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Abstract: A multivariate folded normal distribution is a distribution of the absolute value of a
Gaussian random vector. In this paper, we provide the marginal and conditional distributions of
the multivariate folded normal distribution, and also prove that independence and non-correlation
are equivalent for it. In addition, we provide a numerical approach using the R language to fit a
multivariate folded normal distribution. The accuracy of the estimated mean and variance parameters
is then examined. Finally, a real data application to body mass index data are presented.
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1. Introduction

Let X ∼ N (µ, σ2) be a normal random variable with a mean µ and a variance σ2. The
normal distribution has been widely used in various applications. However, as pointed out
by Leone et al. and Johnson [1,2], in many situations, the algebraic sign of measurements
is irretrievably lost. Consequently, the concept of a folded normal random variable arises
to describe the absolute value of a normal random variable. It is denoted by Y = |X| ∼
FN(µ, σ2), where µ and σ2 are parameters.

In recent decades, the folded normal distribution has been extensively discussed in
various applications. Applications include, but are not limited to, principal arc analysis
on direct product manifolds [3], asymmetric multivariate stochastic volatility models [4],
ongoing clinical trials while the randomized treatment codes remain blinded [5], fitting
insurance loss data [6], the determination of reliability density function when the failure
rate is a folded random variable [7], the detrended fluctuation analysis of EEG in detecting
cross-modal plasticity in the brain from blind and blindfolded normal individuals [8],
electromagnetic transport components and sheared flows in drift–Alfven turbulence [9],
and DNA interactions visualized using electron microscopy [10].

In addition to the widespread applications of the folded normal distribution, properties
including the characteristic and moment-generating functions, characteristics of stochastic
ordering, and the parameter estimations of µ and σ have also been discussed in [3,11–17].

Several studies have investigated the multivariate folded normal distribution. For
instance, Psarakis and Panaretos [18] generalized the folded normal distribution to the
bivariate case, where they proved that the marginal distributions of the bivariate folded stan-
dard normal distribution are folded standard normal distributions. Recently, Chakraborty
and Chatterjee [19] introduced the multivariate folded normal distribution, where the mean
vector, dispersion matrix, and the moment-generating function of the multivariate folded
normal distribution were derived and corrected later in Murthy [20]. To our knowledge,
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neither the marginal and conditional distributions nor the parameter estimation of the
multivariate folded normal distribution has been provided. In this paper, we will fill in
these gaps.

The rest of the paper is organized as follows. In Section 2, the properties of the
multivariate folded normal distribution are discussed. Specifically, we provide the marginal
and conditional distributions of the multivariate folded normal distribution and also prove
that independence and non-correlation are equivalent for the multivariate folded normal
distribution. In Section 3, the parameter estimations of the multivariate folded normal
distribution are investigated.

2. Properties of a Multivariate Folded Normal Distribution

In this section, the properties of a multivariate folded normal distribution are discussed.
Specifically, we provide the marginal and conditional distributions of the multivariate
folded normal distribution and also prove that independence and non-correlation are
equivalent for the multivariate folded normal distribution.

First, let us recall the definition of the n-dimensional folded normal random vector.
More details can be found in [19].

Definition 1. A random vector X = (X1, · · · , Xn)
′

is said to have a multivariate folded normal
distribution with a real vector µ ∈ Rn and a symmetric positive definite matrix Σn×n, if its
probability density function is given by

fX(x; µ, Σ) = ∑
s∈S(n)

(2π)−
n
2 |Σ|−

1
2 exp

{
−1

2

(
Λ

(n)
s x− µ

)′
Σ−1

(
Λ

(n)
s x− µ

)}
, x ≥ 0,

where
s = (s1, · · · , sn) ∈ S(n) = {(s1, · · · , sn) : si = ±1, i = 1, · · · , n}

represents a possible sign vector, and the diagonal sign matrix is Λ
(n)
s = diag(s1, · · · , sn). We

further denote X ∼ FNn(µ, Σ) for simplicity.

The parameters µ and Σ in the above definition are the mean vector and variance matrix
of the corresponding n-dimensional random vector with multivariate normal distribution
Nn(µ, Σ). Without loss of generality, we assume the variance matrix Σ is positive and
definite. Otherwise, Σ is singular, and the corresponding multivariate folded normal
distribution is degenerate.

Then, we derive the marginal and conditional density functions of a multivariate
folded normal distribution as follows.

Proposition 1. Let X ∼ FNn(µ, Σ). If X, µ, Σ and Λ
(n)
s are partitioned as follows,

X =

(
X1
X2

)
n×1

, µ =

(
µ1
µ2

)
n×1

, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
n×n

, Λ
(n)
s =

(
Λ

(k)
s1 0
0 Λ

(n−k)
s2

)
.

where 0 < k < n, X1 = (X1, · · · , Xk)
′ ∈ Rk×1, µ1 = (µ1, · · · , µk)

′ ∈ Rk×1, Σ11 ∈ Rk×k.
Σ22 ∈ R(n−k)×(n−k). In addition, s = (s1, s2) ∈ S(n) with

s1 = (s1, · · · , sk) ∈ S(k), s2 = (sk+1, · · · , sn) ∈ S(n− k) and Λ
(k)
s1 = diag(s1, · · · , sk) ∈ Rk×k.

Then

(1) X1 ∼ FNk(µ1, Σ11) and X2 ∼ FNn−k(µ2, Σ22).
(2) X1|X2 ∼ FNk(µ

∗
1 , Σ∗11), where

µ∗1 = µ1 + Σ12Σ−1
22

(
Λ

(n−k)
s2 X2 − µ2

)
, Σ∗11 = Σ11 − Σ12Σ−1

22 Σ21.
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Proof. (1) Let Y = (Y1, · · · , Yn)′ ∼ Nn(µ, Σ) be a multivariate normal random vector
satisfying

Xi = |Yi|, i = 1, · · · , n.

Then, we denote

X =

(
X1
X2

)
n×1

=

(
|Y1|
|Y2|

)
n×1

= |Y |.

According to the properties of the multivariate normal distribution, we have Y1 ∼ Nk(µ1, Σ11)
and Y2 ∼ Nn−k(µ2, Σ22). Thus,

X1 = |Y1| ∼ FNk(µ1, Σ11) and X2 = |Y2| ∼ FNn−k(µ2, Σ22).

(2)For (s1, s2) ∈ S(n), x =
(

x
′
1, x

′
2

)′
∈ Rn×1 with x1 ∈ Rk×1, we have

(
Λ

(n)
s x− µ

)′
Σ−1

(
Λ

(n)
s x− µ

)
=

((
Λ

(k)
s1 X1 − µ1

)′
,
(

Λ
(n−k)
s2 X2 − µ2

)′)(Σ11 Σ12
Σ21 Σ22

)−1
(

Λ
(k)
s1 X1 − µ1

Λ
(n−k)
s2 X2 − µ2

)
.

It is well known that the submatrix Σ22 > 0 if Σ is positive definite. Since the inverse of the
block matrix Σ is(

Σ11 Σ12

Σ21 Σ22

)−1

=

(
(Σ11 − Σ12Σ−1

22 Σ21)
−1 −(Σ11 − Σ12Σ−1

22 Σ21)
−1Σ12Σ−1

22
−Σ−1

22 Σ21(Σ11 − Σ12Σ−1
22 Σ21)

−1 Σ−1
22 + Σ−1

22 Σ21(Σ11 − Σ12Σ−1
22 Σ21)

−1Σ12Σ−1
22

)
,

we have(
Λ
(n)
s x− µ

)′
Σ−1

(
Λ
(n)
s x− µ

)
=

(
Λ
(k)
s1 x1 − µ1

)′
(Σ11 − Σ12Σ−1

22 Σ21)
−1
(

Λ
(k)
s1 x1 − µ1

)
+
(

Λ
(n−k)
s2 x2 − µ2

)′
Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

)
−2
(

Λ
(k)
s1 x1 − µ1

)′
(Σ11 − Σ12Σ−1

22 Σ21)
−1Σ12Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

)
+
(

Λ
(n−k)
s2 x2 − µ2

)′
Σ−1

22 Σ21(Σ11 − Σ12Σ−1
22 Σ21)

−1Σ12Σ−1
22

(
Λ
(n−k)
s2 x2 − µ2

)
=

(
Λ
(k)
s1 x1 − µ1 − Σ12Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

))′
(Σ11 − Σ12Σ−1

22 Σ21)
−1

×
(

Λ
(k)
s1 x1 − µ1 − Σ12Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

))
+
(

Λ
(n−k)
s2 x2 − µ2

)′
Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

)
=

(
Λ
(k)
s1 x1 − µ∗1

)′
(Σ∗11)

−1
(

Λ
(k)
s1 x1 − µ∗1

)
+
(

Λ
(n−k)
s2 x2 − µ2

)′
Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

)
,

where
µ∗1 = µ1 + Σ12Σ−1

22

(
Λ

(n−k)
s2 X2 − µ2

)
, Σ∗11 = Σ11 − Σ12Σ−1

22 Σ21.

