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Abstract: Computing an element of the Clarke subdifferential of a function represented by a pro-
gram is an important problem in modern non-smooth optimization. Existing algorithms either are
computationally inefficient in the sense that the computational cost depends on the input dimension
or can only cover simple programs such as polynomial functions with branches. In this work, we
show that a generalization of the latter algorithm can efficiently compute an element of the Clarke
subdifferential for programs consisting of analytic functions and linear branches, which can represent
various non-smooth functions such as max, absolute values, and piecewise analytic functions with
linear boundaries, as well as any program consisting of these functions such as neural networks
with non-smooth activation functions. Our algorithm first finds a sequence of branches used for
computing the function value at a random perturbation of the input; then, it returns an element of the
Clarke subdifferential by running the backward pass of the reverse-mode automatic differentiation
following those branches. The computational cost of our algorithm is at most that of the function
evaluation multiplied by some constant independent of the input dimension n, if a program consists
of piecewise analytic functions defined by linear branches, whose arities and maximum depths of
branches are independent of n.
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1. Introduction

Automatic differentiation refers to various techniques to compute the derivatives of a
function represented by a program, based on the well-known chain rule of calculus. It has
been widely used across various domains, and diverse practical automatic differentiation
systems have been developed [1–3]. In particular, reverse-mode automatic differentia-
tion [4] has been a driving force of the rapid advances in numerical optimization [5–7].

There are two important properties of reverse-mode automatic differentiation: cor-
rectness and efficiency. For programs consisting of smooth functions, it is well known
that reverse-mode automatic differentiation always computes the correct derivatives [8,9].
Furthermore, for programs returning a scalar value, it efficiently computes their derivatives
in the sense that its computational cost is at most proportional to that of the function
evaluation, where the additional multiplicative factor is bounded by five for rational func-
tions [10,11] and by some constant that depends on the underlying implementation of
smooth functions; if the arities of the functions are independent of the input dimension
n, then this constant is also independent of n [12]. Such correctness and efficiency of
reverse-mode automatic differentiation, referred to as the Cheap Gradient Principle, have
been of central importance for modern nonlinear optimization algorithms [13].

In practical problems, a program often involves branches (e.g., max and an absolute
value), and the corresponding target function can be non-smooth. In other words, the
derivative of the program may not exist at some inputs. In this work, we investigated a
Cheap Subgradient Principle: an efficient algorithm that correctly computes an element of
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the Clarke subdifferential, a generalized notion of the derivative, for scalar programs. One
naïve approach is to directly apply reverse-mode automatic differentiation to the Clarke
subdifferential. Such a method is computationally cheap as in the smooth case; however,
due to the absence of the sharp chain rule for the Clarke subdifferential, it is incorrect in
general even if the target function is differentiable [8,14,15].

There have been extensive research efforts to correctly compute an element of the
Clarke subdifferential. A notable line of work is based on the lexicographic subdiffer-
ential [16], which is a subset of the Clarke subdifferential, but a sharp chain rule holds
under some structural assumptions. Based on this, a series of works [17–20] has shown
that an element of the lexicographic subdifferential can be computed by evaluating n
directional derivatives, where n denotes the input dimension. Nevertheless, since this
approach requires computing n directional derivatives, it incurs a multiplicative factor n in
its computational cost compared to that of function evaluation in the worst case.

To avoid such an input-dimension-dependent factor, a two-step randomized algorithm
for programs with branches has been proposed [14]. In the first step, the algorithm chooses
a random direction δ and finds a sequence of branch selections based on the directional
derivative with respect to δ under some qualification condition [14,21]. Then, the second
step computes the derivative corresponding to the branches returned in the first step, which
is shown to be an element of the Clarke subdifferential. Here, the second step can also
be efficiently implemented via reverse-mode automatic differentiation. As a result, this
two-step algorithm correctly computes an element of the Clarke subdifferential under the
qualification condition, with the computational cost independent of the input dimension.
However, this result is only for piecewise polynomial programs, defined by branches and
finite compositions of monomials and affine functions.

In this work, we propose an efficient automatic subdifferentiation algorithm by gener-
alizing the algorithm in [14] described above. Our algorithm correctly computes an element
of the Clarke subdifferential for programs consisting of any analytic functions (including
polynomials) and linear branches. As in the prior efficient automatic (sub)differentiation
works, the computational cost of our algorithm is that of the function evaluation multiplied
by some constant independent of the input dimension n, if a program consists of piecewise
analytic functions (defined by linear branches) whose arities and maximum depths of
branches are independent of n (e.g., max and the absolute value).

Related Works

Non-smooth optimization: Although smooth functions are easy to formulate and
optimize, they have limited applicability as non-smoothness appears in various science
and engineering problems. For example, real-world problems in thermodynamics often
involve discrete switching between thermodynamic phases, which can be modeled by
non-smooth functions. Dynamic simulation and optimization under these models often
require the treatment of these models [22,23]. In machine learning applications, hinge loss,
ReLU(x) = max{x, 0}, and maxpool operations are often used, which makes the optimiza-
tion objective non-smooth [6,24,25]. For optimizing convex, but non-smooth functions,
subderivative methods are widely used for approximating a local minimum [26,27]. How-
ever, for non-convex functions, the subderivative does not exist in general, and researchers
have investigated the generalized notion of derivatives (e.g., the Clarke subdifferential).

Optimization algorithms using generalized derivatives: Recently, the convergence
properties of optimization algorithms based on generalized derivatives for non-convex
and non-smooth functions have received much attention. Ref. [28] proved that, for locally
Lipschitz functions, the stochastic gradient method, where the gradient is chosen from the
Clarke subdifferential, converges to a stationary point. However, as we introduced in the
previous section, computing an element of the Clarke subdifferential is computationally
expensive or can be efficient only for a specific class of programs. Ref. [29] proposed a
new notion of gradient called the conservative gradient, which can be efficiently com-
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puted; nevertheless, its convergence property is not well understood, especially under
practical setups.

2. Problem Setup
2.1. Notations

For n ∈ N ∪ {0}, we denote [n] , {1, . . . , n}, where [0] = ∅. For any set S , we use
S0 , {()}, where () denotes the zero-dimensional vector. For any vector x ∈ Sn and
i ∈ [n], we denote xi for the i-th coordinate of x and x:i , (x1, . . . , xi−1), where x:1 = ();
similarly, for any x ∈ Sn and index set I = {i1, . . . , ik} ⊆ [n] with i1 < · · · < ik, we
use xI , (xi1 , . . . , xik ). For any u = (u1, . . . , un) ∈ Rn and v = (v1, . . . , vm) ∈ Rm, we
use u⊕ v , (u1, . . . , un, v1, . . . , vm); when n = m, we write 〈u, v〉 to denote the standard
inner product between u and v. For any x ∈ R, sign(x) = 1 if x > 0 and sign(x) = −1
otherwise. For any real-valued vector x, len(x) denotes the length of x, i.e., len(x) = n
if x ∈ Rn. For any set S ⊆ Rn, we use cl(S), int(S), and conv(S) to denote the closure,
interior, and convex hull of S , respectively. We lastly define the Clarke subdifferential.
Given a function f : Rn → R and the set D ⊆ Rn of all points at which f is differentiable,
the Clarke subdifferential of f at x ∈ Rn is a set defined as

∂c f (x) , conv
{

s ∈ Rn : ∃{ut}t∈N ⊆ D such that ut → x and ∇ f (ut)→ s
}

.

