β⊗ Im) = 0, s + 1 ≤ i ≤ Q− 1,

π̃i−QηI + π̃i[(In ⊗D1) + (T⊕D0)− κI] + π̃i+1(T0β⊗ Im) = 0, Q ≤ i ≤ S− 1,
π̃sηI + π̃S[(In ⊗D1) + (T⊕D0)− κI] = 0,

(18)

with the normalizing condition
S

∑
i=0

π̃ie = 1. (19)

The system is a QBD process thus it will be stable if and only if π̃Ae < π̃Ce. The
stability condition is given in the Equation (20). The proof of Theorem 2 can be performed
similar to Theorem 1 in the Equation (6).

Theorem 2. The defined queuing-inventory system under an (s, Q)-policy is stable if and only if
the following condition is satisfied:

ρ̃ =
(1− θ2π̃0e)λ+

µ(1− π̃0e) + λ−
< 1. (20)

The probability vector π̃0 can be calculated by solving the equations given in (18).

3.2.2. The Steady-State Probability Vector of the Matrix G̃

Let x̃ = (x̃(0), x̃(1), x̃(2), · · · ) denote the steady-state probability vector of the
generator matrix G̃ in (16). That is, x̃ satisfies

x̃ G̃ = 0 and x̃ e = 1. (21)

m(S + 1) dimensional row vector x̃(0) is further partitioned into vectors represented
as x̃(0) = [x̃(0, 0), x̃(0, 1), · · · , x̃(0, S)] and the dimension of each vector is m. The vector
x̃(0, i) gives the steady-state probability that there are no c-customers in the system, the
inventory level is i, 0 ≤ i ≤ S, and the arrival process is in one of the m phases.

mn(S + 1) dimensional row vector x̃(k), k ≥ 1, is further partitioned into vectors
represented as x̃(k) = [x̃(k, 0), x̃(k, 1), · · · , x̃(k, S)] and the dimension of each vector is mn.
The vector x̃(k, i) gives the steady-state probability that there are k c-customers in the
system, the inventory level is i, 0 ≤ i ≤ S, and the service process and the arrival process
are in one of the n phases and m phases, respectively.

The steady-state probability vector x̃ is obtained by using the matrix-geometric solution
given in (12)–(15). Recall that the matrices B̃0 and B̃ are used for this solution.

4. Performance Measures of Model-1 and Model-2

In this section, some performance measures of the queueing-inventory system under
(s, S)-type and (s, Q)-type policies are listed. The following first seven items are valid for
both models. But, we recall that one should use the probabilities x and x̃ for the (s, S)-type
policy (Model-1) and for the (s, Q)-type policy (Model-2), respectively. On the other hand,
the last item (item 8) includes a different formula for each model.

1. The probability that there is no c-customer in the system

Pidle = x(0)e. (22)

2. The mean number of c-customers in the system

E(N) =
∞

∑
k=1

k x(k)e = x(1)(I−R)−2e. (23)
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3. The mean loss rate of c-customers because of no inventory

EI(LR) = θ2

[
x(0, 0)D1em +

∞

∑
k=1

x(k, 0)(In ⊗D1)emn

]
. (24)

4. The mean loss rate of c-customers because of n-customer

EN(LR) = λ−
[
1− x(0)e

]
. (25)

5. The mean loss rate of c-customers

E(LR) = EI(LR) + EN(LR). (26)

6. The mean number of items in the inventory

E(I) =
S

∑
i=1

i x(0, i)em +
∞

∑
k=1

S

∑
i=1

i x(k, i)emn. (27)

7. The mean reorder rate

E(RR) =
∞

∑
k=1

i x(k, s + 1)(T0 ⊗ Im)em + κ
[ S

∑
i=1

x(0, i)em +
∞

∑
k=1

S

∑
i=1

x(k, i)emn

]
. (28)

8. The mean order size

E1(OS) =
S

∑
i=S−s

i x(0, S− i)em +
∞

∑
k=1

S

∑
i=S−s

i x(k, S− i)emn. (29)

E2(OS) = Q
[ s

∑
i=0

x̃(0, i)em +
∞

∑
k=1

s

∑
i=0

x̃(k, i)emn

]
. (30)

5. Numerical Study

This section is structured in two aspects; under various service time distributions and
arrival processes, to examine the behavior of the performance measures and then to obtain
optimum inventory policy. All calculations in the numerical study were performed by
using MATLAB 8.6 R2015b.

For the arrival process, the following sets of values for D0 and D1 are considered. All
processes are qualitatively different although each one of them has the same mean of 1. The
values of the standard deviation related to the inter-arrival times of the arrival processes
are given according to ERLA. That is, the values of the standard deviation for ERLA, EXPA,
HEXA MNCA and MPCA are 1, 1.41421, 3.17451, 1.99336, and 1.99336, respectively. The
MAP processes are normalized to have a specific arrival rate λ+ (see [45]). The process
MNCA (MPCA) has a negative correlation (positive correlation) for two successive inter-
arrival times with a value of −0.4889 (0.4889), whereas the other arrival processes have
zero correlation.