Furthermore, the determinant of the block matrix Σ is∣∣∣∣(Σ11 Σ12
Σ21 Σ22

)∣∣∣∣ = |Σ22|
∣∣∣Σ11 − Σ12Σ−1

22 Σ21

∣∣∣ = |Σ22||Σ∗11|.
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For x = (x
′
1, x

′
2)
′ ∈ Rn×1 with x1 ∈ Rk×1, we have

fX (x; µ, Σ)

= ∑
s=(s1,s2)∈S(n)

(2π)−
n
2 |Σ|−

1
2 exp

{
−1

2

(
Λ
(n)
s x− µ

)′
Σ−1

(
Λ
(n)
s x− µ

)}
I{x>0}

= ∑
s1∈S(k)

(2π)−
k
2 |Σ∗11|−

1
2 exp

{
−1

2

(
Λ
(k)
s1 x1 − µ∗1

)′
(Σ∗11)

−1
(

Λ
(k)
s1 x1 − µ∗1

)}
I{x1>0}

× ∑
s2∈S(n−k)

(2π)−
n−k

2 |Σ22|−
1
2 exp

{
−1

2

(
Λ
(n−k)
s2 x2 − µ2

)′
Σ−1

22

(
Λ
(n−k)
s2 x2 − µ2

)}
I{x2>0}

= fX1|X2
(x1|x2; µ∗1 , Σ∗11)× fX2 (x2; µ2, Σ22).

Therefore, the conclusion follows.

In general, random variables may be uncorrelated but statistically dependent. How-
ever, when random variables are distributed with a multivariate normal distribution, being
uncorrelated is equivalent to being independent. The equivalence of independence and non-
correlation is demonstrated in Proposition 2 for the multivariate folded normal distribution.

Proposition 2. Let X ∼ FNn(µ, Σ). If X, µ, Σ and Λ
(n)
s are partitioned as follows:

X =

(
X1
X2

)
n×1

, µ =

(
µ1
µ2

)
n×1

, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
n×n

, Λ
(n)
s =

(
Λ

(k)
s1 0
0 Λ

(n−k)
s2

)
.

where 0 < k < n, X1 = (X1, · · · , Xk)
′ ∈ Rk×1, µ1 = (µ1, · · · , µk)

′ ∈ Rk×1, Σ11 ∈ Rk×k.
Σ22 ∈ R(n−k)×(n−k) and s = (s1, s2) ∈ S(n) with

s1 = (s1, · · · , sk) ∈ S(k), s2 = (sk+1, · · · , sn) ∈ S(n− k) and Λ
(k)
s1 = diag(s1, · · · , sk) ∈ Rk×k.

then X1 and X2 are independent if and only if Σ12 = 0.

Proof. The necessity is trivial because independent random vectors are uncorrelated. We
only prove the sufficiency. If Σ12 = 0, according to Proposition 1, we have X1|X2 ∼
FNk(µ1, Σ11). Therefore, X1 and X2 are independent. This completes the proof of the
proposition.

3. Parameter Estimation

Suppose that we have an independently and identically distributed data set
D = {x1, · · · , xm} sampled from a multivariate folded normal distribution FNn(µ, Σ). This
section discusses the parameter estimations of µ and Σ via maximum likelihood.

First, of all, the log-likelihood function is the logarithm of the product of m multivariate
folded normal density functions in the following.

l(µ, Σ|D) = −mn
2

log(2π)− m
2

log |Σ|

+
m

∑
i=1

log

 ∑
s∈S(n)

exp
{
−1

2

(
Λ

(n)
s xi − µ

)′
Σ−1

(
Λ

(n)
s xi − µ

)}, xi ≥ 0.
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Taking the derivative with respect to matrices µ and Σ separately, we can derive Equation (1)
as follows.

∂l
∂µ =

m
∑

i=1

∑
s∈S(n)

exp
{
− 1

2

(
Λ

(n)
s xi−µ

)′
Σ−1

(
Λ

(n)
s xi−µ

)}
Σ−1(Λ

(n)
s xi−µ)

∑
s∈S(n)

exp
{
− 1

2

(
Λ

(n)
s xi−µ

)′
Σ−1

(
Λ

(n)
s xi−µ

)}

∂l
∂Σ

= −m
2 Σ−1 + 1

2

m
∑

i=1

∑
s∈S(n)

exp
{
− 1

2

(
Λ

(n)
s xi−µ

)′
Σ−1

(
Λ

(n)
s xi−µ

)}
·Σ−1(Λ

(n)
s xi−µ)(Λ

(n)
s xi−µ)′Σ−1

∑
s∈S(n)

exp
{
− 1

2

(
Λ

(n)
s xi−µ

)′
Σ−1

(
Λ

(n)
s xi−µ

)}
(1)

Unfortunately, no analytical solutions exist for Equation (1) even for the univariate
folded normal distribution when setting them to zero. As a result, numerical solutions are
necessary to approximate the solutions. Various algorithms have been developed for the uni-
variate case, such as the EM algorithm proposed by Jung et al. [3,21] in Matlab, and Newton-
type optimization algorithms introduced by Tsagris et al. and MacDonald [11,13,14] in
the R language [22]. However, to the best of our knowledge, no algorithm has been pro-
vided to solve the maximum likelihood estimators (MLEs) of a multivariate folded normal
distribution.

Motivated by the Newton-type optimization algorithms in Tsagris et al. and
MacDonald [11,13,14], we employ the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm, which is a popular quasi-Newton optimization method, to fit a multivariate folded
normal distribution.

Theoretically, we assume that the covariance matrix Σ is positive definite. However,
this assumption may not always hold in numerical realization during the parameter es-
timation process, leading to meaningless estimations. To address this issue, we apply
reparameterization using Cholesky decomposition on Σ to ensure that Σ remains positive
definite. Specifically, we express Σ as LL

′
, where L is a lower triangular matrix. Since Σ > 0

is equivalent to rank(L) = n and diag(L) 6= 0, we assume in the numerical realization
that diag(L) 6= 0 to ensure the positive definiteness of Σ. By substituting LL

′
for Σ, the

estimation equations follow as shown in (2).

m
∑

i=1

∑
s∈S(n)

exp

{
− 1

2

(
Λ
(n)
s xi−µ

)′
(LL

′
)−1
(

Λ
(n)
s xi−µ

)}
(LL

′
)−1(Λ

(n)
s xi−µ)

∑
s∈S(n)

exp
{
− 1

2

(
Λ
(n)
s xi−µ

)′
(LL′ )−1

(
Λ
(n)
s xi−µ

)} = 0

m
2 (LL

′
)−1 − 1

2

m
∑

i=1

∑
s∈S(n)

exp

{
− 1

2

(
Λ
(n)
s xi−µ

)′
(LL

′
)−1
(

Λ
(n)
s xi−µ

)}
·(LL

′
)−1(Λ

(n)
s xi−µ)(Λ

(n)
s xi−µ)′(LL

′
)−1

∑
s∈S(n)

exp
{
− 1

2

(
Λ
(n)
s xi−µ

)′
(LL′ )−1

(
Λ
(n)
s xi−µ

)} = 0

(2)

Our algorithm to derive the MLEs of a multivariate folded normal distribution is written
in R language [22] and is available at https://github.com/yfyang86/rfnorm/(accessed
date 6 October 2023).