2.2. Programs with Branches

We considered a program P defined in Figure 1 (left). P applies a series of primitive
functions Fn+1, . . . , Fn+m to compute intermediate variables vn+1, . . . , vn+m and, then, re-
turns the last result vn+m. Each primitive function Fi : Rdi → R is continuous and defined
in an inductive way as in Figure 1 (right): Fi either applies a function fi,() or branches via
(possibly nested) if–else statements. Namely, Fi is a continuous, piecewise function. If Fi
branches with an input (x1, . . . , xdi

), then it first evaluates y = φi,()(x1, . . . , xdi
) for some

φi,() : Rdi → R and checks whether y > ci,() or not for some threshold value ci,() ∈ R. If
y > ci,(), it executes a code Ei,(1) that either applies a function fi,(1) or executes another code
Ei,(1,1) or Ei,(1,−1) depending on whether φi,(1)(x1, . . . , xdi

) > ci,(1) or not. The case y ≤ ci,()
is handled in a similar way. Here, we assumed that each Fi has finitely many branches.
In short, each primitive function Fi first finds a proper piece labeled by p ∈ ⋃∞

j=0{−1, 1}j

and, then, returns fi,p(x1, . . . , xdi
). We illustrate a flow chart for a primitive function Fi in

Figure 2.
We present an example code for a primitive function Fi that returns max{x1, x2, x3}

in Figure 3. In this example, Fi branches at most twice: its first branch is determined by
φi,()(x1, x2, x3) = x1 − x2, which is stored in y in the second line in Figure 3. If y > 0 (the
third line with ci,() = 0), then it executes E1,(1), which corresponds to lines 4–6. Otherwise,
it moves to E1,(−1), which corresponds to the lines 8–10. Suppose E1,(1) is executed (i.e.,
y > 0 in line 3). Then, it computes φi,(1)(x1, x2, x3) = x1 − x3 and stores it in y as in line 4.
If y > 0, then Ei,(1,1) is executed, which returns the value of x1 (i.e., fi,(1,1)(x1, x2, x3) = x1).
Otherwise, Ei,(1,−1) is executed, which returns the value of x3 (i.e., fi,(1,−1)(x1, x2, x3) = x3).

prog P(w1, . . . , wn){
(v1, . . . , vn) = (w1, . . . , wn);
vn+1 = Fn+1(vpa(n+1));

...
vn+m = Fn+m(vpa(n+m));
return vn+m
}

func Fi(x1, . . . , xdi
){

Ei,()
}

Ei,p ,


return fi,p(x1, . . . , xdi

), or y = φi,p(x1, . . . , xdi
);

if (y > ci,p){ Ei,p⊕(1) }
else { Ei,p⊕(−1) }


Figure 1. Definitions of a program P (left) and primitive functions Fn+1, . . . , Fn+m (right).
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Figure 2. A flow chart illustrating a primitive function Fi.

func Fi(x1, x2, x3) {
y = x1 - x2; // φi,()(x) = x1 − x2, ci,() = 0
if (y > 0) {
y = x1 - x3; // φi,(1)(x) = x1 − x3, ci,(1) = 0
if (y > 0) { return x1 } // fi,(1,1)(x) = x1

else { return x3 } // fi,(1,−1)(x) = x3

} else {
y = x2 - x3; // φi,(−1)(x) = x2 − x3, ci,(−1) = 0
if (y > 0) { return x2 } // fi,(−1,1)(x) = x2

else { return x3 } // fi,(−1,−1)(x) = x3

}
}

Figure 3. Example code for the max function Fi : (x1, x2, x3) 7→ max{x1, x2, x3}.

We considered each vi and vpa(i) as a function of an input w ∈ Rn. Specifically, for all
i ∈ [n], we use vi(w) , wi; and for all i ∈ [n + m] \ [n], we use vi(w) , Fi(vpa(i)(w)) and
vpa(i)(w) , (vj1(w), . . . , vjdi

(w)), where pa(i) = {j1, . . . , jdi
} with 0 < j1 < · · · < jdi

< i.
Under this notation, w 7→ vn+m(w) denotes the target function represented by the program
P. We often omit w and write vi and vpa(i) if it is clear from the context. We denote
the gradient (or Jacobian) of functions with respect to an input w by the operator D:
e.g., Dvi(w) , ∂vi(w)/∂w and Dφi,p(vpa(i)(w)) , ∂φi,p(vpa(i)(w))/∂w.

Throughout this paper, we focus on programs with linear branches; that is, each
φi,p(x1, . . . , xd) is linear in x1, . . . , xd. Primitive functions with linear branches can express
fundamental non-smooth functions such as max, the absolute value, bilinear interpolation,
and any piecewise analytic functions with finite linear boundaries. They have been widely
used in various fields including machine learning, electrical engineering, and non-smooth
analysis. For example, max–min representation (or the abs–normal form) has been ex-
tensively studied in non-smooth analysis [30,31]. Furthermore, neural networks using
the ReLU(x) = max{x, 0} activation function and maxpool operations are widely used
in machine learning, computer vision, load forecasting, etc. [6,24,25]. The assumption on
linear branches will be formally introduced in Assumption 1 in Section 3.1.

2.3. Pieces of Programs

We introduce useful notations here. For each i ∈ [n + m] \ [n], we define the set of the
pieces of Fi as

Γi ,
{

p ∈
∞⋃

j=0

{−1, 1}j : Ei,p = return fi,p(x1, . . . , xdi
)

}
.

We also define Γ , {()}n ×∏m
i=n+1 Γi for the pieces of the overall program. Here, we in-

clude an auxiliary piece () for the first n indices so that γi ∈ Γi for any γ = (γ1, . . . , γn+m) ∈
Γ and i ∈ [n + m] \ [n]. For each i ∈ [n + m] \ [n], we define the set of the inputs to Fi that
corresponds to the piece p ∈ Γi, as
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Xi,p , {x ∈ Rdi : Fi selects fi,p at the input x}.

Then, {Xi,p : p ∈ Γi} forms a partition of Rdi . Likewise, we also define the set of the inputs
to the overall program P that corresponds to γ ∈ Γ, as

Wγ , {w ∈ Rn : vpa(i)(w) ∈ Xi,γi for all i ∈ [n + m] \ [n]}.

Then, {Wγ : γ ∈ Γ} forms a partition of Rn. Lastly, for each γ ∈ Γ, we inductively define
the function vi,γ : Rn → R that corresponds to vi(·), but is obtained by using the γj piece
of each Fj, as

vi,γ(w) ,

{
wi if i ∈ [n]
fi,γi (vpa(i),γ(w)) if i ∈ [n + m] \ [n],

where vpa(i),γ(·) is defined as in vpa(i)(·). Then, vi,γ(·) coincides with vi(·) onWγ for all
i ∈ [n + m].