Erlang distribution (ERLA):

D0 =

(
−2 2
0 −2

)
, D1 =

(
0 0
2 0

)
.

Exponential distribution (EXPA):

D0 =
(
−1

)
, D1 =

(
1
)
.
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Hyperexponential distribution (HEXA):

D0 =

(
−1.9 0

0 −0.19

)
, D1 =

(
1.71 0.19

0.171 0.019

)
.

MAP with negative correlation (MNCA):

D0 =

 −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

, D1 =

 0 0 0
0.01002 0 0.9922

223.4925 0 2.2575

.

MAP with positive correlation (MPCA):

D0 =

 −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

, D1 =

 0 0 0
0.9922 0 0.01002
2.2575 0 223.4925

.

For the service times, the following PH-distributions with parameter (β, T) are con-
sidered. The three PH-distributions are qualitatively different although each one of them
has the same mean of 1. The values of the standard deviation for ERLS, EXPS and HEXS
are 0.70711, 1 and 2.24472, respectively. The distributions are normalized at a specific value
for the service rate µ as given in [45].

Erlang distribution (ERLS):

β =
(

1, 0
)
, T =

(
−2 2
0 −2

)
.

Exponential distribution (EXPS):

β =
(

1
)
, T =

(
−1

)
.

Hyperexponential distribution (HEXS):

β =
(

0.9, 0.1
)
, T =

(
−1.9 0

0 −0.19

)
.

5.1. The Effect of Parameters on Performance Measures

We discuss the behavior of the performance measures under various service time
distributions and the arrival processes for Model-1 with (s, S)-policy and Model-2 with
(s, Q)-policy. Towards this end, the reorder point is fixed by s = 3 and the maximum
inventory level is fixed by S = 10. The values of the other parameters can be seen in Table 1.

Table 1. The values of the parameters.

As It Is Varied It Is Fixed

the arrival rate of c-customers: λ+ λ− = 1, µ = 8, η = 1, κ = 1, θ1 = 0.6

the arrival rate of n-customers: λ− λ+ = 5, µ = 8, η = 1, κ = 1, θ1 = 0.6

the service rate of c-customers: µ λ+ = 5, λ− = 1, η = 1, κ = 1, θ1 = 0.6

the rate of the catastrophic events: κ λ+ = 5, λ− = 1, µ = 8, η = 1, θ1 = 0.6

the probability that c-customer joins the queue when
the inventory level is zero: θ1

λ+ = 4, λ− = 1, µ = 8, η = 1, κ = 1
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Firstly, we investigate the effects of the rates λ+, λ−, µ and κ on the mean number of
c-customers in the system E(N) under the various scenarios in Table 2 for Model-1 with
(s, S)-policy and in Table 3 for Model-2 with (s, Q)-policy.

As expected, the mean number of c-customers in the system increases with increasing
values of λ+ in Table 2. When looking only at ERLA arrivals, it is seen that the variability
in PH-distribution is important. Especially in high-traffic intensity situations. For example,
at λ+ = 5 (high intensity), the values of E(N) are 7.559, 8.458 and 16.444 for ERLS, EXPS,
and HEXS, respectively, and at λ+ = 4.2 (low intensity), the values occur 3.239, 3.490 and
5.611 for ERLS, EXPS, and HEXS, respectively. Similar comments can be made when HEXA
arrivals occur. On the other hand, variability in MAP affects the values of E(N) more
compared to the variability in PH-distribution. Let us look at ERLS services. The values of
E(N) are 3.239 for ERLA and 7.730 for HEXA at λ+ = 4.2; are 7.559 for ERLA and 20.759
for HEXA at λ+ = 5. Also, we can say that the values of E(N) dramatically increase in the
case of HEXS (service with high variability) compared to the other PH-distributions.

Table 2. E(N) under (s, S)-policy.

ERLA HEXA

Values of the Parameters ERLS EXPS HEXS ERLS EXPS HEXS

4.2 3.239 3.490 5.611 7.730 8.133 10.894
4.4 3.848 4.179 6.994 9.530 10.046 13.654

λ+ 4.6 4.663 5.106 8.925 11.967 12.646 17.501
4.8 5.811 6.426 11.789 15.438 16.373 23.198
5 7.559 8.458 16.444 20.759 22.140 32.449

0.4 3.401 3.707 6.344 9.298 9.772 13.120
0.6 4.384 4.808 8.496 11.889 12.534 17.199

κ 0.8 5.686 6.291 11.589 15.463 16.380 23.117
1 7.559 8.458 16.444 20.759 22.140 32.449

1.2 10.577 12.023 25.194 29.468 31.767 49.303

7.6 9.620 10.940 22.927 27.554 29.633 45.447
8 7.559 8.458 16.444 20.759 22.140 32.449

µ 8.4 6.323 6.989 12.837 16.701 17.717 25.201
8.8 5.499 6.018 10.549 14.009 14.802 20.592
9.2 4.909 5.329 8.975 12.095 12.741 17.411

1 7.559 8.458 16.444 20.759 22.140 32.449
1.4 4.317 4.701 7.931 11.502 12.095 16.254