3.1. Simulation Studies

Numerical simulations are conducted to demonstrate the value and the accuracy of
estimated parameters of a multivariate folded normal distribution.

3.1.1. An Example of Estimating Parameters

We began by generating 100 samples from a bivariate folded normal distribution with

mean parameters µ = (4, 6) and the covariance matrix Σ given by:
[

1 0.4
0.4 4

]
.

Next, we computed the sample means and performed Cholesky decomposition on the
sample covariance matrix to obtain the lower triangular matrix as the initial values. Using
our algorithm, we obtained the maximum likelihood estimators (MLEs) for the bivariate
folded normal distribution as follows:

https://github.com/yfyang86/rfnorm/
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Estimated means: û = (4.1274, 6.1667)

Estimated covariance matrix: Σ̂=
[

0.9412 0.3998
0.3998 3.2814

]
.

These results highlight the accuracy of our estimation method in capturing the under-
lying parameters of the bivariate folded normal distribution based on the given samples.

3.1.2. Accuracy of Estimated Parameters

Additional simulations are performed to assess the accuracy of the estimated param-
eter values through confidence intervals for both bivariate and four-dimensional folded
normal distributions. In this context, the term “accuracy” refers to the estimated coverage
probability of the 95% confidence intervals for the parameters. Following the approach of
Tsagris et al. [11], 95% confidence intervals are calculated using the normal approximation,
where the variance matrix is estimated using the inverse of the Hessian matrix.

In each scenario of the following simulations, we conducted 1000 repeated experi-
ments, varying the sample sizes from 20 to 100. The ratios of mean to standard deviation
are denoted by θ = (θ1, · · · , θn), where θi =

µi
σi

. Here, n = 2 represents the bivariate case,
while n = 4 corresponds to the four-dimensional case.

The results of the simulations for the bivariate case are summarized in Table 1. These
tables provide a comprehensive overview of the various simulation scenarios and the
corresponding accuracy of the estimated parameter values based on the 95% confidence
intervals.

Table 1. A summary of simulations (n = 2).

Scenario Values of µ Value of Σ Values of θ

Table Index of
Accuracy of Estimated

Mean and Variance
Parameters

Noted Changes
(Comparing with Baseline)

1

(2.5, 2.5),
(5, 5),

(7.5, 7.5),
(10, 10),

(12.5, 12.5)

[
25 5
5 25

] (0.5, 0.5),
(1, 1),

(1.5, 1.5),
(2, 2),

(2.5, 2.5)

Tables 2 and 3 Baseline
(µ1 = µ2, θ1 = θ2, σ1 = σ2)

2

(2.5, 12.5),
(5, 12.5),
(7.5, 12.5),
(10, 12.5),
(12.5, 12.5)

[
25 5
5 25

] (0.5, 2.5),
(1, 2.5),
(1.5, 2.5),
(2, 2.5),
(2.5, 2.5)

Tables A1 and A2 µ1 ≤ µ2, θ1 ≤ θ2, σ1 = σ2

3

(2, 2.5),
(4, 5),
(6, 7.5),
(8, 10),
(10, 12.5)

[
16 4
4 25

] (0.5, 0.5),
(1, 1),

(1.5, 1.5),
(2, 2),

(2.5, 2.5)

Tables A3 and A4 µ1 < µ2, θ1 = θ2, σ1 < σ2

4

(2.5, 2.5),
(5, 5),

(7.5, 7.5),
(10, 10),

(12.5, 12.5)

[
25 24.9

24.9 25

] (0.5, 0.5),
(1, 1),

(1.5, 1.5),
(2, 2),

(2.5, 2.5)

Tables A5 and A6 eigen(Σ) = 49.9, 0.1

As shown in Table 1, considering a bivariate case, four scenarios are simulated in
total. The first scenario is a baseline in our simulations for a bivariate case, which is
compared with each of the remaining three simulated scenarios. In the first scenario, we
set µ1 = µ2, σ1 = σ2 and thus θ1 = θ2. The values of (θ1, θ2) range from 0.5 to 2.5, and the

covariance matrix is fixed to
[

25 5
5 25

]
.

Table 2 shows the coverage of the 95% confidence intervals for the mean parameters
µ = (µ1, µ2) at different pairs of sample sizes and ratios for the bivariate folded normal
distribution. The rows correspond to the sample size, whereas the columns correspond to
the ratio vectors (θ1, θ2).
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Table 2. Estimated coverage probability of the 95% confidence intervals of the mean parameters.

Values of (θ1, θ2)
Sample Size (0.5, 0.5) (1, 1) (1.5, 1.5) (2, 2) (2.5, 2.5)

20 (0.68, 0.67) (0.90, 0.88) (0.94, 0.93) (0.94, 0.94) (0.94, 0.94)
30 (0.67, 0.67) (0.87, 0.89) (0.93, 0.94) (0.94, 0.95) (0.93, 0.94)
40 (0.71, 0.71) (0.92, 0.89) (0.95, 0.94) (0.93, 0.94) (0.94, 0.93)
50 (0.69, 0.71) (0.91, 0.90) (0.96, 0.94) (0.94, 0.94) (0.94, 0.93)
60 (0.70, 0.68) (0.90, 0.92) (0.94, 0.95) (0.95, 0.94) (0.95, 0.94)
70 (0.73, 0.72) (0.90, 0.91) (0.95, 0.95) (0.94, 0.94) (0.94, 0.94)
80 (0.74, 0.71) (0.91, 0.90) (0.96, 0.95) (0.94, 0.94) (0.94, 0.94)
90 (0.72, 0.73) (0.92, 0.91) (0.96, 0.96) (0.96, 0.96) (0.95, 0.96)
100 (0.70, 0.69) (0.92, 0.90) (0.96, 0.96) (0.94, 0.95) (0.94, 0.95)

Table 3 shows the coverage of the 95% confidence intervals for the variance parameters
(Σ11, Σ21, Σ22) at different pairs of sample sizes and ratios for the bivariate folded normal

distribution, where Σ =

(
Σ11 Σ21
Σ21 Σ22

)
. The rows correspond to the sample size, whereas

the columns correspond to the ratio vectors (θ1, θ2).

Table 3. Estimated coverage probability of the 95% confidence intervals of the variance parameters.

Values of (θ1, θ2)
Sample Size (0.5, 0.5) (1, 1) (1.5, 1.5) (2, 2) (2.5, 2.5)

20 (0.71, 0.75, 0.69) (0.81, 0.86, 0.80) (0.86, 0.93, 0.86) (0.87, 0.94, 0.88) (0.88, 0.94, 0.87)
30 (0.72, 0.79, 0.70) (0.83, 0.88, 0.82) (0.87, 0.94, 0.87) (0.89, 0.95, 0.89) (0.91, 0.94, 0.91)
40 (0.76, 0.81, 0.76) (0.84, 0.91, 0.84) (0.90, 0.94, 0.89) (0.91, 0.94, 0.91) (0.93, 0.96, 0.92)
50 (0.77, 0.78, 0.78) (0.85, 0.91, 0.85) (0.90, 0.95, 0.91) (0.93, 0.97, 0.92) (0.94, 0.98, 0.97)
60 (0.77, 0.80, 0.77) (0.83, 0.90, 0.84) (0.89, 0.95, 0.91) (0.91, 0.94, 0.92) (0.91, 0.95, 0.92)
70 (0.78, 0.80, 0.77) (0.84, 0.90, 0.85) (0.92, 0.94, 0.91) (0.92, 0.96, 0.91) (0.92, 0.96, 0.91)
80 (0.77, 0.79, 0.76) (0.86, 0.90, 0.84) (0.93, 0.94, 0.91) (0.94, 0.94, 0.92) (0.92, 0.94, 0.92)
90 (0.79, 0.78, 0.78) (0.87, 0.91, 0.86) (0.93, 0.96, 0.93) (0.94, 0.95, 0.93) (0.94, 0.95, 0.93)

100 (0.79, 0.80, 0.74) (0.86, 0.92, 0.85) (0.93, 0.96, 0.93) (0.94, 0.96, 0.93) (0.93, 0.96, 0.93)

Tables 2 and 3 show that the accuracy of estimated mean and variance parameters
slightly increases when sample size increases, while it dramatically increases and reaches
the desired nominal 95% when the ratios of the mean to standard deviation increase.