2.4. Reverse-Mode Automatic Differentiation

Reverse-mode automatic differentiation is an algorithm for computing the gradient
Dvn+m(w) of the target function (if it exists) by sequentially running one forward pass
(Algorithm 1) and one backward pass (Algorithm 2). Given w ∈ Rn, its forward pass
computes vn+1(w), . . . , vn+m(w) and corresponding pieces γi ∈ Γi such that w ∈ Wγ for
γ = ((), . . . , (), γn+1, . . . , γn+m). Namely, we have vi(w) = vi,γ(w) for all i ∈ [n + m].

Algorithm 1 Forward pass of reverse-mode automatic differentiation

1: Input: P, (w1, . . . , wn)
2: Initialize: (v1, . . . , vn) = (w1, . . . , wn)
3: for i = n + 1, . . . , n + m do
4: Let p = ()
5: while p /∈ Γi do
6: p = p⊕ (sign(φi,p(vpa(i))− ci,p))
7: end while
8: Set γi = p and vi = fi,γi (vpa(i))
9: end for

10: return (v1, . . . , vn+m), (γn+1, . . . , γn+m)

Algorithm 2 Backward pass of reverse-mode automatic differentiation

1: Input: P, (v1, . . . , vn+m), (γn+1, . . . , γn+m)
2: Initialize: (gv1, . . . , gvn+m) = (0, . . . , 0, 1)
3: for i = n + m, . . . , n + 1 do
4: for j ∈ pa(i) do

5: gvj = gvj + gvi ·
∂ fi,γi

∂vj
(vpa(i))

6: end for
7: end for
8: return (gv1, . . . , gvn)

Given v1(w), . . . , vn+m(w) and γ, the backward pass computes Dvn+m,γ(w) by apply-
ing the chain rule to the composition of differentiable functions fn+1,γn+1 , . . . , fn+m,γn+m . In
particular, it iteratively updates gvi and returns (gv1, . . . , gvn) = Dvn+m,γ(w). It is well
known that reverse-mode automatic differentiation computes the correct gradient, i.e., gvi
coincides with ∂vn+m(w)/∂wi for all i ∈ [n], if primitive functions Fn+1, . . . , Fn+m do not
have any branches [8,9]. However, if some Fi uses branches, it may return arbitrary values
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even if the target function vn+m(·) is differentiable at w [14,32,33]. In the rest of the paper,
we use AD to denote reverse-mode automatic differentiation.

Our algorithm computing an element of the Clarke subdifferential is similar to AD:
it first finds some pieces γ∗i ∈ Γi and applies the backward pass of AD (Algorithm 2) to
compute its output. Here, we chose the pieces γ∗i that are used for computing the forward
pass with some perturbed input, not the original one. Hence, our pieces and that of AD
are different in general, which enables our algorithm to correctly compute an element of
the Clarke subdifferential. We provide more details including the intuition behind our
algorithm in Sections 3.2 and 3.3.

3. Efficient Automatic Subdifferentiation

In this section, we present our algorithm for efficiently computing an element of the
Clarke subdifferential. To this end, we first introduce a class of primitive functions, which
we consider in the rest of this paper. Then, we describe our algorithm after illustrating its
underlying intuition via an example. Lastly, we analyze the computational complexity of
our algorithm.

3.1. Assumptions on Primitive Functions

We considered primitive functions that satisfy the following assumptions.

Assumption 1. For any i ∈ [n + m] \ [n], p ∈ Γi, and j ∈ [len(p)], the following hold:

• Xi,p 6= ∅.
• φi,p:j is linear, i.e., there exists z ∈ Rdi such that φi,p:j(x) = 〈z, x〉.
• fi,p is analytic on Rdi .

The first assumption states that, for any i ∈ [n + m] \ [n] and p ∈ Γi, there exists
x ∈ Rdi such that Fi selects fi,p at x. In other words, there is no non-reachable piece
p ∈ Γi, i.e., all pieces of Fi are necessary to express Fi. The second assumption requires that
all if–else statements of Fi have linear φi,p in their conditions. Lastly, we considered fi,p,
which is analytic on its domain (e.g., polynomials, exp, log, and sin), as stated in the third
assumption. From this, vi,γ(·) is well-defined and analytic on some open set containing
cl(Wγ) for all i ∈ [n + m] and γ ∈ Γ.

Assumption 1 admits any primitive function that is analytic or piecewise analytic with
linear boundaries such as max and bilinear interpolation. Hence, it allows many interesting
programs such as nearly all neural networks considered in modern deep learning, e.g., [6,34].

3.2. Intuition Behind Efficient Automatic Subdifferentiation

As in AD, our algorithm first performs one forward pass (Algorithm 3) to compute the
intermediate values vn+1(w), . . . , vn+m(w) and to find proper pieces γn+1, . . . , γn+m for the
given input w. Then, it runs the original backward pass of AD (Algorithm 2) to compute
an element of the Clarke subdifferential at w using the intermediate values and the pieces
generated by the forward pass. Here, the key component of our algorithm is about how to
choose proper pieces in the forward pass so that the backward pass can correctly compute an
element of the Clarke subdifferential.

Before describing our algorithm, we explain its underlying intuition. Let δ = (δ1, . . . , δn) ∈
Rn be a random vector drawn from a Gaussian distribution (see the initialization of
Algorithm 3). Then, there exists unique γ∗ ∈ Γ and some s∗ > 0 almost surely such that

w + t · δ ∈ int(Wγ∗) for all t ∈ (0, s∗), (1)

i.e., a given program takes the same piece γ∗ for all inputs close to w along the direction
of δ; see Lemma 7 in Section 4 for the details. Since vn+m(·) = vn+m,γ∗(·) on Wγ∗ and
vn+m,γ∗(·) is differentiable, Equation (1) implies that vn+m(·) is differentiable at w + t · δ
for all t ∈ (0, s∗). Therefore, the quantity:
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Dvn+m,γ∗(w) = lim
t↓0

Dvn+m,γ∗(w + t · δ) = lim
t↓0

Dvn+m(w + t · δ) (2)

is an element of the Clarke subdifferential ∂cvn+m(w), and our algorithm computes this
very quantity via the backward pass of AD.

Algorithm 3 Forward pass of our algorithm

1: Input: P, (w1, . . . , wn)
2: Initialize: Sample δi ∼ Normal(0, 1), and set (vi, dvi) = (wi, δi) for all i ∈ [n]
3: for i = n + 1, . . . , n + m do
4: Let p = ()
5: while p /∈ Γi do
6: if (φi,p(vpa(i)) > ci,p) ∨ (φi,p(vpa(i)) = ci,p ∧ φi,p(dvpa(i)) > 0) then
7: p = p⊕ (1)
8: else if (φi,p(vpa(i)) < ci,p) ∨ (φi,p(vpa(i)) = ci,p ∧ φi,p(dvpa(i)) < 0) then
9: p = p⊕ (−1)

10: else if φi,p(vpa(i)) = ci,p ∧ φi,p(dvpa(i)) = 0 then
11: p = p⊕ (s) for any s ∈ {−1, 1}
12: end if
13: end while
14: Set γi = p, vi = fi,p(vpa(i)), and dvi = 〈∇ fi,p(vpa(i)), dvpa(i)〉
15: end for
16: return (v1, . . . , vn+m), (γn+1, . . . , γn+m)

We now illustrate the main idea behind our forward pass, which enables the backward
pass to compute Dvn+m,γ∗(w) in Equation (2). As an example, consider a program with
the following primitive functions: Fn+1, . . . , Fn+m−1 are all analytic, and Fn+m branches
only once with φn+m,()(·) = φ(·) and cn+m,() = 0. For notational simplicity, we use
u(w) = vpa(n+m)(w).

