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Abstract: Automated segmentation of abdominal organs and tumors in medical images is a chal-
lenging yet essential task in medical image analysis. Deep learning has shown excellent performance
in many medical image segmentation tasks, but most prior efforts were fragmented, addressing
individual organ and tumor segmentation tasks with specialized networks. To tackle the challenges
of abdominal organ and tumor segmentation using partially labeled datasets, we introduce Re-
parameterizing Mixture-of-Diverse-Experts (RepMode) to abdominal organ and tumor segmentation.
Within the RepMode framework, the Mixture-of-Diverse-Experts (MoDE) block forms the foundation,
learning generalized parameters applicable across all tasks. We seamlessly integrate the MoDE block
into a U-shaped network with dynamic heads, addressing multi-scale challenges by dynamically
combining experts with varying receptive fields for each organ and tumor. Our framework incor-
porates task encoding in both the encoder–decoder section and the segmentation head, enabling
the network to adapt throughout the entire system based on task-related information. We evaluate
our approach on the multi-organ and tumor segmentation (MOTS) dataset. Experiments show that
DoDRepNet outperforms previous methods, including multi-head networks and single-network
approaches, giving a highly competitive performance compared with the original single network with
dynamic heads. DoDRepNet offers a promising approach to address the complexities of abdominal
organ and tumor segmentation using partially labeled datasets, enhancing segmentation accuracy
and robustness.

Keywords: multi-organ segmentation; re-parameterize network; partially labeled dataset

MSC: 68T07

1. Introduction

Automated segmentation of abdominal organs and tumors in medical images is a
key yet intricate task within medical image analysis [1–3]. This task holds significant
importance in various computer-aided diagnosis applications, encompassing tasks such as
lesion delineation, 3D reconstruction, and surgical planning. For abdominal multi-organ
images, creating extensive fully annotated datasets for abdominal multi-organ images
is a formidable undertaking, demanding both significant resources and time, especially
in the case of 3D segmentation tasks. Currently, most benchmark datasets are typically
limited in sample size, and most of them only annotate one or a few organs, rather than all
abdominal organs, designating all task-irrelevant structures as background. For example,
the pancreas-CT dataset exclusively provides labels for the pancreas and pancreas tumors,
while the hepatic vessel dataset offers labels solely for hepatic vessels and tumors [4].

Recently, deep learning has made remarkable strides in medical image
segmentation [5–10]. Previous abdominal organ and tumor segmentation tasks were
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typically addressed individually using specialized networks [11–14], leading to a disper-
sion of research efforts. Effectively acquiring representations of multiple organs and tumors
by taking advantage of partially labeled datasets to enhance segmentation accuracy and
robustness has attracted great interest. Broadly, prior approaches can be categorized into
two main groups. One focuses on devising effective training strategies, which involve
techniques such as knowledge distillation [15], cross-task consistency learning [16], and the
design of jointly optimized loss functions [17]. The other strives to enhance a network’s
structure [18,19]. They can be further grouped into multi-head networks [20] and a single
network with dynamic heads [18,19]. A brief summary is provided in Table 1.

Multi-head networks consist of a partially shared architecture, incorporating a shared
feature extractor and several task-dedicated decoders. Thanks to the common encoder, they
can leverage the rich information from various partially annotated datasets. Nonetheless,
multi-head networks face challenges in effectively co-training for multiple tasks, mainly
due to the structural redundancy resulting from utilising individual decoders for each task.
A single network with dynamic heads presents a versatile architecture designed to address
various segmentation tasks by utilizing task encoding and a controller for generating
segmentation heads equipped with dynamic convolutions. However, these models have a
few limitations. Task-specific information, namely the dynamic convolution parameters, is
set at the decoder’s end. This timing may pose challenges in making the model fully aware
of the current task, especially when decoding sophisticated objectives. In addition, it is
worth noting that abdominal organs and tumors naturally exhibit significant variations in
size, giving rise to the multi-scale challenge. Currently, segmentation accuracy for small
and highly deformable organs such as the pancreas, tubular structures, and tumors, is
generally below 90%.