We also derive similar Tables A1–A6 (in Appendix A) for the remaining three sce-
narios. Fixing the variances while increasing the µ2 and θ2 in the second scenario, the
accuracy of the estimated µ2 and Σ22 dramatically increases, especially when θ1 is less than
1 (Tables A1 and A2). Fixing the θ while increasing µ2 and σ2 in the third scenario, the
accuracy of estimated mean and variance parameters are almost equal to that in the first
scenario (Tables A3 and A4). Our algorithm works when Σ is nearly singular in the fourth
scenario. The accuracy of estimated mean parameters is similar to that of the first scenario.
However, the accuracy of the estimated variance parameters dramatically decreases, which
can increase when the sample size increases (Tables A5 and A6). The above findings are
summarized in the following table (Table 4).
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Table 4. A summary of findings in simulations (n = 2).

Scenario Values of µ Value of Σ Values of θ

Table Index of
Accuracy of Estimated

Mean and Variance
Parameters

Noted Settings
(Compared with Baseline)

Accuracy of Estimated
Mean and Variance

Parameters
(Compared with Baseline)

1

(2.5, 2.5),
(5, 5),

(7.5, 7.5),
(10, 10),

(12.5, 12.5)

[
25 5
5 25

] (0.5, 0.5),
(1, 1),

(1.5, 1.5),
(2, 2),

(2.5, 2.5)

Tables 2 and 3 Baseline
(µ1 = µ2, θ1 = θ2, σ1 = σ2)

increases for mean and variance
if sample size increases

or θi increases

2

(2.5, 12.5),
(5, 12.5),
(7.5, 12.5),
(10, 12.5),
(12.5, 12.5)

[
25 5
5 25

] (0.5, 2.5),
(1, 2.5),
(1.5, 2.5),
(2, 2.5),
(2.5, 2.5)

Tables A1 and A2 µ1 ≤ µ2, θ1 ≤ θ2, σ1 = σ2 increases for µ2 and Σ22 when θ1 < 1

3

(2, 2.5),
(4, 5),
(6, 7.5),
(8, 10),
(10, 12.5)

[
16 4
4 25

] (0.5, 0.5),
(1, 1),

(1.5, 1.5),
(2, 2),

(2.5, 2.5)

Tables A3 and A4 µ1 < µ2, θ1 = θ2, σ1 < σ2 almost equal to baseline

4

(2.5, 2.5),
(5, 5),

(7.5, 7.5),
(10, 10),

(12.5, 12.5)

[
25 24.9

24.9 25

] (0.5, 0.5),
(1, 1),

(1.5, 1.5),
(2, 2),

(2.5, 2.5)

Tables A5 and A6 eigen(Σ) = 49.9, 0.1 almost equal to baseline for mean,
decreases for variance

Like the bivariate case, the settings in the four-dimensional case are as follows. The ra-
tios of mean to standard deviation (θ1, θ2, θ3, θ4) range from 0.5 to 2.5, with
θi = ui

δi
, i = 1, 2, 3, 4. Tables 5 and 6 show the coverage of the 95% confidence inter-

vals for mean parameters µ = (µ1, µ2, µ3, µ4) and the variance parameters at different
pairs of sample size and ratios for the four-dimensional folded normal distribution. The
rows correspond to the sample size, whereas the columns correspond to the ratio vectors
(θ1, θ2, θ3, θ4). The variance parameters are (Σ11, Σ21, Σ22, Σ31, Σ32, Σ33, Σ41, Σ42, Σ43, Σ44),
where the (i, j)−th element of Σ is Σij. Here, i, j ∈ {1, 2, 3, 4}.

As indicated in Tables 5 and 6, similar to the findings in the bivariate case, the accuracy
of the estimated mean, and variance parameters exhibit a slight improvement as the sample
size increases. However, a dramatically improvement is observed when the ratios of the
mean to standard deviation increase, eventually reaching the desired nominal 95% coverage
probability. These results highlight the impact of both sample size and the ratios of mean
to standard deviation on the accuracy of parameter estimation in the multivariate folded
normal distributions.

Table 5. Estimated coverage probability of the 95% confidence intervals of the mean parameters.

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1) (1.5, 1.5, 1.5, 1.5) (2, 2, 2, 2) (2.5, 2.5, 2.5, 2.5)

20 (0.66, 0.68, 0.66, 0.67) (0.81, 0.82, 0.83, 0.83) (0.90, 0.92, 0.90, 0.91) (0.92, 0.94, 0.93, 0.93) (0.93, 0.94, 0.93, 0.93)
30 (0.64, 0.64, 0.63, 0.66) (0.80, 0.84, 0.83, 0.82) (0.94, 0.92, 0.92, 0.92) (0.94, 0.93, 0.93, 0.93) (0.94, 0.93, 0.93, 0.94)
40 (0.61, 0.63, 0.63, 0.64) (0.82, 0.80, 0.82, 0.86) (0.93, 0.93, 0.92, 0.94) (0.94, 0.94, 0.93, 0.95) (0.94, 0.94, 0.92, 0.94)
50 (0.64, 0.61, 0.62, 0.62) (0.83, 0.84, 0.82, 0.83) (0.94, 0.94, 0.93, 0.94) (0.95, 0.94, 0.94, 0.95) (0.95, 0.94, 0.94, 0.94)
60 (0.64, 0.63, 0.63, 0.62) (0.85, 0.84, 0.83, 0.84) (0.94, 0.95, 0.94, 0.95) (0.94, 0.94, 0.94, 0.95) (0.94, 0.94, 0.94, 0.95)
70 (0.62, 0.61, 0.60, 0.60) (0.85, 0.84, 0.82, 0.85) (0.94, 0.96, 0.94, 0.95) (0.94, 0.96, 0.93, 0.95) (0.93, 0.96, 0.94, 0.95)
80 (0.62, 0.63, 0.63, 0.59) (0.86, 0.86, 0.86, 0.85) (0.96, 0.95, 0.95, 0.95) (0.95, 0.94, 0.94, 0.94) (0.94, 0.95, 0.94, 0.95)
90 (0.64, 0.63, 0.60, 0.61) (0.87, 0.86, 0.86, 0.89) (0.96, 0.95, 0.96, 0.95) (0.95, 0.95, 0.96, 0.95) (0.95, 0.95, 0.95, 0.95)

100 (0.63, 0.62, 0.61, 0.60) (0.89, 0.89, 0.87, 0.87) (0.95, 0.96, 0.93, 0.96) (0.95, 0.95, 0.94, 0.96) (0.95, 0.95, 0.94, 0.96)
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Table 6. Estimated coverage probability of the 95% confidence intervals of the variance parameters.

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1) (1.5, 1.5, 1.5, 1.5) (2, 2, 2, 2) (2.5, 2.5, 2.5, 2.5)

20


0.73
0.77 0.73
0.78 0.75 0.73
0.75 0.78 0.74 0.72




0.79
0.83 0.79
0.83 0.83 0.80
0.82 0.84 0.83 0.81




0.81
0.93 0.84
0.92 0.92 0.82
0.90 0.91 0.90 0.84




0.85
0.95 0.85
0.94 0.94 0.86
0.93 0.95 0.92 0.86




0.85
0.96 0.87
0.94 0.94 0.87
0.94 0.95 0.93 0.86


50


0.77
0.71 0.78
0.74 0.73 0.75
0.72 0.75 0.73 0.76




0.78
0.85 0.79
0.87 0.88 0.78
0.87 0.87 0.86 0.80




0.90
0.94 0.88
0.94 0.94 0.89
0.94 0.95 0.95 0.90




0.92
0.93 0.90
0.95 0.95 0.92
0.95 0.96 0.95 0.91




0.91
0.94 0.91
0.94 0.95 0.92
0.94 0.95 0.95 0.90


100


0.76
0.72 0.79
0.71 0.72 0.76
0.72 0.71 0.75 0.75




0.84
0.80 0.82
0.91 0.89 0.80
0.90 0.92 0.91 0.82




0.93
0.96 0.93
0.96 0.94 0.92
0.96 0.96 0.94 0.93




0.94
0.96 0.93
0.96 0.95 0.93
0.96 0.95 0.94 0.93




0.94
0.96 0.94
0.96 0.95 0.92
0.96 0.95 0.94 0.94



In addition to Tables 5 and 6, we obtained similar Tables A7–A12 (in Appendix A)
from simulated scenarios 6–8. The findings are summarized as follows (Table 7).