λ− 1.8 2.957 3.159 4.778 7.644 7.979 10.175
2.2 2.216 2.331 3.200 5.555 5.767 7.059
2.6 1.753 1.822 2.296 4.262 4.405 5.205

As values of κ increase, the values of E(N) increase in Table 2. Comments similar
to those above can be made regarding the effect of variability in the MAP process and
PH-distribution. In Table 2, the mean number of c-customers in the system decreases
with increasing the arrival rate of n-customers λ− or the service rate of c-customers µ as
expected. The effect of variability in MAP process and PH-distribution on the values of
E(N) is seen as µ (or λ−) increases. Again, variability in the MAP process (variability in the
inter-arrival times in other words) appears to be more significant compared to variability
in PH-distribution, especially when the system has high traffic intensity (i.e., see the cases
of µ = 7.6 or λ− = 1).

All comments made for Table 2 can also be made for Table 3. Compared to the values in
Table 2, it can be seen that the values of E(N) in Table 3 are higher, especially at high traffic
intensity. In addition, we can say that the variability in MAP process or PH-distribution is
more effective when the inventory policy is (s, Q). That is, as the system becomes denser,
the increment or decrement becomes faster.
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Table 3. E(N) under (s, Q)-policy.

ERLA HEXA

Values of the Parameters ERLS EXPS HEXS ERLS EXPS HEXS

4.2 3.701 4.001 6.579 9.563 10.081 13.596
4.4 4.560 4.976 8.584 12.213 12.924 17.831

λ+ 4.6 5.811 6.412 11.701 16.100 17.133 24.402
4.8 7.803 8.737 17.165 22.329 23.979 35.903
5 11.486 13.156 29.116 33.888 37.021 61.022

0.4 4.462 4.861 8.427 13.026 13.702 18.572
0.6 5.900 6.499 11.895 17.145 18.173 25.651

κ 0.8 7.997 8.947 17.641 23.348 25.032 37.437
1 11.486 13.156 29.116 33.888 37.021 61.022

1.2 18.705 22.381 63.549 55.978 63.556 131.820

7.6 16.591 19.688 52.949 50.813 57.091 111.116
8 11.486 13.156 29.116 33.888 37.021 61.022

µ 8.4 8.971 10.066 20.110 25.573 27.542 42.060
8.8 7.472 8.265 15.396 20.636 22.028 32.114
9.2 6.477 7.086 12.507 17.370 18.426 26.003

1 11.486 13.156 29.116 33.888 37.021 61.022
1.4 5.187 5.675 9.862 14.842 15.683 21.456

λ− 1.8 3.270 3.498 5.346 9.048 9.451 12.058
2.2 2.354 2.476 3.412 6.281 6.516 7.939
2.6 1.822 1.892 2.386 4.682 4.833 5.677

Secondly, we discuss the effects of the rates λ+, λ−, κ and the probability θ1 on the
mean number of items in the inventory E(I) under the various scenarios in Table 4 for
Model-1 with (s, S)-policy and in Table 5 for Model-2 with (s, Q)-policy. As the number of
c-customers (by λ+ or θ1) or catastrophic events (by κ) in the system increase, the mean
inventory level in the system decreases. As expected, the values of E(I) increase with the
increment of the n-customer in the system (λ−). On the other hand, the values of E(I)
increase with increasing variability (from ERLS to HEXS for PH-distribution or from ERLA
to HEXA for MAP process). Also, it is seen that when the system is dense, the effect of
variation in the arrival process is greater than the effect of variation in service times in
Tables 4 and 5. We note the values in Table 5 (at (s, Q)-policy) are slightly lower.

Table 4. E(I) under (s, S)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 3.266 3.324 3.345 3.408 3.334 3.397
4.2 3.209 3.275 3.280 3.350 3.268 3.338

λ+ 4.4 3.154 3.228 3.217 3.294 3.204 3.281
4.6 3.099 3.182 3.154 3.238 3.141 3.226
4.8 3.046 3.138 3.092 3.184 3.080 3.172

0.2 4.000 4.088 4.140 4.227 4.054 4.147
0.4 3.696 3.797 3.807 3.907 3.747 3.851

κ 0.6 3.431 3.537 3.513 3.616 3.475 3.582
0.8 3.199 3.303 3.255 3.358 3.234 3.339
1 2.994 3.094 3.030 3.130 3.020 3.120

0.1 3.655 3.665 3.774 3.795 3.767 3.796
0.3 3.500 3.526 3.606 3.643 3.598 3.639

θ1 0.5 3.343 3.390 3.432 3.487 3.422 3.478
0.7 3.191 3.259 3.256 3.328 3.245 3.316
0.9 3.039 3.127 3.077 3.165 3.068 3.155
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Table 4. Cont.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

1 2.994 3.094 3.030 3.130 3.020 3.120
1.4 3.108 3.184 3.159 3.242 3.150 3.231

λ− 1.8 3.212 3.260 3.270 3.336 3.266 3.328
2.2 3.306 3.325 3.368 3.416 3.368 3.412
2.6 3.391 3.380 3.453 3.483 3.459 3.486