If φ(u(w)) > 0, then it is easy to observe that γ∗n+m = 1 from the continuity of φ and
u. Likewise, if φ(u(w)) < 0, then γ∗n+m = −1. In the case that φ(u(w)) = 0, we use the
following directional derivatives to determine γ∗n+m:

dvi(w; δ) , lim
t↓0

vi(w + t · δ)− vi(w)

t
(3)

for i ∈ [n + m− 1], which can be easily computed using the chain rule. From the definition
of dvi, the linearity of φ, and the chain rule, it holds that

lim
t↓0

φ(u(w + t · δ))− φ(u(w))

t
= ∑

j∈pa(n+m)

∂φ(u(w))

∂vj(w)
· dvj(w; δ) = φ(du(w; δ)),

where du(w; δ) denotes the vector of all dvj(w; δ) with j ∈ pa(n + m). Then, by Taylor’s the-
orem, φ(du(w; δ)) > 0 (or φ(du(w; δ)) < 0) implies γ∗n+m = 1 (or γ∗n+m = −1). In summary,
if φ(u(w)) 6= 0 or φ(du(w; δ)) 6= 0, then the exact γ∗n+m can be found, and hence, the back-
ward pass (Algorithm 2) can correctly compute Dvn+m,γ∗(w) using γ∗ = ((), . . . , (), γ∗n+m).

Now, we considered the only remaining case: φ(u(w)) = 0 and φ(du(w; δ)) = 0.
Unlike the previous cases, it is non-trivial here to find the correct γ∗n+m because the first-
order Taylor series approximation does not provide any information about whether a small
perturbation of w toward δ increases φ(u(w)) or not. An important point, however, is that
we do not need the exact γ∗n+m to compute an element of the Clarke subdifferential; instead,
it suffices to compute Dvn+m,γ∗(w). Surprisingly, this can be performed by choosing an
arbitrary piece of Fn+m, as shown below.
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For simplicity, suppose that φ(x) = x1, i.e., φ(u(w)) = vi∗(w) for some i∗ ∈ pa(n + m);
the below argument can be easily extended to an arbitrary linear φ. Let γα = ((), . . . , (), α)
for α ∈ {(−1), (1)}, i.e., γα

n+m = α. Then, for any α ∈ {(−1), (1)}, we have

Dvn+m,γα(w) = ∑
j∈pa(n+m)\{i∗}

∂ fn+m,α(u(w))

∂vj(w)
· Dvj(w) (4)

almost surely, by the chain rule and the following result: dvi∗(w; δ) = φ(du(w; δ)) = 0
implies Dvi∗(w) = 0 almost surely (Lemma 5 in Section 4). Here, from the continuity and
the definition of Fn+m, we must have fn+m,(1) = fn+m,(−1) on the hyperplane {x ∈ Rdn+m :
x1 = 0}, and thus, ∂ fn+m,(1)(x)/∂xj = ∂ fn+m,(−1)(x)/∂xj for any x ∈ {x ∈ Rdn+m : x1 = 0}
and j ∈ [dn+m] \ {1}. From this and vi∗(w) = φ(u(w)) = 0, we then obtain

∂ fn+m,(1)(u(w))

∂vj(w)
=

∂ fn+m,(−1)(u(w))

∂vj(w)
(5)

for all j ∈ pa(n+m) \ {i∗}. By combining Equations (4) and (5), we can finally conclude that

Dvn+m,γ(1)(w) = Dvn+m,γ(−1)(w) = Dvn+m,γ∗(w)

almost surely, where the last equality is from the fact that γ∗n+m is either (1) or (−1). To
summarize, if φ(u(w)) = 0 and φ(du(w; δ)) = 0, we can compute the target element of the
Clarke subdifferential (i.e., Dvn+m,γ∗(w)) by choosing an arbitrary piece of Fn+m.

3.3. Forward Pass for Efficient Automatic Subdifferentiation

Our algorithm for computing an element of the Clarke subdifferential is based on
the observation made in the previous section: it runs one forward pass (Algorithm 3) for
computing vn+1(w), . . . , vn+m(w) and some γ ∈ Γ such that Dvn+m,γ(w) = Dvn+m,γ∗(w)
and one backward pass of AD (Algorithm 2) for computing Dvn+m,γ(w).

We now describe our forward pass procedure (Algorithm 3). First, it randomly samples
a vector δ ∈ Rn from a Gaussian distribution and initializes dvi = δi for all i ∈ [n] (line 2).
Then, it iterates for i = n + 1, . . . , n + m as follows. Given v1(w), . . . , vi−1(w) and their
directional derivatives dv1(w; δ), . . . , dvi−1(w; δ) with respect to δ, lines 5–13 in Algorithm 3
find a proper piece γi ∈ Γi of Fi by exploring its branches. If the condition in line 6
is satisfied, then it moves to the branch corresponding to φi,p(vpa(i)(w)) > ci,p (line 7). It
moves in a similar way if the condition in line 8 is satisfied. As in our example in Section 3.2,
if φi,p(vpa(i)(w)) = ci,p and φi,p(dvpa(i)(w; δ)) = 0 (line 10), then our algorithm moves to an
arbitrary branch (line 11). Once Algorithm 3 finds a proper piece γi of Fi, it updates vi(w)
and dvi(w; δ) via the chain rule (line 14). Here, vi(w) can be correctly computed due to the
continuity of Fi, while dvi(w; δ) can also be correctly computed almost surely; see Lemma 8
in Section 4 for details. We remark that our algorithm is a generalization of the algorithm
in [14]. The difference occurs in lines 10–11, where the existing algorithm deterministically
chooses s based on some qualification condition [14].

As illustrated in Section 3.2, the piece γ ∈ Γ computed by our forward pass satis-
fies Dvn+m,γ(w) = Dvn+m,γ∗(w) almost surely, and hence, the backward pass using this γ
correctly computes Dvn+m,γ∗(w) almost surely, which is an element of the Clarke subdif-
ferential. We formally state the correctness of our algorithm in the following theorem; its
proof is given in Section 4.

Theorem 1. Suppose that Assumption 1 holds. Then, for any w ∈ Rn, running Algorithm 3 and
then Algorithm 2 returns an element of ∂cvn+m(w) almost surely.