To address the above challenges inherent in abdominal organ and tumor segmen-
tation using partially labeled datasets, we have adopted a unique approach known as
Re-parameterizing Mixture-of-Diverse-Experts (RepMode) [21]. Its key feature is the dy-
namic organization of its parameters through the use of task-aware priors. Within the
RepMode framework, the Mixture-of-Diverse-Experts (MoDE) block serves as a founda-
tional component, designed to learn generalized parameters that can be applied across
all the tasks. We have integrated RepMode into DoDNet, obtaining DoDNetRep, to suit
the demands of abdominal organ and tumor segmentation, where each partially labeled
dataset may encompass multiple labels, as illustrated in Figure 1.

In our framework, we make use of task encoding in both the encoder–decoder sec-
tion and the segmentation head. This strategy enables the network to adapt its behavior
throughout the entire system, including the multi-stage encoder–decoder section and
the segmentation head, based on task-related information. Notably, we have seamlessly
integrated the MoDE block at each stage of both the encoder and decoder within the
DoDNet. This adaptation effectively addresses the multi-scale challenges inherent in the
segmentation of abdominal organs and tumors. The integration empowers our network
to combine experts with varying receptive fields dynamically for each specific organ and
tumor, facilitating the learning of multi-scale features in a task-oriented way. The dynamic
kernels within the segmentation head are generated adaptively by a controller, with this
process being conditioned on the assigned segmentation task. Task-specific priors guide the
controller in generating dynamic head kernels for each segmentation task, ensuring that our
network can effectively handle the intricacies of abdominal organ and tumor segmentation
from a set of partially annotated datasets. We performed experiments on the multi-organ
and tumor segmentation (MOTS) dataset [18]. Our model outperformed both multi-head
networks and previous present single-network methods, and obtained highly competitive
performance compared with the original single network with dynamic heads [18]. Do-
DRepNet offers a promising approach to address the complexities of abdominal organ and
tumor segmentation using partially labeled datasets, enhancing segmentation accuracy
and robustness. Our contributions can be summarized as follows:
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(1) We introduced RepMode into DoDNet, obtaining DoDNetRep, for abdominal
organ and tumor segmentation using partially labeled datasets. DoDNetRep takes ad-
vantage of task-related information in both the encoder–decoder section and the dynamic
segmentation head, enabling our network to combine experts with varying receptive fields
dynamically for each specific organ and tumor, thus facilitating the learning of multi-scale
features in a task-oriented way.

(2) We demonstrated that our model outperformed both multi-head networks and
previous present single-network methods, and obtained a highly competitive performance
compared with the original single network with dynamic heads on MOTS.

Table 1. Related work for medical image segmentation from partially labeled datasets.

Authors Methods Datasets

Zhang, L. et al. [15] A multi-teacher knowledge distillation framework leveraging the soft labels KiTS [22] , MSD Spleen and Pancreas [23], TCIA [24],
BTCV [25]

Shi, G. et al. [17] Design of jointly optimized marginal loss and exclusion loss BTCV [25], MSD Liver, MSD Spleen, MSD Pancreas [23],
KiTS [22]

Chen., S. et al. [20] Multi-head: transfer learning LIDC [26], LiTS [27]

Fang, X. et al. [28] Multi-head: pyramid input pyramid output feature abstraction network and a
target adaptive loss BTCV [25], LiTS [27], KiTS [22] and MSD Spleen [23]

Zhang, G. et al. [29] Single network: conditional nnU-Net with a conditioning strategy for
the decoder

LiTS [27], MSD Pancreas, MSD Spleen [23], KiTS [22],
SLIVER07 [30], NIH pancreas [31], BTCV [25]

Zhang, J. et al. [18] Single network: with dynamic heads leveraging one-hot task embedding
MOTS including LiTS [27], KiTS [22], and MSD Hep-
atic vessel and tumor, MSD Pancreas and tumor, MSD
Colon tumor, MSD Lung tumor and MSD Spleen [23]

Liu, J. et al. [19] Single network: with dynamic heads leveraging task embedding from Clip MSD [23] and BTCV [25]