Table 5. E(I) under (s, Q)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 2.266 2.289 2.275 2.303 2.250 2.277
4.2 2.214 2.240 2.221 2.252 2.200 2.231

λ+ 4.4 2.162 2.192 2.167 2.201 2.150 2.184
4.6 2.109 2.143 2.113 2.150 2.101 2.138
4.8 2.057 2.095 2.060 2.100 2.051 2.091

0.2 2.949 2.984 2.976 3.015 2.960 3.000
0.4 2.634 2.671 2.648 2.689 2.633 2.675

κ 0.6 2.382 2.421 2.390 2.432 2.377 2.420
0.8 2.176 2.217 2.180 2.223 2.171 2.215
1 2.005 2.047 2.007 2.050 2.001 2.045

0.1 2.559 2.563 2.624 2.635 2.581 2.594
0.3 2.456 2.467 2.496 2.515 2.454 2.473

θ1 0.5 2.335 2.354 2.351 2.377 2.320 2.345
0.7 2.193 2.219 2.195 2.225 2.177 2.207
0.9 2.030 2.059 2.027 2.059 2.020 2.053

1 2.005 2.047 2.007 2.050 2.001 2.045
1.4 2.121 2.152 2.124 2.161 2.112 2.148

λ− 1.8 2.218 2.236 2.222 2.252 2.205 2.233
2.2 2.301 2.303 2.306 2.327 2.285 2.303
2.6 2.371 2.355 2.378 2.389 2.353 2.362

Thirdly, we examine the effects of the rates λ+, λ−, κ and the probability θ1 on the
mean reorder rate in Tables 6 and 7 and the mean order size in Tables 8 and 9 under the
various scenarios. As seen in Tables 4 and 5, the decrease in the mean number of items
in the inventory occurs with the increase in the number of customers in the system (by
increasing the λ+ and θ1 rates) or with the increase in catastrophe events (by increasing the
κ rate). The more customers there are, the more item in the inventory is needed. Therefore,
it is seen that by increasing the values of λ+ (by increasing the values of κ or θ1), the values
of the mean reorder rate increase in Tables 6 and 7 and the values of the mean order size in
Tables 8 and 9. On the other hand, it is obvious that as n-customers come more frequently,
the number of c-customers in the system will decrease (i.e., fewer items in the inventory
will be needed). For the system under (s, S)-policy, it is seen that the values of E(RR) and
E1(OS) decrease with increasing λ− in Tables 6 and 8, respectively. Similarly, the values
of E(RR) and E2(OS) decrease with increasing λ− in Tables 7 and 9, respectively, for the
system under (s, Q)-policy.

In all four parts (parts related to λ+, κ, θ1, λ−) of Table 6, the values of the mean
reorder rate show different behavior with increasing the variability in PH-distribution
(ERLS and HEXS). For example, at the arrivals ERLA and HEXA, the values decrease in
the part κ and the values first increase and then decrease in the part θ1. The values of
the mean reorder rate represent almost the same behavior in all four parts of Table 7. That is,
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with increasing the variability in PH-distribution, the values decrease in all parts except
the part λ−. On the other hand, with increasing the variability in MAP (ERLA and HEXA),
the values of the mean reorder rate decrease in some parts (i.e., part κ in Table 6) and first
decrease and then increase in some parts (i.e., part λ− in Table 6). Similarly, when looking
at the four parts of Table 8 or Table 9, it is seen that with the increase in the variability of
PH-distribution, the values of the mean order size increase in some parts (i.e., part θ1 in
Table 8), decrease in some parts (i.e., part κ in Table 9), and first increase and then decrease
in some parts (i.e., part λ+ in Table 9). That is, we cannot talk about a specific behavior
regarding the effect of variation. Tables 8 and 9 also show an irregular behavior with
increasing variation in MAP.

Table 6. E(RR) under (s, S)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.635 0.637 0.640 0.639 0.628 0.626
4.2 0.645 0.646 0.648 0.647 0.637 0.635

λ+ 4.4 0.655 0.655 0.656 0.654 0.647 0.644
4.6 0.664 0.663 0.665 0.662 0.657 0.653
4.8 0.673 0.671 0.673 0.669 0.666 0.662

0.2 0.504 0.497 0.493 0.486 0.492 0.485
0.4 0.564 0.557 0.556 0.549 0.552 0.545

κ 0.6 0.612 0.606 0.607 0.600 0.601 0.594
0.8 0.650 0.645 0.648 0.642 0.642 0.636
1 0.682 0.678 0.681 0.677 0.676 0.671

0.1 0.582 0.584 0.589 0.590 0.577 0.576
0.3 0.599 0.602 0.608 0.608 0.595 0.593

θ1 0.5 0.622 0.625 0.629 0.628 0.616 0.614
0.7 0.648 0.649 0.651 0.649 0.640 0.638
0.9 0.674 0.672 0.674 0.672 0.668 0.665

1 0.682 0.678 0.681 0.677 0.676 0.671
1.4 0.663 0.663 0.664 0.661 0.656 0.652

λ− 1.8 0.646 0.648 0.649 0.648 0.639 0.637
2.2 0.630 0.636 0.637 0.637 0.626 0.624
2.6 0.617 0.624 0.625 0.628 0.614 0.613