3.4. Computational Cost

In this section, we analyze the computational cost of our algorithm (both forward
and backward passes) on a program P, compared to the cost of running P. Here, we



Mathematics 2023, 11, 4858 9 of 18

only counted the cost of arithmetic operations and function evaluations and ignore the
cost of memory read and write. We assumed that elementary operations (+,×,∧,∨), the
comparison between two scalar values (>,<, =), and sampling a value from the standard
normal distribution have a unit cost (e.g., cost(+) = 1), while the cost for evaluating an
analytic function f is represented by cost( f ). To denote the cost of evaluating a program
P with an input w, we use cost(P(w)). Likewise, for the cost of running our algorithm
(i.e., Algorithms 2 and 3) on P and w, we use cost(ours(P, w)). We also assumed that
memory read/write costs are included in our cost function. Under this setup, we bound
the computational cost of our algorithm in Theorem 2.

Theorem 2. Suppose that cost(P(w)) ≥ n for all w ∈ Rn. Then, for any program P and its input
w ∈ Rn, cost(ours(P, w)) ≤ κ · cost(P(w)) where

κ , 1 + max
i∈[n+m]\[n]

κi, (6)

κi ,
maxp∈Γi 2cost(∇ fi,p)+cost( fi,p)+4di+4 len(p)+2 ∑

len(p)
j=1 cost(φi,p:j)

minq∈Γi cost( fi,q)+len(q)+∑
len(q)
j=1 cost(φi,q:j)

.

The assumption in Theorem 2 is mild since it is satisfied if at least one distinct operation
is applied to each input for evaluating P. The proof of Theorem 2 is presented in Section 5,
where we use program representations of Algorithms 2 and 3 (see Figures 4 and 5 in
Section 3.4 for the details).

Suppose that, for each i ∈ [n + m] \ [n], di and maxp∈Γi len(p) (i.e., the arity and the
maximum branch depth of fi) are independent of n. This condition holds in many practical
cases: e.g., the absolute value function has di = 1 and maxp∈Γi len(p) = 1; max{·, ·}
has di = 2 and maxp∈Γi len(p) = 1. Under this mild condition, cost( fi,p), cost(∇ fi,p),
and cost(φi,p:j) are independent of n, and thus, κi does so because the numerator in the
definition of κi is independent of n and the denominator is at least one (as cost( fi,q) ≥ 1).
This implies that κ is independent of the input dimension n under the above condition.

In practical setups with large n, the computational cost of our algorithm can be much
smaller than that of existing algorithms based on the lexicographic subdifferential [17–20].
For example, modern neural networks have more than a million parameters (i.e., n),
where the cost for computing the gradient of each piece in the activation functions (i.e.,
cost(∇ fi,p)) is typically bounded by O(cost( fi,p)). Further, the depth of branches in these
activation functions is often bounded by a constant (e.g., the depth is one for ReLU). Hence,
for those networks, κ = O(1), and our algorithm does not incur much computational
overhead. On the other hand, lexicographic-subdifferential-based approaches require at
least n computations of P(w) [17–20], which may not be practical when n is large.

prog PADB(v1, . . . , vn+1, γn+1, . . . , γn+m){
(gv1, . . . , gvn+m−1, gvn+m) = (0, . . . , 0, 1);
gvpa(n+m)+= ∇ fn+m,γn+m(vpa(n+m))× gvn+m;

...
gvpa(n+1)+= ∇ fn+1,γn+1(vpa(n+1))× gvn+1;
return (gv1, . . . , gvn)
}

Figure 4. A program PADB implementing the backward pass of AD (Algorithm 2).
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prog Pours(w1, . . . , wn+1, γn+1, . . . , γn+m){
(v1, . . . , vn) = (w1, . . . , wn);
(vn+1, dvn+1, γn+1) = Foursn+1 (vpa(n+1), dvpa(n+1));

...
(vn+m, dvn+m, γn+m) = Foursn+m (vpa(n+m), dvpa(n+m));
return (vn+1, . . . , vn+m), (γn+1, . . . , γn+m)
}

func Foursi (x1, . . . , xdi
, dx1, . . . , dxdi

){
Eours

i,()
}

Eours
i,p ,



return fi,p(x1:di
), 〈∇ fi,p(x1:di

), dx1:di
〉, p if Ei,p = return fi,p(x1:di

),

y = φi,p(x1, . . . , xdi
);

dy = φi,p(dx1, . . . , dxdi
);

if (y > ci,p){ Eours
i,p⊕(1) }

elif (y < ci,p){ Eours
i,p⊕(−1) }

elif (dy > 0){ Eours
i,p⊕(1) }

elif (dy < 0){ Eours
i,p⊕(−1) }

else{ Eours
i,p⊕(−1) // or Eours

i,p⊕(−1) }


otherwise.

Figure 5. A program Pours implementing Algorithm 3. Here, x1:di
= (x1, . . . , xdi

).

4. Proof of Theorem 1

In this section, we prove Theorem 3 under the setup that δ in Algorithm 3 is given
instead of randomly sampled. This theorem directly implies Theorem 1 since the statement
of Theorem 3 holds for almost every δ and the proof of Theorem 1 requires showing the
same statement almost surely, where the randomness comes from δ following an Isotropic
Gaussian distribution. Namely, proving Theorem 3 suffices for proving Theorem 1. We
note that all results in this section are under Assumption 1.

Theorem 3. Given w ∈ Rn, Algorithms 3 and 2 compute an element of ∂cvn+m(w) for almost
every δ ∈ Rn.

4.1. Additional Notations

We frequently use the following shorthand notations: the set of indices of branches:

Ibr , {i ∈ [n + m] : |Γi| > 1}

and an auxiliary index set:

Idxi , {(j, p) : p ∈ Γi, j ∈ [len(p)]}.

For γ ∈ Γ, i ∈ [n + m] \ [n], and (j, p) ∈ Idxi, we use

φ
γ
i,p:j

(w) , φi,p:j(vpa(i),γ(w)).

Note that vi,γ and φ
γ
i,p:j

are analytic (and, therefore, differentiable) for all γ ∈ Γ, i ∈
[n + m] \ [n], and (j, p) ∈ Idxi. We next define the set of pieces reachable by our algorithm
(Algorithm 3) with inputs w = (w1, . . . , wn), δ = (δ1, . . . , δn) ∈ Rn as Γ(w, δ):

Γ(w, δ) , {γ ∈ Γ : γi,j ∈ C
γ
i,j(w; δ) ∀i ∈ Ibr, ∀j ∈ [len(γi)]}, where
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Cγ
i,j(w; δ) ,



{1} if
(
φi,γi,:j(vpa(i),γ(w))= ci,γi,:j∧φi,γi,:j(dvpa(i),γ(w; δ))>0

)
∨
(
φi,γi,:j(v

γ
pa(i))> ci,γi,:j

)
{−1} if

(
φi,γi,:j(vpa(i),γ(w))= ci,γi,:j∧φi,γi,:j(dvpa(i),γ(w; δ))<0

)
∨
(
φi,γi,:j(v

γ
pa(i))< ci,γi,:j

)
{−1, 1} if

(
φi,γi,:j(vpa(i),γ(w))= ci,γi,:j∧φi,γi,:j(dvpa(i),γ(w; δ))=0

)
.