Figure 1. In abdominal partially labeled datasets, only one organ or an organ and its tumors or an
organ’s tumors are annotated on a volume. In the example images red denotes organ and green
denotes tumor for tasks (1, 2, 3, 4) ; Red denotes tumor for tasks 5 and 6; Red denotes organ for task 7.
Segmentation of targets in each partially labeled dataset is considered as a task, and designated a
one-hot task embedding. Within the RepMode framework, the Mixture-of-Diverse-Experts (MoDE)
block serves as a foundational component, designed to learn generalized parameters that can be
applied across all tasks. We seamlessly integrate the MoDE block at each stage of both the encoder
and decoder within the DoDNet. In our framework, we make use of task encoding in both the
encoder–decoder section and the segmentation head. This strategy enables the network to adapt
its behavior throughout the entire system, including the multi-stage encoder–decoder section (θ f )
and the segmentation head (with dynamic head parameters θh) based on task-related information.
RepMode with MoDE blocks for organizing dynamic parameter θ f , consists of diverse expert design,
gating module design, and gating re-parameterization.
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2. Materials and Methods
2.1. Problem Definition

We consider each partially labeled dataset as a task (organ or tumor segmentation or
organ and tumor segmentation) and assume there are P partially labeled dataset in total.
Each dataset can have several labels. In this context, Di = {Vij, Lij}

ni
j=1 denotes the i-th

partially labeled dataset, comprising ni labeled volumes. Each volume in Di is represented
as Vij ∈ RD×W×H , where W × H indicates the dimensions of each slice, while D signifies
the slice number. The ground truth segmentation corresponding to this is represented as
Lij, where the voxel labels belong to the set 0 : background; 1 : organ; 2 : tumor.

To address the challenges in abdominal organ and tumor segmentation using partially
labeled datasets, one straightforward approach involves training P segmentation networks,
individually on each of the P datasets. The same as in [18], we endeavor to tackle this issue
by employing a single network denoted as f . This can be written as follows

min
θ

m

∑
i=1

ni

∑
j=1

L( f (Vij; θ), Lij) (1)

Different from Multi-Net, maintaining an individual θ for each task, we adopt a single
network, as in DoDNet [18], generating a dynamic head with parameters θh conditioned on
the assigned task. What is more, we aim to utilize a shared θ f across all tasks and dynam-
ically structure θ f to accommodate specific task requirements by using re-parameterize
diverse experts in the encoder and decoder.

2.2. Network Architecture

Our network, DoDRepNet, which leverages the re-parameterization of diverse experts [21],
is composed of several essential components similar to DoDNet [18]: a shared encoder–
decoder featuring the MoDE block, a task-encoding module, a dynamic filter generation
module, and a dynamic segmentation head (as depicted in Figure 1). In the following
sections, we will briefly describe the shared encoder–decoder network. Other modules are
the same as those in DoDNet; please reference [18] for details.

The input to DoDRepNet consists of randomly selected samples from the preprocessed
dataset, including preprocessed images and annotated images, along with the task identifier
corresponding to the subset dataset of that sample. The task identifier serves as input to
the task-encoding module, generating a task code represented as a one-hot vector. The
preprocessed images and task code are input to a shared encoder–decoder architecture.
The multi-stage encoder produces feature maps at each stage, which serve as inputs to
the respective stages of the decoder. The final stage of the encoder outputs feature maps
that undergo global average pooling (GAP) to obtain high-level image features. These
features are concatenated with the task code and serve as input to the dynamic filter
generation module, producing a task-specific controller used to generate parameters θh
for the dynamic segmentation head. θh , along with the output feature maps from the
final stage of the decoder, are passed through the dynamic segmentation head to obtain
the output of DoDRepNet, representing the segmented result of the preprocessed image
predicted by the network. The loss function is employed to calculate the loss between the
predicted result and the annotated image, and the network is trained using optimization
algorithms. After training, given any sample (preprocessed image and annotated image)
and the corresponding task identifier for that sample’s subset dataset, DoDRepNet can
produce the segmentation result for the respective task.