Table 7. E(RR) under (s, Q)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.764 0.754 0.751 0.739 0.741 0.729
λ+ 4.2 0.774 0.762 0.762 0.749 0.754 0.740

4.4 0.784 0.770 0.773 0.758 0.767 0.751

0.2 0.615 0.606 0.604 0.594 0.605 0.595
0.4 0.683 0.670 0.672 0.659 0.672 0.659

κ 0.6 0.735 0.719 0.726 0.709 0.725 0.708
0.8 0.777 0.758 0.769 0.750 0.768 0.748
1 0.811 0.789 0.805 0.783 0.803 0.782

0.1 0.686 0.686 0.675 0.672 0.658 0.652
θ1 0.3 0.716 0.713 0.705 0.699 0.689 0.680

0.5 0.748 0.741 0.735 0.726 0.723 0.712
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Table 7. Cont.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

θ1

4.6 0.793 0.777 0.784 0.766 0.779 0.762
4.8 0.802 0.783 0.794 0.775 0.791 0.772
0.7 0.778 0.765 0.768 0.753 0.760 0.745
0.9 0.806 0.787 0.801 0.782 0.798 0.779

1 0.811 0.789 0.805 0.783 0.803 0.782
1.4 0.791 0.776 0.782 0.765 0.777 0.760

λ− 1.8 0.773 0.764 0.762 0.749 0.754 0.740
2.2 0.755 0.753 0.745 0.735 0.733 0.723
2.6 0.738 0.742 0.730 0.724 0.716 0.709

Table 8. E1(OS) under (s, S)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 5.891 5.928 5.953 5.983 5.896 5.927
4.2 5.960 5.998 6.012 6.043 5.960 5.993

λ+ 4.4 6.028 6.066 6.071 6.103 6.025 6.058
4.6 6.095 6.133 6.130 6.163 6.090 6.125
4.8 6.161 6.200 6.188 6.222 6.155 6.191

0.2 4.852 4.828 4.797 4.772 4.795 4.767
0.4 5.267 5.257 5.247 5.234 5.222 5.210

κ 0.6 5.629 5.636 5.632 5.635 5.599 5.604
0.8 5.947 5.970 5.962 5.982 5.930 5.952
1 6.227 6.265 6.247 6.281 6.220 6.257

0.1 5.545 5.567 5.607 5.625 5.547 5.562
0.3 5.654 5.682 5.732 5.754 5.671 5.691

θ1 0.5 5.806 5.840 5.876 5.903 5.816 5.843
0.7 5.980 6.020 6.032 6.066 5.982 6.017
0.9 6.167 6.215 6.199 6.241 6.166 6.212

1 6.227 6.265 6.247 6.281 6.220 6.257
1.4 6.087 6.127 6.125 6.158 6.085 6.118

λ− 1.8 5.966 6.010 6.021 6.055 5.973 6.005
2.2 5.861 5.912 5.931 5.969 5.880 5.912
2.6 5.770 5.831 5.853 5.896 5.802 5.835

Table 9. E2(OS) under (s, Q)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 4.605 4.611 4.613 4.614 4.573 4.574
4.2 4.666 4.669 4.671 4.670 4.637 4.637

λ+ 4.4 4.725 4.726 4.728 4.724 4.700 4.698
4.6 4.784 4.781 4.784 4.778 4.763 4.759
4.8 4.841 4.835 4.840 4.832 4.825 4.818

κ
0.2 4.036 4.006 3.993 3.959 3.994 3.959
0.4 4.319 4.293 4.294 4.265 4.288 4.259
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Table 9. Cont.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

0.6 4.548 4.527 4.535 4.511 4.524 4.501
κ 0.8 4.738 4.722 4.732 4.714 4.720 4.704

1 4.897 4.888 4.896 4.885 4.886 4.876

0.1 4.236 4.248 4.241 4.247 4.181 4.182
0.3 4.365 4.375 4.379 4.382 4.322 4.323

θ1 0.5 4.521 4.529 4.532 4.534 4.485 4.486
0.7 4.691 4.696 4.698 4.698 4.665 4.668
0.9 4.872 4.875 4.875 4.876 4.861 4.865

1 4.897 4.888 4.896 4.885 4.886 4.876
1.4 4.771 4.770 4.773 4.766 4.750 4.745

λ− 1.8 4.659 4.671 4.668 4.668 4.634 4.634
2.2 4.562 4.589 4.579 4.586 4.536 4.542
2.6 4.476 4.519 4.501 4.518 4.452 4.464

The results in Tables 6–9 are for specific values of the parameters. The increases or
decreases seen with the increasing variability depend on the values of the parameters.
So, what we can clearly say is that the values of the mean order rate and the mean order
size will be affected by variability (instead of increasing or decreasing with variability).
When Tables 6 and 7 are compared (when Tables 8 and 9 are compared), it is seen that
the results in the system under (s, Q)-policy are larger (smaller) than the results in the
system under (s, S)-policy. Additionally, the values of the performance measures faster
increase (or decrease) with the increase in the values of the parameters in the system under
(s, Q)-policy.