4.2. Technical Claims

Lemma 1. For any open O ⊂ R, for any analytic, but non-constant f : O → R, and for any
x ∈ O, there exists ε > 0 such that

f (x) /∈ f ([x− ε, x + ε] \ {x}).

Furthermore, f is strictly monotone on [x, x + ε] and strictly monotone on [x− ε, x].

Proof of Lemma 1. Without loss of generality, suppose that f (x) = 0. Since f is analytic, f
is infinitely differentiable and can be represented by the Taylor series on (x− δ, x + δ) for
some δ > 0:

f (z) =
∞

∑
i=0

f (i)(x)
i!

(z− x)i

where f (i) denotes the i-th derivative of f . Since f is non-constant, there exists i ∈ N
such that f (i)(x) 6= 0. Let i∗ be the minimum such i. Then, by Taylor’s theorem, f (z) =
f (i
∗)(x)
i∗ ! (z− x)i∗ + o(|z− x|i∗).

Consider the case that f (i)(x) > 0 and i∗ is odd. Then, we can choose ε ∈ (0, δ) so that

f (1)(z) < 0 on [x− ε, x) and f (1)(z) > 0 on (x, x + ε]

i.e., f is strictly increasing on [x− ε, x + ε] (e.g., by the mean value theorem), and hence,
f (x) /∈ f ([x− ε, x+ ε] \ {x}). One can apply a similar argument to the cases that f (i)(x) < 0
and i∗ is odd, f (i)(x) > 0 and i∗ is even, and f (i)(x) < 0 and i∗ is even. This completes the
proof of Lemma 1.

Lemma 2 (Proposition 0 in [35]). For any n ∈ N, for any open connected O ⊂ Rn, and for any
real analytic f : O → R, if µn(zero( f )) > 0, then f (x) = 0 for all x ∈ O.

Lemma 3. For any n ∈ N, for any open connected O ⊂ Rn, and for any real analytic f , g : O →
R, if µn(zero( f − g)) > 0, then f (x) = g(x) for all x ∈ O.

Proof of Lemma 3. The proof directly follows from Lemma 2.

4.3. Technical Assumptions

Assumption 2. Given w ∈ Rn, δ ∈ Rn satisfies the following: for any γ ∈ Γ, i ∈ Ibr,
and (j, p) ∈ Idxi, if φ

γ
i,p:j

is not a constant function, then

φ
γ
i,p:j

(w + t · δ) is not a constant function in t ∈ R.

Assumption 3. Given w ∈ Rn, δ ∈ Rn satisfies the following: for any γ ∈ Γ, i ∈ Ibr,
and (j, p) = Idxi,

〈δ, Dφ
γ
i,p:j

(w)〉 = 0 if and only if Dφ
γ
i,p:j

(w) =~0.
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4.4. Technical Lemmas

Lemma 4. Given w ∈ Rn, almost every δ ∈ Rn satisfies Assumption 2.

Proof of Lemma 4. Since |Γ| < ∞, if the set of δ that does not satisfy Assumption 2 has a
non-zero measure, then there exist γ ∈ Γ, i ∈ Ibr, and (j, p) ∈ Idxi such that φ

γ
i,p:j

is not a
constant function and

µn

(
S , {δ ∈ Rn : φ

γ
i,p:j

(w + t · δ) is a constant function in t ∈ R}
)
> 0.

Without loss of generality, suppose that φ
γ
i,p:j

(w) = 0. Then, from the definition of S ,
S is contained in the zero set:

zero(φ̃) , {u ∈ R : φ̃(u) = 0}

of an analytic function φ̃ : RW → R defined as

φ̃(u) , φ
γ
i,p:j

(w + u).

Namely, µn(zero(φ̃)) ≥ µn(S) > 0. However, from Lemma 2, φ̃ must be a constant function,
which contradicts our assumption that φ

γ
i,p:j

is not a constant function. This completes the
proof of Lemma 4.

Lemma 5. Given w ∈ Rn, almost every δ ∈ Rn satisfies Assumption 3.

Proof of Lemma 5. Since Dφ
γ
i,p:j

(w) =~0 implies 〈δ, φ
γ
i,p:j

(w)〉 = 0 for all δ ∈ Rn, we prove

the converse. Suppose that Dφ
γ
i,p:j

(w) 6=~0. Since the set {δ ∈ Rn : 〈δ, Dφ
γ
i,p:j

(w)〉 = 0} has

zero measure under Dφ
γ
i,p:j

(w) 6=~0,

⋃
γ∈Γ,i∈Ibr ,(j,p)∈Idxi :Dφ

γ
i,p:j

(w) 6=~0

{δ ∈ Rn : 〈δ, Dφ
γ
i,p:j

(w)〉 = 0}

also has zero measure. This completes the proof of Lemma 5.

Lemma 6. For i ∈ Ibr and p ∈ Γi, suppose that x ∈ Rdi satisfies one of the following for all
j ∈ [len(p)]:

• sign(φi,p:j(x)− ci,p:j) = pj;
• φi,p:j(x) = ci,p:j .

Then, x ∈ cl(Xi,p).

Proof of Lemma 6. Without loss of generality, assume that x /∈ Xi,p. Since we assumed
Xi,p 6= ∅ by Assumption 1, there exists y ∈ Xi,p, i.e., sign(φi,p:j(y) − ci,p:j) = pj for all
j ∈ [len(p)]. Define

I , {j ∈ [len(p)] : φi,p:j(x) = ci,p:j}.

Since φi,p:j is linear, for z = y− x and for any j ∈ I , we have

sign(φi,p:j(z)) = pj.

This implies that, for any t > 0 and j ∈ I , it holds that

sign(φi,p:j(x + t · z)) = pj. (7)
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Since |φi,p:j(x)− ci,p:j | > 0 and sign(φi,p:j(x)) = pj for all j ∈ [len(p)] \ I by the definition
of I , there exists s > 0 such that

|φi,p:j(x + t · z)− ci,p:j | > 0 and sign(φi,p:j(x + t · z)) = pj (8)

for all t ∈ [0, s] and j ∈ [len(p)] \ I . Combining Equations (7) and (8) implies that
x + t · z ∈ Xi,p for all t ∈ (0, s], i.e., x is a limit point of Xi,p. This completes the proof of
Lemma 6

4.5. Key Lemmas

Lemma 7. For any w ∈ Rn and for any δ ∈ Rn satisfying Assumption 2, there exist s∗ > 0 and
γ∗ ∈ Γ(w, δ) such that

w + t · δ ∈ int(Wγ∗) for all t ∈ (0, s∗).

Proof of Lemma 7. We first define some notations: for an analytic function f : R→ R and
t ∈ R,

φ
γ,w,δ
i,p:j

(t) , φ
γ
i,p:j

(w + t · δ),

dir( f ) ,


s′ if s′ = sups≥0 { f (0) is strictly increasing on [0, s]} > 0
s′′ if s′′ = sups≥0 { f (0) is strictly decreasing on [0, s]} > 0
⊥ otherwise

.