The shared encoder–decoder relies on a 3D U-shaped design, primarily composed of
downsampling and upsampling components, as seen in Figure 2. In detail, the downsam-
pling path comprises two consecutive MoDE blocks, which are responsible for capturing
task-specific feature maps and increasing the channel number. Following these blocks,
there is a downsampling layer that uses a convolution with a 2× 2× 2 kernel size and a
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stride of 2 to decrease the feature maps’ size by half. It is worth noting that we used group
normalization and ReLU activation along with each MoDE block.

Figure 2. Detailed structure of DoDRepNet with the shared encoder–decoder featuring the
MoDE block.

Within each upsampling stage, feature maps are enlarged and their channel number
is halved using an upsampling layer with a 2× 2× 2 kernel and a stride of 2. Following
that, the upsampled feature maps are combined with the corresponding feature maps
transmitted from the encoder. These combined feature maps then go through additional
enhancement via two successive MoDE blocks. Ultimately, a MoDE block, excluding batch
normalization and ReLU, is used to decrease the number of channels to match the number
of output classes, with the goal of producing the final predictions for each target class.

It is worth noting that MoDE blocks are used both in the encoder and decoder, effec-
tively promoting the acquisition of task-specific features and thus contributing to superior
performance. The detailed information such as the channel sizes of each convolution and
output size of feature maps are presented in Table 2.

Table 2. The detailed information such as the channel sizes of each convolution and output size of
feature maps in key layers of DoDRepNet. Upsampling in each stage of the decoder is not listed in
this table for simplicity.

Stage Layer Name In Channel Size Out Channel Size Stride Output Size

Encoder Input 1 - - 1× 64× 192× 192
Conv1 1 32 1× 1× 1 32× 32× 192× 192
Layer0 32 32 1× 1× 1 32× 64× 192× 192
Layer1 32 64 2× 2× 2 64× 64× 192× 192
Layer2 64 128 2× 2× 2 128× 64× 192× 192
Layer3 128 256 2× 2× 2 256× 64× 192× 192
Layer4 256 256 2× 2× 2 256× 64× 192× 192
fusionConv 256 256 1× 1× 1 256× 64× 192× 192

Decoder GAP 256 - - 256× 1
Controller 256 + 7 162 1× 1× 1 162× 1× 1× 1
8resb 256 128 1× 1× 1 128× 64× 192× 192
4resb 128 64 1× 1× 1 64× 64× 192× 192
2resb 64 32 1× 1× 1 32× 64× 192× 192
1resb 32 32 1× 1× 1 32× 64× 192× 192
preclsConv 32 8 1× 1× 1 8× 64× 192× 192
SegHead 32 8 1× 1× 1 2× 64× 192× 192

2.3. Mixture-of-Diverse-Experts Block

In order to address the diverse prediction subtasks effectively and enhance the net-
work’s representational capacity for robust generalization, RepMode with MoDE [21] for
dynamic parameter θ f organizing consists of diverse expert design, gating module design,
and gating re-parameterization.

We use the MoDE block as a fundamental building block of the U-shaped encoder–
decoder network as a potent alternative to the conventional convolutional layer. Within
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the MoDE block, an array of diverse experts is meticulously crafted, each responsible
for exploring a distinctive convolutional configuration. Furthermore, a gating module is
intricately devised to harness task-specific information, enabling the generation of gating
weights for dynamic parameter organization.

For the diverse expert design, there are two distinct types of expert diversity to enhance
its capabilities: shape diversity, to address the multi-scale challenges by using different
experts to possess a variety of receptive fields, and kernel diversity, using combinations
of different kernels. Following these principles, the concept of “expert pairs” is used to
form the multiple branch structure. Each expert pair consists of two key components:
3D convolutions (Conv) and 3D average poolings (Avgp). In essence, the MoDE block
comprises expert pairs with three distinct receptive fields, promoting shape diversity. For
more details, please refer to [21].