Finally, we examine the effects of system parameters on the mean lost rate of
c-customers in the system. Let’s recall, c-customers can lost in the system studied in
two cases; If there is no inventory at the time the c-customer comes to the system, he does
not enter the system with probability θ2 (he is said to be lost)- this case is indicated by
EI(LR) in Tables 10 and 11, and the arrival of n-customers to the system causes the loss of
one c-customer- this case is denoted by EN(LR) in Tables 12 and 13.

As the value of λ+ or κ increases, the probability that the inventory is stock-out
increases. This increases the rate at which c-customers are lost due to a lack of items in
the inventory. On the other hand, as λ− increases, the probability of the inventory falling
to zero decreases (as it reduces the number of c-customers in the system), which causes
the values of EI(LR) to decrease. As an interesting result, it is seen that as θ1 probability
increases, the values of EI(LR) decrease even though the number of c-customers in the
system increases. All results can be seen in Table 10 for the system under (s, S)-policy and
Table 11 for the system under (s, Q)-policy. As expected, as long as there are c-customers in
the system, c-customers will disappear as n-customers arrive. Therefore, it can be seen in
Tables 12 and 13 that EN(LR) values increase as the values of all parameters increase.

Table 10. EI(LR) under (s, S)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.837 0.848 0.869 0.884 0.861 0.879
4.2 0.886 0.899 0.918 0.935 0.909 0.929

λ+ 4.4 0.936 0.952 0.967 0.987 0.958 0.979
4.6 0.988 1.007 1.016 1.039 1.007 1.031
4.8 1.040 1.063 1.066 1.091 1.058 1.084
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Table 10. Cont.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

0.2 0.642 0.664 0.723 0.750 0.677 0.712
0.4 0.788 0.811 0.849 0.876 0.818 0.851

κ 0.6 0.908 0.933 0.953 0.981 0.933 0.964
0.8 1.009 1.035 1.041 1.069 1.029 1.058
1 1.094 1.120 1.117 1.144 1.109 1.137

0.1 1.832 1.833 1.918 1.939 1.883 1.930
0.3 1.435 1.442 1.499 1.518 1.478 1.507

θ1 0.5 1.037 1.048 1.081 1.097 1.069 1.090
0.7 0.635 0.645 0.656 0.669 0.651 0.665
0.9 0.217 0.222 0.222 0.227 0.221 0.226

1 1.094 1.120 1.117 1.144 1.109 1.137
1.4 1.073 1.092 1.104 1.128 1.095 1.119

λ− 1.8 1.057 1.071 1.093 1.115 1.083 1.106
2.2 1.045 1.056 1.083 1.103 1.074 1.095
2.6 1.036 1.045 1.075 1.094 1.067 1.086

Table 11. EI(LR) under (s, Q)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.882 0.899 0.926 0.948 0.907 0.935
4.2 0.937 0.958 0.979 1.005 0.960 0.990

λ+ 4.4 0.995 1.019 1.033 1.061 1.015 1.047
4.6 1.054 1.082 1.087 1.118 1.071 1.105
4.8 1.114 1.147 1.142 1.176 1.128 1.165

0.2 0.768 0.801 0.857 0.896 0.804 0.852
0.4 0.903 0.938 0.968 1.007 0.931 0.977

κ 0.6 1.012 1.048 1.059 1.097 1.033 1.076
0.8 1.102 1.139 1.134 1.171 1.117 1.158
1 1.177 1.214 1.197 1.234 1.187 1.226

0.1 1.873 1.873 2.032 2.065 1.953 2.064
0.3 1.481 1.492 1.589 1.619 1.538 1.592

θ1 0.5 1.084 1.101 1.149 1.174 1.120 1.155
0.7 0.673 0.690 0.700 0.719 0.689 0.711
0.9 0.234 0.242 0.238 0.246 0.237 0.245

1 1.177 1.214 1.197 1.234 1.187 1.226
1.4 1.142 1.171 1.180 1.213 1.162 1.198

λ− 1.8 1.116 1.138 1.164 1.196 1.143 1.176
2.2 1.095 1.113 1.150 1.180 1.127 1.159
2.6 1.079 1.094 1.137 1.167 1.115 1.145

Table 12. EN(LR) under (s, S)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.759 0.752 0.724 0.727 0.745 0.745
4.2 0.787 0.782 0.756 0.761 0.776 0.777

λ+ 4.4 0.815 0.813 0.788 0.794 0.806 0.809
4.6 0.843 0.843 0.819 0.827 0.836 0.840
4.8 0.871 0.873 0.851 0.860 0.865 0.871
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Table 12. Cont.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

0.2 0.743 0.736 0.747 0.748 0.756 0.755
0.4 0.790 0.787 0.783 0.788 0.796 0.798

κ 0.6 0.830 0.830 0.818 0.825 0.831 0.835
0.8 0.866 0.869 0.851 0.860 0.864 0.870
1 0.898 0.903 0.882 0.893 0.894 0.902

0.1 0.438 0.417 0.446 0.434 0.459 0.446
0.3 0.601 0.583 0.572 0.567 0.586 0.578

θ1 0.5 0.713 0.702 0.675 0.676 0.696 0.693
0.7 0.802 0.799 0.771 0.778 0.791 0.795
0.9 0.882 0.889 0.864 0.878 0.878 0.889

1 0.898 0.903 0.882 0.893 0.894 0.902
1.4 1.173 1.166 1.142 1.148 1.161 1.163

λ− 1.8 1.410 1.384 1.363 1.359 1.387 1.379
2.2 1.615 1.562 1.554 1.536 1.579 1.559
2.6 1.790 1.707 1.720 1.685 1.744 1.710

Table 13. EN(LR) under (s, Q)-policy.