Under Assumption 2 and by Lemma 1, one can observe that, for any i ∈ Ibr, p = γi,
and j ∈ [len(p)], dir(φγ,w,δ

i,p:j
) = ⊥ if and only if φ

γ
i,p:j

is a constant function. In addition,

from Lemma 1, if φ
γ
i,p:j

is not a constant function, then dir(φγ,w,δ
i,p:j

) > 0. Using Algorithm 4,

we iteratively construct γ∗ ∈ Γ(w, δ) and update s∗ > 0 for each i ∈ Ibr so that

w + t · δ ∈ int(Wγ∗) for all t ∈ (0, s∗).

Under our construction of γ∗, one can observe that γ∗ ∈ Γ(w, δ). From our choice of
s∗, for any i ∈ Ibr, j ∈ [len(p)], and for si,j = dir(φγ∗ ,w,δ

i,γ∗i,:j
), the following statements hold:

• If si,j 6= ⊥, then φ
γ∗ ,w,δ
i,γ∗i,:j

((0, s∗)) is open since φ
γ∗ ,w,δ
i,γ∗i,:j

is strictly monotone on (0, s∗);

• If si,j = ⊥, then φ
γ∗ ,w,δ
i,γ∗i,:j

, φ
γ∗

i,γ∗i,:j
are constant functions (i.e., φ

γ∗ ,w,δ
i,γ∗i,:j

((0, s∗)) is a constant)

due to Assumption 2.

For any t ∈ (0, s∗), we have w + t · δ ∈ O ⊂ Wγ∗ , where

O,

( ⋂
i,j:zi,j=⊥

(φγ∗

i,γ∗i,:j
)−1
(

φ
γ∗ ,w,δ
i,γ∗i,:j

((0, s∗))
))
∩
( ⋂

i,j:zi,j 6=⊥
(φγ∗

i,γ∗i,:j
)−1
(

φ
γ∗ ,w,δ
i,γ∗i,:j

((0, s∗))
))

.

Here, O is open since each term for the intersection in the above equation is open; it is Rn if
si,j = ⊥, and it is an inverse image of a continuous function of an open set otherwise. This
completes the proof of Lemma 7.
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Algorithm 4 Construction of γ∗ and s∗

Input: P, (w1, . . . , wn), (δ1, . . . , δn)
Initialize: (v1, . . . , vn) = (w1, . . . , wn), dvi = δi for all i ∈ [n], s∗ = ∞, γ∗ =

(
(), . . . , ()

)
for i = n + 1, . . . , n + m do

Let x = vpa(i), dx = dvpa(i), and p = ()
while p /∈ Γi do

Set y = φi,p(x) and s = dir(φγ∗ ,w,δ
i,p )

if s = ⊥∧ y > ci,p then
p = p⊕ 1

else if s = ⊥∧ y ≤ ci,p then
p = p⊕ (−1)

else if s 6= ⊥∧ y > ci,p then

p = p⊕ 1 and ε = min{|φγ∗ ,w,δ
i,p (s)− y|, y− ci,p}

{s′} = (φγ∗ ,w,δ
i,p )−1(y + z · ε) ∩ [0, s] and s∗ = min{s∗, s′}

else if s 6= ⊥∧ y < ci,p then

p = p⊕ (−1) and ε = min{|φγ∗ ,w,δ
i,p (s)− y|, ci,p − y}

{s′} = (φγ∗ ,w,δ
i,p )−1(y + z · ε) ∩ [0, s] and s∗ = min{s∗, s′}

else if s 6= ⊥∧ y = ci,p then
p = p⊕ sign(z) and s∗ = min{s∗, s}

end if
Set γ∗i = p and vi = fi,γ∗i

(x)
end while

end for
return γ∗, s∗

Corollary 1. For any w ∈ Rn and for any δ ∈ Rn satisfying Assumption 2, there exist s∗ > 0
and γ∗ ∈ Γ(w, δ) such that

Dvn+m(w + t · δ) = Dvn+m,γ∗(w + t · δ) for all t ∈ (0, s∗).

Proof of Corollary 1. This corollary directly follows from Lemma 7.

Lemma 8. For any w ∈ Rn and for any δ satisfying Assumption 3, it holds that

Dvn+m,γ′(w) = Dvn+m,γ′′(w) for all γ′, γ′′ ∈ Γ(w, δ).

Proof of Lemma 8. We use the mathematical induction on i to show that vi,γ′(w) = vi,γ′′(w)
and Dvi,γ′(w) = Dvi,γ′′(w) for all i ∈ [n + m]. The base case is trivial: vi,γ′(w) = vi,γ′′(w)
and Dvi,γ′(w) = Dvi,γ′′(w) for all i ∈ [n]. Hence, suppose that i ∈ Ibr since the case
that i ∈ [n + m] \ ([n] ∪ Ibr) is also trivial. Then, by the induction hypothesis, we have
vj,γ′(w) = vj,γ′′(w) and Dvj,γ′(w) = Dvj,γ′′(w) for all j ∈ [i− 1]. For notational simplicity,
we denote xj , vj,γ′(w) = vj,γ′′(w) and dxj , dvj,γ′(w; δ) = dvj,γ′′(w; δ) for all j ∈ [i− 1].

Let p′ = γ′i and p′′ = γ′′i . First, by Lemma 6, the definition of Γ(w, δ), and the
induction hypothesis, we have

xpa(i) ∈ cl(Xi,p′) ∩ cl(Xi,p′′).

Due to the continuity of Fi, this implies that

vi,γ′(w) = fi,p′(xpa(i)) = fi,p′′(xpa(i)) = vi,γ′′(w).
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Now, it remains to show Dvi,γ′(w) = Dvi,γ′′(w). To this end, we define the following:

I ,
{
(j, p) ∈ Idxi : φi,p:j(dxpa(i)) = 0

}
,

S ,
{

x ∈ Rdi : φi,p:j(x) = 0 for all (j, p) ∈ I
}

.

From the definition of S and I , dxpa(i) ∈ S . Furthermore, by Assumption 3, for any (j, p) ∈
Idxi and γ ∈ {γ′, γ′′}, we have φi,p:j(dvpa(i),γ(w; δ)) = 0 if and only if Dφi,p:j

(vpa(i),γ(w)) =

~0, i.e., ∂φi,p:j(vpa(i),γ(w))/∂w` = φi,p:j(∂vpa(i),γ(w)/∂w`) = 0 for all ` ∈ [n]. Therefore, since
dxpa(i) ∈ S , it holds that

∂vpa(i),γ′(w)

∂w`
,

∂vpa(i),γ′′(w)

∂w`
∈ S for all ` ∈ [n].