Table 7. A summary of findings in simulations (n = 4).

Scenario Values of µ Value of Σ Values of θ

Table Index of
Accuracy of Estimated

Mean and Variance
Parameters

Noted Changes
(Comparing with Baseline)

Accuracy of Estimated
Mean and Variance

Parameters
(Comparing with Baseline)

5

(2.5, 2.5, 2.5, 2.5),
(5, 5, 5, 5),

(7.5, 7.5, 7.5, 7.5),
(10, 10, 10, 10),

(12.5, 12.5, 12.5, 12.5)


25 5 5 5
5 25 5 5
5 5 25 5
5 5 5 25


(0.5, 0.5, 0.5, 0.5),

(1, 1, 1, 1),
(1.5, 1.5, 1.5, 1.5),

(2, 2, 2, 2),
(2.5, 2.5, 2.5, 2.5)

Tables 5 and 6

Baseline
µ1 = µ2 = µ3 = µ4,
θ1 = θ2 = θ3 = θ4,
σ1 = σ2 = σ3 = σ4

increases for mean and variance
if Sample size increases

or θi increases

6

(2.5, 2.5, 2.5, 12.5),
(5, 5, 5, 12.5),

(7.5, 7.5, 7.5, 12.5),
(10, 10, 10, 12.5),

(12.5, 12.5, 12.5, 12.5)


25 5 5 5
5 25 5 5
5 5 25 5
5 5 5 25


(0.5, 0.5, 0.5, 2.5),

(1, 1, 1, 2.5),
(1.5, 1.5, 1.5, 2.5),

(2, 2, 2, 2.5),
(2.5, 2.5, 2.5, 2.5)

Tables A7 and A8
µ1 = µ2 = µ3 ≤ µ4,
θ1 = θ2 = θ3 ≤ θ4,
σ1 = σ2 = σ3 = σ4

increases for µ4 and Σ44
when θi < 1, i = 1, 2, 3.

7

(2, 2, 2, 2.5),
(4, 4, 4, 5),
(6, 6, 6, 7.5),
(8, 8, 8, 10),

(10, 10, 10, 12.5)


16 4 4 4
4 16 4 4
4 4 16 4
4 4 4 25


(0.5, 0.5, 0.5, 0.5),

(1, 1, 1, 1),
(1.5, 1.5, 1.5, 1.5),

(2, 2, 2, 2),
(2.5, 2.5, 2.5, 2.5)

Tables A9 and A10
µ1 = µ2 = µ3 < µ4,
θ1 = θ2 = θ3 = θ4,
σ1 = σ2 = σ3 < σ4

almost equal to baseline

8

(2.5, 2.5, 2.5, 2.5),
(5, 5, 5, 5),

(7.5, 7.5, 7.5, 7.5),
(10, 10, 10, 10),

(12.5, 12.5, 12.5, 12.5)


25 24.9 24.9 24.9

24.9 25 24.9 24.9
24.9 24.9 25 24.9
24.9 24.9 24.9 25


(0.5, 0.5, 0.5, 0.5),

(1, 1, 1, 1),
(1.5, 1.5, 1.5, 1.5),

(2, 2, 2, 2),
(2.5, 2.5, 2.5, 2.5)

Tables A11 and A12 eigen(Σ) = 99.7, 0.1, 0.1, 0.1 almost equal to baseline for mean,
decreases for variance

3.2. Real Data Application

We applied our algorithm to fit a bivariate folded normal distribution on real data.
The real data contains 700 observations of body mass index and age of New Zealand adults,
which can be accessed through the R package VGAM [23], as introduced by Tsagris et
al. [11]. These observations were sampled from the Fletcher Challenge/Auckland Heart
and Health survey. Further details regarding the real data can be found in [24]. Figure 1
presents two panels of perspective plots that visualize the three-dimensional density of the
observations. The left panel displays the parametric density, specifically the folded normal
density, while the right panel showcases the non-parametric density based on the kernel
density estimation of the observations. These plots provide a visual representation of the
distribution of the real data in both the parametric and non-parametric contexts.

Applying our algorithm to fit the real data, we obtained the estimated mean of age
and BMI of 43.74 and 26.69, respectively. The estimate of the corresponding covariance

matrix is Σ =

(
202.57 3.76

3.76 21.33

)
.
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Figure 1. The perspective plot on the left shows the fitted folded normal density, and the perspective
plot on the right shows the kernel density of the observations.

4. Conclusions

In this paper, we have established the marginal and conditional distributions of
the multivariate folded normal distribution, which serves as a fundamental probability
property for further investigations and applications involving this distribution. Notably,
we have demonstrated an interesting result that independence and non-correlation are
equivalent concepts within the multivariate folded normal distribution framework.

Furthermore, we have presented a numerical approach implemented in the R language,
utilizing the BFGS algorithm, to fit a multivariate folded normal distribution. To assess
the accuracy of parameter estimation, we have employed simulation studies to obtain
confidence intervals based on asymptotic theory. Through the simulations, we evaluated
the coverage of these confidence intervals for the mean and variance parameters across
eight different scenarios. We observed that in cases with small sample sizes or when the
ratio of the mean to the standard deviation was lower than 1, the coverage of the confidence
intervals was lower than the desired nominal level.

Additionally, we have showcased a real data application of the bivariate folded nor-
mal distribution to body mass index data. This application serves as empirical evidence
supporting the efficient utilization of the multivariate folded normal distribution for fitting
non-negative data.

Overall, this paper contributes to the understanding and practical implementation
of the multivariate folded normal distribution, highlighting its potential applications and
providing insights into parameter estimation and inference. Further research can focus on
developing robust estimation methods and improving the accuracy of confidence intervals,
particularly in cases with small sample sizes or challenging data characteristics.
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Appendix A

This section reports the tables of the accuracy of estimated mean and variance parame-
ters in simulated scenarios 2–4 and 6–8, respectively.
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In the second scenario, we set µ1 ≤ µ2, σ1 = σ2 and thus θ1 ≤ θ2. The values of (θ1, θ2)

range from 0.5 to 2.5, and the covariance matrix is fixed to Σ =

[
25 5
5 25

]
. The accuracy of

estimated mean and variance parameters are in Tables A1 and A2.

Table A1. Estimated coverage probability of the 95% confidence intervals of the mean parameters
(Scenario 2).

Values of (θ1, θ2)
Sample Size (0.5, 2.5) (1, 2.5) (1.5, 2.5) (2, 2.5) (2.5, 2.5)

20 (0.72, 0.94) (0.90, 0.94) (0.94, 0.94) (0.94, 0.94) (0.94, 0.94)
30 (0.73, 0.95) (0.88, 0.95) (0.93, 0.95) (0.94, 0.95) (0.93, 0.95)
40 (0.79, 0.94) (0.93, 0.94) (0.95, 0.94) (0.93, 0.94) (0.93, 0.94)
50 (0.78, 0.94) (0.91, 0.93) (0.96, 0.93) (0.94, 0.93) (0.94, 0.93)
60 (0.77, 0.94) (0.90, 0.94) (0.95, 0.94) (0.95, 0.94) (0.95, 0.94)
70 (0.77, 0.94) (0.90, 0.94) (0.95, 0.94) (0.94, 0.94) (0.94, 0.94)
80 (0.78, 0.94) (0.91, 0.94) (0.96, 0.94) (0.94, 0.94) (0.94, 0.94)
90 (0.78, 0.96) (0.93, 0.96) (0.96, 0.96) (0.96, 0.96) (0.95, 0.96)

100 (0.78, 0.95) (0.93, 0.95) (0.95, 0.95) (0.94, 0.95) (0.94, 0.95)

Table A2. Estimated coverage probability of the 95% confidence intervals of the variance parameters
(Scenario 2).