As for the gating module design, we encode the task-aware prior associated with each
volume, xn, by transforming its subtask indicator, ln, into a P-dimensional one-hot vector,
kn, as in [18]. This encoding is expressed as follows:

knp =

{
1, if p = ln,

0, otherwise,
p = 1, 2, . . . , P, (2)

where knp signifies the p-th element of kn. Next, the one-hot vector, kn, is introduced to the
gating module, from which the gating weights, M, are produced using a single-layer fully
connected network, denoted as φ(·), as depicted below: M = φ(kn) = {mt}T

t=1, where
T = 5. The subscript n in M is omitted for brevity. Each mt ∈ RNO represents the gating
weights for the t-th expert, and these values are derived from M, with NO representing the
number of channels in the output feature maps. Lastly, M undergoes further processing
to yield M̂, which is expressed as a set M̂ = {m̂t}T

t=1 by applying the Softmax function.
This operation ensures a balanced intensity among the various experts and can be defined
as follows:

m̂ti =
exp (mti)

∑T
j=1 exp (mji)

, i = 1, 2, . . . , NO, (3)

where mti (resp. m̂ti) denotes the i-th element of mt (resp. m̂t). Utilizing the resulting gating
weights, M̂, RepMode can undertake the dynamic organization of parameters for these
experts, which are task-agnostic and adapt their behavior based on the task-aware prior.

Then, for gating re-parameterization, GatRep is designed according to principles of
homogeneity and additivity that are established in [32,33]. The initial phase of GatRep in-
volves the amalgamation of Avgp and Conv operations into a unified kernel. To streamline
the explanation, let us consider the example of an Avgp–Conv expert. Here, we use FI to
represent the input feature maps. Then, the output feature maps, denoted as FO, can be
articulated as follows:

FO = W ~ (Wa ~ FI), (4)

where ~ means the convolution operation. By applying the associative property, we
can achieve an equivalent transformation for the equation in Equation (4) by initially
consolidating Wa and W. This process can be denoted as follows:

FO = (W ~ Wa)︸ ︷︷ ︸
We

~FI, (5)

With this process, the kernels of Avgp and Conv can be combined into a unified kernel for
use in the subsequent stage.

The second phase of GatRep involves the consolidation of all experts in a manner
specific to the subtask at hand. To facilitate this, we introduce a mapping function denoted
as Pad(·, K′). This function effectively transforms a kernel to the kernel space Z(K′) by
employing zero-padding. Here, we set K′ = 5, which represents the largest receptive field
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size among these experts. We use F̂O to represent the ultimate task-specific feature maps.
The transformation can be expressed as follows:

F̂O =

(
T

∑
t=1

ĝt � Pad(We
t , K′)

)
︸ ︷︷ ︸

Ŵe

~FI, (6)

where � represents channel-wise multiplication, and We
t represents the kernel of the t-th

expert. It is important to note that We
t is an integrated kernel for an Avgp–Conv expert,

or simply a Conv kernel for a Conv expert. Ultimately, Ŵe is the dynamically generated
resulting task-specific kernel by GatRep.

3. Results
3.1. Datasets

We used the multi-organ and tumor segmentation (MOTS) dataset, as in [18]. MOTS
was presented for abdominal organ and tumor segmentation using partially labeled
datasets. It consists of datasets for Liver and tumor [27], Kidney and tumor [22], and
five datasets of Hepatic vessel and tumor, Pancreas and tumor, Colon tumor, Lung tu-
mor, and Spleen from the Medical Segmentation Decathlon [23]. The dataset comprises
1155 3D abdominal CT volumes, gathered from diverse clinical sites worldwide. Of these,
920 volumes are allocated for training purposes, while the remaining 235 are reserved for
testing. Notably, all volumes have been uniformly re-sampled to a consistent voxel size
of 1.5× 0.8× 0.8 mm 3 , following the data preprocessing in [18]. In our experiments, we
found out there are two bad cases in the Liver and tumor training dataset and two bad
cases in the Liver and tumor testing dataset after preprocessing. The resolution of the
volumes and the corresponding labels are different in these four cases, so we removed
them, resulting 918 training cases and 233 testing cases.