In addition, due to the identities

Dvi,γ′(w) = D f i,p′(vpa(i),γ′(w)), Dvi,γ′′(w) = D f i,p′′(vpa(i),γ′′(w)),

∂ fi,p′(vpa(i),γ′(w))

∂w`
=

〈
∇ fi,p′(xpa(i)),

∂vpa(i),γ′(w)

∂w`

〉
,

∂ fi,p′′(vpa(i),γ′′(w))

∂w`
=

〈
∇ fi,p′′(xpa(i)),

∂vpa(i),γ′′

∂w`

〉
,

showing the following stronger statement suffices for proving Lemma 8:〈
∇ fi,p′(xpa(i)), z

〉
=
〈
∇ fi,p′′(xpa(i)), z

〉
for all z ∈ S . (9)

By Lemma 1 and the induction hypothesis (dvpa(i),γ′ = dvpa(i),γ′′ ), there exists s > 0 such
that, for any t ∈ (0, s) and (j, p) ∈ Idxi and for zt = xpa(i) + t · dxpa(i),

φi,p:j(zt) > ci,p:j if (φi,p:j(xpa(i)) = ci,p:j ∧ φi,p:j(dxpa(i)) > 0) ∨ (φi,p:j(xpa(i)) > ci,p:j),

φi,p:j(zt) < ci,p:j if (φi,p:j(xpa(i)) = ci,p:j ∧ φi,p:j(dxpa(i)) < 0) ∨ (φi,p:j(xpa(i)) < ci,p:j),

φi,p:j(zt) = ci,p:j if (φi,p:j(xpa(i)) = ci,p:j ∧ φi,p:j(dxpa(i)) = 0).

Since each φi,p:j is linear (i.e., continuous) and by the definition of S , for each t ∈ (0, s),
there exists an open neighborhood Ot ⊂ S (open in S) of zt such that, for any z ∈ Ot and
(j, p) ∈ Idxi,

φi,p:j(z) > ci,p:j if (φi,p:j(xpa(i)) = ci,p:j ∧ φi,p:j(dxpa(i)) > 0) ∨ (φi,p:j(xpa(i)) > ci,p:j),

φi,p:j(z) < ci,p:j if (φi,p:j(xpa(i)) = ci,p:j ∧ φi,p:j(dxpa(i)) < 0) ∨ (φi,p:j(xpa(i)) < ci,p:j),

φi,p:j(z) = ci,p:j if (φi,p:j(xpa(i)) = ci,p:j ∧ φi,p:j(dxpa(i)) = 0). (10)

Here, we claim that, for any t ∈ (0, s),

Ot ⊂ cl(Xi,p′) ∩ cl(Xi,p′′) ∩ S , B and xpa(i) ∈ B. (11)

First, from the definition of Ot, we have Ot ⊂ S . In addition, by Equation (10) and the
definition of Γ(w, δ), either sign(φi,p′:j

(z)− ci,p′:j
) = p′j or φi,p′:j

(z) = ci,p′:j
for all j ∈ [len(p′)]

and z ∈ Ot; the same argument also holds for p′′. Hence, by Lemma 6, the LHS of
Equation (11) holds. Likewise, we have xpa(i) ∈ B.

Due to the continuity of Fi, Equation (11) implies that, for any t ∈ (0, s),

fi,p′ = fi,p′′ on Ot, (12)
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i.e., 〈∇ fi,p′(zt), z〉 = 〈∇ fi,p′′(zt), z〉 for all z ∈ S and t ∈ (0, s). Here, fi,p′ and fi,p′′ are
differentiable at zt by Equation (11) and Assumption 1. Due to the analyticity of fi,p′ and
fi,p′′ , this implies that, for any z ∈ S , we have

〈∇ fi,p′(xpa(i)), z〉 = lim
t↓0
〈∇ fi,p′(zt), z〉 = lim

t↓0
〈∇ fi,p′′(zt), z〉 = 〈∇ fi,p′′(xpa(i)), z〉

where fi,p′ and fi,p′′ are differentiable at xpa(i) by Equation (11) and Assumption 1. This
proves Equation (9) and completes the proof of Lemma 8.

4.6. Proof of Theorem 3

Under Assumptions 2 and 3, combining Lemmas 4 and 5, Corollary 1, and Lemma 8
completes the proof of Theorem 3.

5. Proof of Theorem 2

Here, we analyze the computational costs based on the program representations
in Figures 4 and 5. For simplicity, we use A2 and A3 for the shorthand notations for
Algorithm 2 and Algorithm 3, respectively. Under these setups, our cost analysis for
P(w) and A2(P, A3(P, w)) = ours(P, w) is as follows: for γ, γ′ ∈ Γ such that γ =(
(), . . . , (), γn+1, . . . , γn+m

)
, where (γn+1, . . . , γn+m) and v(w) = (v1(w), . . . , vn+m(w)) are

the outputs of A3(P, w) and w ∈ Wγ′ :

cost(P(w)) =
n+m

∑
i=n+1

(
cost( fi,γ′i

) + len(γ′i) + ∑
j∈[len(γ′i)]

cost(φi,γ′i,:j
)

)
,

cost(A2(P, v(w), γ)) =
n+m

∑
i=n+1

di · (cost(+) + cost(×)) + cost(∇ fi,γi )

≤
n+m

∑
i=n+1

2di + cost(∇ fi,γi ),

cost(A3(P, w)) ≤
n+m

∑
i=n+1

(
max{di − 1, 0} · cost(+) + di · cost(×)

+ cost( fi,γi ) + cost(∇ fi,γi ) + ∑
j∈[len(γi)]

(
2cost(φi,γi,:j) + 4cost(>)

))

≤
n+m

∑
i=n+1

(
2di + 4 len(γi) + cost( fi,γi ) + cost(∇ fi,γi ) + 2 ∑

j∈[len(γi)]

cost(φi,γi,:j)

)
,

cost(ours(P, w)) ≤
n

∑
i=1

cost(sample δi) + A2(P, v(w), γ)) + cost(A3(P, w))

≤ n+
n+m

∑
i=n+1

(
4di + 4 len(γi) + cost( fi,γi ) + 2 cost(∇ fi,γi ) + 2 ∑

j∈[len(γi)]

cost(φi,γi,:j)

)
.

This implies the following:

cost(ours(P, w))

cost(P(w))
≤ n

cost(P(w))

+
∑n+m

i=n+1

(
4di + 4len(γi) + cost( fi,γi ) + 2cost(∇ fi,γi ) + 2 ∑j∈[len(γi)]

cost(φi,γi,:j)
)

cost(P(w))

≤ 1 + max
i∈[n+m]\[n]

κi = κ

where the first inequality is from the above bound and the second inequality is from the
definition of κi and the assumption cost(P(w)) ≥ n. This completes the proof.



Mathematics 2023, 11, 4858 17 of 18

6. Conclusions

In this work, we proposed an efficient subdifferentiation algorithm for computing an
element of the Clarke subdifferential of programs with linear branches. In particular, we
generalized the existing algorithm in [14] and extended its application from polynomials
to analytic functions. The computational cost of our algorithm is at most that of the
function evaluation multiplied by an input-dimension-independent factor, for primitive
functions whose arities and maximum depths of branches are independent of the input
dimension. We believe that extending our algorithm to general functions (e.g., continuously
differentiable functions), general branches (e.g., nonlinear branches), and general programs
(e.g., programs with loops) will be an important future research direction.
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