Values of (θ1, θ2)
Sample Size (0.5, 2.5) (1, 2.5) (1.5, 2.5) (2, 2.5) (2.5, 2.5)

20 (0.74, 0.84, 0.87) (0.83, 0.91, 0.87) (0.86, 0.94, 0.87) (0.87, 0.94, 0.87) (0.88, 0.94, 0.87)
30 (0.76, 0.86, 0.88) (0.83, 0.90, 0.88) (0.87, 0.94, 0.88) (0.89, 0.96, 0.88) (0.90, 0.96, 0.88)
40 (0.80, 0.87, 0.91) (0.84, 0.90, 0.91) (0.90, 0.93, 0.91) (0.91, 0.94, 0.91) (0.91, 0.94, 0.91)
50 (0.81, 0.87, 0.92) (0.85, 0.93, 0.92) (0.91, 0.96, 0.92) (0.93, 0.96, 0.92) (0.93, 0.96, 0.92)
60 (0.81, 0.86, 0.92) (0.84, 0.92, 0.92) (0.89, 0.94, 0.92) (0.91, 0.95, 0.92) (0.91, 0.95, 0.92)
70 (0.81, 0.85, 0.91) (0.84, 0.91, 0.91) (0.91, 0.95, 0.91) (0.92, 0.95, 0.91) (0.92, 0.96, 0.91)
80 (0.82, 0.87, 0.92) (0.86, 0.92, 0.92) (0.93, 0.94, 0.92) (0.94, 0.94, 0.92) (0.92, 0.94, 0.92)
90 (0.82, 0.86, 0.93) (0.87, 0.92, 0.93) (0.93, 0.96, 0.93) (0.94, 0.95, 0.93) (0.94, 0.95, 0.93)

100 (0.82, 0.87, 0.93) (0.86, 0.93, 0.93) (0.93, 0.96, 0.93) (0.94, 0.96, 0.93) (0.93, 0.96, 0.93)

In the third scenario, we set µ1 < µ2, σ1 < σ2 and θ1 = θ2. The values of (θ1, θ2)

range from 0.5 to 2.5, and the covariance matrix is fixed to Σ =

[
16 4
4 25

]
. The accuracy of

estimated mean and variance parameters are in Tables A3 and A4.

Table A3. Estimated coverage probability of the 95% confidence intervals of the mean parameters
(Scenario 3).

Values of (θ1, θ2)
Sample Size (0.5, 0.5) (1, 1) (1.5, 1.5) (2, 2) (2.5, 2.5)

20 (0.66, 0.70) (0.89, 0.90) (0.94, 0.94) (0.94, 0.95) (0.94, 0.95)
30 (0.66, 0.66) (0.87, 0.89) (0.94, 0.95) (0.93, 0.94) (0.93, 0.94)
40 (0.71, 0.72) (0.91, 0.90) (0.96, 0.95) (0.94, 0.94) (0.93, 0.94)
50 (0.71, 0.69) (0.89, 0.90) (0.95, 0.95) (0.93, 0.94) (0.93, 0.94)
60 (0.67, 0.73) (0.90, 0.92) (0.96, 0.95) (0.95, 0.94) (0.94, 0.94)
70 (0.70, 0.72) (0.89, 0.91) (0.95, 0.95) (0.95, 0.95) (0.95, 0.94)
80 (0.71, 0.74) (0.91, 0.91) (0.95, 0.94) (0.94, 0.94) (0.94, 0.94)
90 (0.72, 0.73) (0.92, 0.90) (0.97, 0.96) (0.96, 0.96) (0.96, 0.96)

100 (0.71, 0.72) (0.90, 0.92) (0.94, 0.96) (0.94, 0.96) (0.93, 0.95)
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Table A4. Estimated coverage probability of the 95% confidence intervals of the variance parameters
(Scenario 3).

Values of (θ1, θ2)
Sample Size (0.5, 0.5) (1, 1) (1.5, 1.5) (2, 2) (2.5, 2.5)

20 (0.70, 0.78, 0.70) (0.81, 0.87, 0.81) (0.86, 0.93, 0.85) (0.87, 0.95, 0.87) (0.87, 0.95, 0.86)
30 (0.72, 0.77, 0.70) (0.82, 0.86, 0.82) (0.88, 0.94, 0.87) (0.89, 0.96, 0.88) (0.89, 0.95, 0.89)
40 (0.77, 0.80, 0.76) (0.82, 0.89, 0.84) (0.88, 0.95, 0.89) (0.90, 0.95, 0.90) (0.91, 0.96, 0.90)
50 (0.78, 0.77, 0.76) (0.84, 0.91, 0.85) (0.90, 0.96, 0.91) (0.92, 0.96, 0.92) (0.92, 0.95, 0.92)
60 (0.75, 0.77, 0.78) (0.85, 0.90, 0.87) (0.90, 0.94, 0.91) (0.92, 0.95, 0.92) (0.92, 0.95, 0.92)
70 (0.78, 0.79, 0.79) (0.84, 0.88, 0.84) (0.92, 0.94, 0.90) (0.93, 0.94, 0.91) (0.94, 0.94, 0.91)
80 (0.80, 0.79, 0.80) (0.87, 0.91, 0.86) (0.93, 0.94, 0.91) (0.94, 0.95, 0.90) (0.94, 0.95, 0.91)
90 (0.79, 0.79, 0.78) (0.86, 0.90, 0.87) (0.93, 0.95, 0.93) (0.93, 0.95, 0.93) (0.92, 0.94, 0.94)

100 (0.78, 0.78, 0.78) (0.86, 0.92, 0.87) (0.93, 0.97, 0.93) (0.93, 0.97, 0.93) (0.93, 0.97, 0.93)

In the fourth scenario, we consider a near singular scenario. The values of (θ1, θ2)

range from 0.5 to 2.5, and the covariance matrix is fixed to Σ =

[
25 24.9

24.9 25

]
. The accuracy

of estimated mean and variance parameters are in Tables A5 and A6.

Table A5. Estimated coverage probability of the 95% confidence intervals of the mean parameters
(Scenario 4).

Values of (θ1, θ2)
Sample Size (0.5, 0.5) (1, 1) (1.5, 1.5) (2, 2) (2.5, 2.5)

20 (0.73, 0.74) (0.91, 0.91) (0.94, 0.94) (0.95, 0.95) (0.95, 0.94)
30 (0.71, 0.71) (0.91, 0.91) (0.94, 0.94) (0.94, 0.94) (0.94, 0.94)
40 (0.74, 0.73) (0.92, 0.92) (0.94, 0.94) (0.94, 0.94) (0.94, 0.94)
50 (0.71, 0.72) (0.92, 0.92) (0.94, 0.94) (0.93, 0.94) (0.93, 0.93)
60 (0.76, 0.76) (0.91, 0.91) (0.95, 0.95) (0.94, 0.94) (0.94, 0.94)
70 (0.73, 0.73) (0.92, 0.92) (0.94, 0.94) (0.94, 0.94) (0.94, 0.94)
80 (0.76, 0.76) (0.93, 0.92) (0.95, 0.95) (0.95, 0.95) (0.95, 0.95)
90 (0.75, 0.76) (0.92, 0.92) (0.96, 0.96) (0.95, 0.96) (0.96, 0.96)

100 (0.71, 0.71) (0.92, 0.92) (0.95, 0.95) (0.94, 0.94) (0.95, 0.94)

Table A6. Estimated coverage probability of the 95% confidence intervals of the variance parameters
(Scenario 4).