ERLA HEXA MPCA

Values of the Parameters ERLS HEXS ERLS HEXS ERLS HEXS

4 0.778 0.776 0.755 0.762 0.772 0.777
4.2 0.809 0.810 0.788 0.798 0.805 0.812

λ+ 4.4 0.840 0.844 0.822 0.834 0.836 0.845
4.6 0.870 0.877 0.856 0.870 0.868 0.879
4.8 0.900 0.910 0.889 0.905 0.899 0.912

0.2 0.783 0.783 0.794 0.800 0.800 0.805
0.4 0.828 0.832 0.829 0.839 0.837 0.846

κ 0.6 0.867 0.874 0.862 0.875 0.871 0.882
0.8 0.901 0.911 0.893 0.909 0.901 0.915
1 0.930 0.944 0.923 0.940 0.929 0.945

0.1 0.435 0.415 0.452 0.439 0.469 0.459
0.3 0.604 0.589 0.587 0.583 0.602 0.597

θ1 0.5 0.726 0.719 0.700 0.704 0.719 0.720
0.7 0.828 0.831 0.808 0.821 0.824 0.833
0.9 0.924 0.942 0.915 0.938 0.923 0.943

1 0.930 0.944 0.923 0.940 0.929 0.945
1.4 1.206 1.208 1.187 1.200 1.201 1.212

λ− 1.8 1.441 1.424 1.410 1.414 1.430 1.431
2.2 1.642 1.597 1.600 1.590 1.624 1.612
2.6 1.813 1.738 1.764 1.738 1.789 1.764

5.2. Optimization

For the described two models, the function of the expected total cost, ETC, is con-
structed and an optimization discussion about inventory policies is provided for some
specific parameters. In the Equation (31), we note that Ei(OR) is the mean order size of the
system with (s, S)-policy for i = 1 and of the system with (s, Q)-policy for i = 2.

ETC =
[
ck + crEi(OS)

]
E(RR) + chE(I) + cpsκE(I) + clE(LR) + cwE(N) (31)

where

ck : the fixed cost of one order,

cr : the unit cost of the order size,
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ch : the holding cost per item in the inventory per unit of time,

cps : the damaging cost per item in the inventory,

cl : the cost incured due to the loss of a c-customer,

cw : the waiting cost of a c-customer in the system.

Towards finding the optimum values of the inventory level (that minimize ETC) for
the both model, we fix λ+ = 4, λ− = 1, µ = 8, η = 1, κ = 1 and θ1 = 0.6 and vary the
reorder points s = 3, 5, 7. Also, we fix the unit values of the defined above costs by ck = 10,
cr = 15, ch = 10, cps = 15, cl = 350 and cw = 300. Under various distributions of the
service times and arrival processes, we give the optimum values of ETC and S in Table 14
for the system under (s, S)-policy and in Table 15 for the system under (s, Q)-policy. The
procedure followed to determine the optimum values is as follows. The values of ETC are
obtained by increasing the values of S for a fixed reorder point s. As increasing of S, the
values of ETC first decrease and then start to increase after a certain point. The point where
the change occurs (the point where the value of ETC is smallest) gives the optimum value
of S. In other words, as S increases, the values in the first two parts of the function ETC
(the parts related to measures Ei(OS), E(RR) and E(I)) increase and the values in the other
two parts of the function (the parts related to measures E(LR) and E(N)) decreases. This
ensures that the function of ETC has a convex structure.

Table 14. Optimum values of ETC∗ and S∗ for the system under (s, S)-policy.

s = 3 s = 5 s = 7

MAP PH S∗ ETC∗ S∗ ETC∗ S∗ ETC∗

ERLA ERLS 12 1522.323 12 1525.292 12 1537.011
EXPS 12 1577.132 12 1579.566 12 1590.679
HEXS 14 2028.332 14 2028.057 14 2033.688

EXPA ERLS 13 1656.619 13 1656.629 13 1664.424
EXPS 13 1714.634 13 1714.218 13 1721.526
HEXS 15 2171.108 15 2169.237 15 2172.631

HEXA ERLS 18 2414.265 17 2403.514 16 2398.433
EXPS 18 2497.895 17 2487.835 17 2482.838
HEXS 20 3045.628 19 3036.796 19 3032.003

MNCA ERLS 13 1705.272 13 1705.334 13 1713.199
EXPS 13 1760.042 13 1759.702 13 1767.099
HEXS 15 2210.253 15 2208.484 15 2211.984

MPCA ERLS 39 28,273.244 38 28,245.179 36 28,217.734
EXPS 40 28,343.299 39 28,316.826 37 28,290.719
HEXS 45 28,862.644 43 28,840.331 42 28,818.321

Let us look at the cases of ERLA, EXPA and HEXA in Table 14. As the variability in
arrival processes increases (respectively, ERLA, EXPA and HEXA), the optimum value of
S also increases. For both ERLS and EXPS services, the optimum S is generally the same,
while the optimum cost varies slightly. In all cases, HEXS services with high variability
require more inventory in the system. When the reorder point s is increased, the values of
S generally do not change except for HEXA arrivals. However, in the case of HEXA, the
optimum S is seen to decrease as s increases. In Table 14 let’s look at the MNCA and MPCA
cases where there is correlation. In negatively correlated arrivals (MNCA), the results in the
HEXS service are significantly different from the others and the increase in the values of s is
of no significance. On the other hand, in positively correlated arrivals (MPCA), the increase
in the values of s and the increase in the variability in service times are separately very
important. That is, as the variability in PH-distribution increases, the values of S increase,
and as the reorder point increases, the values of S decrease.
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First, it is noticeable that the optimum values of S in Table 15 are larger than the values
in Table 14, while there is not much difference between the optimum cost values. In other
words, in the (s, Q)-policy, there is a need to keep more inventory in the system. Although
more inventory is carried, the total cost is almost the same as under the (s, S)-policy. The
comments made for Table 14 regarding the variability of service times or arrival process can
also be said for Table 15. As variation increases, more inventory is needed. Also, positive
correlation is important for the system under (s, Q)-policy similar to the system under
(s, S)-policy. Finally, the important difference between the two tables is the effect of the
reorder point s. As the values of s increases, the values of S remain the same or decrease in
Table 14 ( as we mentioned above). In Table 15, as the values of s increases, the values of S
remain the same or increase.

Table 15. Optimum values of ETC∗ and S∗ for the system under (s, Q)-policy.

s = 3 s = 5 s = 7

MAP PH S∗ ETC∗ S∗ ETC∗ S∗ ETC∗

ERLA ERLS 15 1522.217 17 1528.293 19 1546.239
EXPS 15 1576.974 17 1582.440 19 1599.634
HEXS 17 2027.992 19 2029.560 21 2039.175

EXPA ERLS 16 1656.341 18 1658.732 20 1671.566
EXPS 16 1714.313 18 1716.220 20 1728.459
HEXS 18 2170.712 20 2170.295 22 2176.910

HEXA ERLS 21 2413.769 22 2403.575 23 2400.146
EXPS 21 2497.376 22 2487.828 24 2484.688
HEXS 23 3045.173 24 3036.695 25 3032.973

MNCA ERLS 16 1705.006 18 1707.478 20 1720.441
EXPS 16 1759.736 18 1761.756 20 1774.156
HEXS 18 2209.873 20 2209.594 22 2216.393

MPCA ERLS 42 28,273.102 43 28,244.961 43 28,217.343
EXPS 43 28,343.165 44 28,316.619 44 28,290.345
HEXS 48 28,862.522 48 28,840.099 49 28,817.971

6. Discussion

We study two queueing-inventory systems with catastrophes in the warehouse. Upon
arrival of a catastrophe all inventory in the system is instantly destroyed. The arrivals of
the c-customers follow a Markovian Arrival Process (MAP) and they can be queued in
an infinite buffer. The service time of a c-customer follows a phase-type distribution. The
system can receive n-customers, and their arrivals follow the Poisson process. When the
n-customer arrives in the system, he causes that one c-customer to be pushed out from the
system. One of two inventory policies is used in the systems: either (s, S) or (s, Q). If the
number of items in the inventory is zero at the arrival time of a c-customer, then the arrived
customer is either lost (the case of a lost sale) or joins the queue (the case of a backorder
sale). In other words, the arrival c-customer behaves according to the Bernoulli scheme.

For both replenishment policies, the system is formulated by a four-dimensional
continuous-time Markov chain. It is shown that the ergodicity condition for both models
has the same form, but the initial parameters are different. Steady state distribution is
obtained using the matrix-geometric method and the formulas for the system performance
measures are developed. A comprehensive numerical study is performed on the perfor-
mance measures and an optimization study under various service time distributions and
the arrival processes. For both inventory replenishment policies, optimization problems
assume that all system parameters, with the exception of warehouse capacity, are fixed.
The criterion of optimization is the minimization of the expected total cost. As a result of
numerical studies, it is seen that the variability in service distribution, the variability in
the arrival process and the arrivals with positive correlation have an impact on both the
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performance measures of the system and the optimum inventory policy. Also, it has been
observed that the effect of variability is more specifically in the system with (s, Q)-policy
than in the system with (s, S)-policy.

For future work, one can investigate the system under other replenishment policies
(e.g., base stock policy, randomized policy, etc.) as well as consider the batch service
and/or batch arrival. In addition, it seems very relevant to study models with different
types of consumer customers (for example, customers of random size) and models with
retrial queues.
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