Values of (θ1, θ2)
Sample Size (0.5, 0.5) (1, 1) (1.5, 1.5) (2, 2) (2.5, 2.5)

20 (0.58, 0.58, 0.59) (0.74, 0.75, 0.74) (0.82, 0.82, 0.82) (0.84, 0.84, 0.84) (0.85, 0.84, 0.84)
30 (0.62, 0.61, 0.61) (0.78, 0.79, 0.78) (0.85, 0.85, 0.85) (0.88, 0.87, 0.87) (0.87, 0.88, 0.88)
40 (0.69, 0.69, 0.69) (0.84, 0.83, 0.83) (0.88, 0.88, 0.88) (0.89, 0.89, 0.89) (0.89, 0.89, 0.89)
50 (0.69, 0.69, 0.70) (0.84, 0.84, 0.84) (0.90, 0.90, 0.90) (0.92, 0.92, 0.92) (0.93, 0.92, 0.92)
60 (0.72, 0.73, 0.73) (0.86, 0.86, 0.85) (0.89, 0.90, 0.90) (0.91, 0.91, 0.91) (0.92, 0.92, 0.92)
70 (0.72, 0.72, 0.72) (0.85, 0.86, 0.85) (0.88, 0.88, 0.88) (0.90, 0.90, 0.90) (0.90, 0.91, 0.91)
80 (0.72, 0.72, 0.72) (0.86, 0.86, 0.86) (0.89, 0.90, 0.89) (0.90, 0.90, 0.90) (0.90, 0.90, 0.90)
90 (0.73, 0.73, 0.73) (0.85, 0.86, 0.86) (0.91, 0.91, 0.91) (0.92, 0.92, 0.93) (0.94, 0.94, 0.94)

100 (0.74, 0.74, 0.73) (0.87, 0.87, 0.86) (0.92, 0.92, 0.93) (0.94, 0.94, 0.94) (0.95, 0.94, 0.94)

In the sixth scenario, we consider µ1 = µ2 = µ3 ≤ µ4, σ1 = σ2 = σ3 = σ4.
The values of (θ1, θ2, θ3, θ4) range from 0.5 to 2.5, and the covariance matrix is fixed to

Σ =


25 5 5 5
5 25 5 5
5 5 25 5
5 5 5 25

. The accuracy of estimated mean and variance parameters are in

Tables A7 and A8.
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Table A7. Estimated coverage probability of the 95% confidence intervals of the mean parameters
(Scenario 6).

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 2.5) (1, 1, 1, 2.5) (1.5, 1.5, 1.5, 2.5) (2, 2, 2, 2.5) (2.5, 2.5, 2.5, 2.5)

20 (0.70, 0.71, 0.70, 0.93) (0.82, 0.84, 0.84, 0.94) (0.90, 0.93, 0.91, 0.94) (0.92, 0.94, 0.93, 0.94) (0.93, 0.94, 0.93, 0.93)
30 (0.65, 0.68, 0.66, 0.94) (0.82, 0.84, 0.84, 0.94) (0.93, 0.92, 0.93, 0.94) (0.94, 0.93, 0.93, 0.94) (0.94, 0.93, 0.93, 0.94)
40 (0.67, 0.67, 0.70, 0.94) (0.85, 0.82, 0.84, 0.94) (0.93, 0.93, 0.93, 0.94) (0.94, 0.93, 0.93, 0.94) (0.94, 0.94, 0.92, 0.94)
50 (0.67, 0.68, 0.70, 0.94) (0.85, 0.84, 0.85, 0.94) (0.94, 0.94, 0.94, 0.94) (0.95, 0.94, 0.94, 0.94) (0.95, 0.94, 0.94, 0.94)
60 (0.68, 0.69, 0.67, 0.95) (0.86, 0.86, 0.86, 0.95) (0.94, 0.94, 0.94, 0.95) (0.94, 0.94, 0.94, 0.95) (0.94, 0.94, 0.94, 0.95)
70 (0.70, 0.68, 0.69, 0.95) (0.88, 0.87, 0.85, 0.95) (0.94, 0.96, 0.94, 0.95) (0.94, 0.96, 0.93, 0.95) (0.93, 0.96, 0.94, 0.95)
80 (0.72, 0.68, 0.69, 0.95) (0.88, 0.86, 0.89, 0.95) (0.95, 0.95, 0.95, 0.95) (0.95, 0.94, 0.94, 0.95) (0.94, 0.95, 0.94, 0.95)
90 (0.70, 0.70, 0.72, 0.95) (0.89, 0.87, 0.88, 0.95) (0.95, 0.95, 0.96, 0.95) (0.95, 0.95, 0.96, 0.95) (0.95, 0.95, 0.95, 0.95)
100 (0.70, 0.70, 0.70, 0.96) (0.90, 0.90, 0.88, 0.96) (0.95, 0.96, 0.93, 0.96) (0.95, 0.95, 0.94, 0.96) (0.95, 0.95, 0.94, 0.96)

Table A8. Estimated coverage probability of the 95% confidence intervals of the variance parameters
(Scenario 6).

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 2.5) (1, 1, 1, 2.5) (1.5, 1.5, 1.5, 2.5) (2, 2, 2, 2.5) (2.5, 2.5, 2.5, 2.5)

20


0.74
0.78 0.76
0.79 0.76 0.74
0.83 0.86 0.83 0.86




0.80
0.85 0.80
0.84 0.84 0.80
0.87 0.90 0.89 0.86




0.82
0.93 0.84
0.92 0.92 0.84
0.92 0.94 0.92 0.86




0.85
0.95 0.85
0.94 0.94 0.87
0.94 0.95 0.92 0.86




0.85
0.96 0.87
0.94 0.94 0.87
0.94 0.95 0.93 0.86


50


0.79
0.76 0.79
0.79 0.75 0.77
0.82 0.82 0.82 0.90




0.80
0.86 0.81
0.88 0.88 0.79
0.90 0.89 0.90 0.91




0.89
0.94 0.87
0.94 0.95 0.90
0.94 0.94 0.95 0.91




0.92
0.94 0.90
0.95 0.95 0.92
0.95 0.96 0.95 0.91




0.91
0.94 0.91
0.94 0.95 0.92
0.94 0.96 0.95 0.90


100


0.79
0.78 0.81
0.80 0.77 0.79
0.81 0.81 0.83 0.96




0.84
0.91 0.85
0.92 0.90 0.82
0.91 0.92 0.91 0.94




0.93
0.96 0.93
0.96 0.94 0.92
0.95 0.95 0.94 0.94




0.94
0.96 0.93
0.96 0.95 0.93
0.96 0.95 0.94 0.94




0.94
0.96 0.94
0.96 0.95 0.92
0.96 0.95 0.94 0.94



In the seventh scenario, we consider µ1 = µ2 = µ3 < µ4, σ1 = σ2 = σ3 < σ4 and
θ1 = θ2 = θ3 = θ4. The values of (θ1, θ2, θ3, θ4) range from 0.5 to 2.5, and the covariance

matrix is fixed to Σ =


16 4 4 4
4 16 4 4
4 4 16 4
4 4 4 25

. The accuracy of estimated mean and variance

parameters are in Tables A9 and A10.

Table A9. Estimated coverage probability of the 95% confidence intervals of the mean parameters
(Scenario 7).

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1) (1.5, 1.5, 1.5, 1.5) (2, 2, 2, 2) (2.5, 2.5, 2.5, 2.5)

20 (0.68, 0.68, 0.68, 0.71) (0.82, 0.82, 0.83, 0.83) (0.91, 0.91, 0.90, 0.92) (0.93, 0.93, 0.93, 0.93) (0.93, 0.94, 0.93, 0.93)
30 (0.64, 0.60, 0.64, 0.67) (0.84, 0.81, 0.82, 0.83) (0.92, 0.91, 0.93, 0.92) (0.94, 0.94, 0.94, 0.94) (0.93, 0.93, 0.93, 0.94)
40 (0.62, 0.61, 0.63, 0.64) (0.84, 0.82, 0.83, 0.82) (0.94, 0.93, 0.94, 0.93) (0.95, 0.93, 0.95, 0.93) (0.95, 0.93, 0.95, 0.93)
50 (0.60, 0.63, 0.65, 0.64) (0.82, 0.82, 0.83, 0.84) (0.93, 0.94, 0.94, 0.94) (0.93, 0.94, 0.95, 0.94) (0.93, 0.94, 0.95, 0.94)
60 (0.62, 0.65, 0.62, 0.63) (0.85, 0.85, 0.82, 0.86) (0.94, 0.94, 0.93, 0.95) (0.95, 0.94, 0.94, 0.95) (0.94, 0.94, 0.93, 0.94)
70 (0.60, 0.59, 0.59, 0.63) (0.84, 0.83, 0.85, 0.85) (0.95, 0.94, 0.94, 0.95) (0.96, 0.94, 0.93, 0.96) (0.96, 0.94, 0.93, 0.96)
80 (0.62, 0.64, 0.60, 0.64) (0.84, 0.86, 0.86, 0.86) (0.95, 0.95, 0.96, 0.96) (0.95, 0.94, 0.95, 0.94) (0.95, 0.94, 0.94, 0.94)
90 (0.63, 0.59, 0.59, 0.65) (0.88, 0.85, 0.88, 0.87) (0.95, 0.95, 0.95, 0.95) (0.95, 0.95, 0.95, 0.95) (0.95, 0.94, 0.95, 0.95)

100 (0.63, 0.65, 0.63, 0.64) (0.87, 0.88, 0.89, 0.87) (0.95, 0.95, 0.95, 0.95) (0.95, 0.94, 0.95, 0.94) (0.95, 0.94, 0.95, 0.94)
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Table A10. Estimated coverage probability of the 95% confidence intervals of the variance parameters
(Scenario 7).

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1) (1.5, 1.5, 1.5, 1.5) (2, 2, 2, 2) (2.5, 2.5, 2.5, 2.5)

20


0.73
0.78 0.74
0.76 0.76 0.73
0.77 0.77 0.79 0.77




0.81
0.83 0.81
0.84 0.83 0.80
0.85 0.84 0.84 0.81




0.86
0.91 0.85
0.90 0.90 0.83
0.91 0.91 0.93 0.85




0.86
0.92 0.86
0.93 0.92 0.86
0.93 0.94 0.94 0.87




0.87
0.93 0.87
0.93 0.93 0.87
0.93 0.94 0.94 0.87


50


0.74
0.71 0.76
0.76 0.76 0.80
0.75 0.75 0.73 0.78




0.76
0.85 0.80
0.88 0.85 0.78
0.86 0.86 0.86 0.80




0.89
0.95 0.89
0.93 0.94 0.89
0.95 0.94 0.94 0.89




0.92
0.95 0.91
0.94 0.94 0.91
0.96 0.97 0.94 0.91




0.90
0.95 0.92
0.94 0.94 0.91
0.96 0.97 0.94 0.92


100


0.77
0.73 0.77
0.72 0.72 0.79
0.69 0.76 0.76 0.79




0.82
0.90 0.84
0.88 0.91 0.82
0.91 0.90 0.90 0.83




0.92
0.95 0.93
0.96 0.96 0.93
0.96 0.94 0.95 0.92




0.92
0.95 0.93
0.95 0.96 0.94
0.95 0.95 0.95 0.94




0.93
0.95 0.93
0.95 0.96 0.94
0.95 0.94 0.95 0.93



In the eighth scenario, we consider a near singular scenario. The values of (θ1, θ2, θ3, θ4)

range from 0.5 to 2.5, and the covariance matrix is fixed to Σ =


25 24.9 24.9 24.9

24.9 25 24.9 24.9
24.9 24.9 25 24.9
24.9 24.9 24.9 25

.

The accuracy of estimated mean and variance parameters are in Tables A11 and A12.

Table A11. Estimated coverage probability of the 95% confidence intervals of the mean parameters
(Scenario 8).

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1) (1.5, 1.5, 1.5, 1.5) (2, 2, 2, 2) (2.5, 2.5, 2.5, 2.5)

20 (0.84, 0.84, 0.83, 0.84) (0.88, 0.87, 0.88, 0.87) (0.90, 0.90, 0.90, 0.90) (0.92, 0.92, 0.92, 0.92) (0.93, 0.93, 0.93, 0.92)
30 (0.79, 0.79, 0.78, 0.79) (0.89, 0.89, 0.89, 0.89) (0.92, 0.92, 0.92, 0.92) (0.93, 0.93, 0.93, 0.93) (0.93, 0.93, 0.93, 0.93)
40 (0.78, 0.77, 0.78, 0.78) (0.87, 0.86, 0.86, 0.87) (0.93, 0.92, 0.93, 0.92) (0.94, 0.93, 0.93, 0.93) (0.94, 0.93, 0.94, 0.93)
50 (0.74, 0.72, 0.74, 0.73) (0.88, 0.88, 0.88, 0.88) (0.93, 0.93, 0.93, 0.93) (0.93, 0.93, 0.94, 0.94) (0.93, 0.93, 0.94, 0.94)
60 (0.73, 0.72, 0.73, 0.72) (0.90, 0.89, 0.89, 0.90) (0.93, 0.93, 0.93, 0.93) (0.94, 0.94, 0.94, 0.94) (0.94, 0.94, 0.94, 0.94)
70 (0.72, 0.72, 0.72, 0.72) (0.89, 0.89, 0.89, 0.89) (0.95, 0.94, 0.95, 0.95) (0.95, 0.95, 0.95, 0.95) (0.96, 0.96, 0.95, 0.96)
80 (0.73, 0.73, 0.74, 0.73) (0.89, 0.89, 0.88, 0.89) (0.94, 0.94, 0.94, 0.94) (0.94, 0.94, 0.94, 0.94) (0.94, 0.95, 0.94, 0.94)
90 (0.74, 0.74, 0.74, 0.74) (0.91, 0.90, 0.90, 0.91) (0.94, 0.94, 0.94, 0.94) (0.94, 0.95, 0.94, 0.94) (0.95, 0.95, 0.95, 0.95)

100 (0.70, 0.70, 0.69, 0.70) (0.88, 0.88, 0.88, 0.88) (0.93, 0.93, 0.93, 0.93) (0.95, 0.94, 0.94, 0.95) (0.95, 0.95, 0.95, 0.95)

Table A12. Estimated coverage probability of the 95% confidence intervals of the variance parameters
(Scenario 8).

Values of (θ1, θ2, θ3, θ4)
Sample Size (0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1) (1.5, 1.5, 1.5, 1.5) (2, 2, 2, 2) (2.5, 2.5, 2.5, 2.5)

20


0.36
0.34 0.36
0.35 0.34 0.35
0.35 0.34 0.34 0.36




0.54
0.53 0.54
0.54 0.54 0.54
0.54 0.54 0.54 0.53




0.66
0.66 0.66
0.67 0.66 0.67
0.66 0.66 0.66 0.66




0.74
0.75 0.75
0.75 0.75 0.75
0.74 0.75 0.75 0.75




0.77
0.78 0.78
0.77 0.78 0.78
0.77 0.78 0.77 0.78


50


0.63
0.62 0.62
0.62 0.62 0.62
0.63 0.62 0.62 0.63




0.76
0.76 0.76
0.77 0.77 0.77
0.76 0.76 0.77 0.76




0.84
0.84 0.84
0.83 0.83 0.83
0.83 0.83 0.84 0.83




0.88
0.89 0.89
0.88 0.88 0.88
0.88 0.89 0.88 0.88




0.91
0.91 0.90
0.91 0.90 0.90
0.91 0.91 0.91 0.91


100


0.66
0.67 0.66
0.66 0.67 0.67
0.66 0.66 0.67 0.66




0.81
0.81 0.81
0.81 0.81 0.81
0.81 0.81 0.81 0.82




0.88
0.88 0.88
0.88 0.88 0.89
0.88 0.88 0.88 0.88




0.91
0.91 0.91
0.92 0.92 0.91
0.92 0.91 0.91 0.91




0.94
0.94 0.94
0.94 0.94 0.94
0.94 0.94 0.94 0.94


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