3.2. Implementation Details

We performed experiments on a workstation equipped with two NVIDIA A100 GPUs.
We adopted DoDNet from [18] as our baseline, then integrated the MoDE block with the
GatRep module into DoDNet, obtaining our DoDRepNet. We maintained the remaining
implementation settings consistent with those in [18] except with a batch size of 16. We
reran the original DoDNet using their provided source code, and executed our DoDRepNet
based on Re-parameterize Diverse Experts. To ensure fair comparisons, all models under-
went the same training configurations, which included weight standardization, learning
rate, optimizer, and other settings, as well as the inference strategy, except adding a few
morphological operations for two cases for the spleen segmentation task in postprocessing.

3.3. Performance Metrics

This study employed the commonly used Dice similarity coefficient (Dice) and Haus-
dorff distance (HD) as performance metrics for evaluating the performance of segmentation
methods. Dice is a measure of the spatial overlap between the predicted segmentation (out-
put of an algorithm) and the ground truth segmentation (manual or reference segmentation).
The Dice coefficient is calculated using the formula as follows:

Dice =
2× (Pred∩GT)

Pred∩GT + Pred∪GT
, (7)

where Pred denotes the predicted segmentation and GT is the ground truth segmentation.
HD measures the maximum distance between any point in the predicted segmentation

and its closest point in the ground truth, as well as the maximum distance between any
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point in the ground truth and its closest point in the predicted segmentation. The HD is
defined as follows:

HD = max(maximinjd(pi, qj), maxjminid(qj, pi)), (8)

where pi and qj are points in Pred and GT, and d is the distance metric (e.g., Euclidean distance).
A lower HD indicates better agreement between the predicted and ground truth

segmentations, as it represents the maximum distance between corresponding points.
In the context of medical image segmentation, these metrics help quantify how well an
algorithm delineates structures of interest (such as organs or tumors) compared with the
manually annotated ground truth.

3.4. Comparisons with State-of-the-Art Approaches

We conduct a comparative analysis of our DoDRepNet against state-of-the-art methods
designed for addressing the challenge of partially labeled data. This evaluation was carried
out on seven partially labeled tasks using the MOTS test set, as in [18]. The competing
methods include: two multi-head networks, namely Multi-Head [20] and TAL [28], a single-
network method that operates without task conditioning, known as Cond-NO, and three
single-network methods incorporating task conditioning, specifically Cond-Input [34],
Cond-Dec [35], and DoDNet [18]. The results of the above methods are copied from [18].
We added our results of reran DoDNet and our DoDRepNet, as listed in Table 3. The best
score of each metric in each task is denoted in red.

Table 3. Performance (Dice, %, and Hausdorff distance (HD) ) of different approaches on MOTS test
set, as in [18]. Please note that the term ’Average score’ serves as a composite metric, averaging the
Dice or HD values across 11 organs and tumors.

Methods

Task 1: Liver Task 2: Kidney Task 3: Hepatic Vessel

Dice HD Dice HD Dice HD

Organ Tumor Organ Tumor Organ Tumor Organ Tumor Organ Tumor Organ Tumor

Multi-Nets 96.61 61.65 4.25 41.16 96.52 74.89 1.79 11.19 63.04 72.19 13.73 50.70

TAL [28] 96.18 60.82 5.99 38.87 95.95 75.87 1.98 15.36 61.90 72.68 13.86 43.57

Multi-Head [20] 96.75 64.08 3.67 45.68 96.60 79.16 4.69 13.28 59.49 69.64 19.28 79.66

Cond-NO 69.38 47.38 37.79 109.65 93.32 70.40 8.68 24.37 42.27 69.86 93.35 70.34

Cond-Input [34] 96.68 65.26 6.21 47.61 96.82 78.41 1.32 10.10 62.17 73.17 13.61 43.32

Cond-Dec [35] 95.27 63.86 5.49 36.04 95.07 79.27 7.21 8.02 61.29 72.46 14.05 65.57

DoDNet [18] 96.87 65.47 3.35 36.75 96.52 77.59 2.11 8.91 62.42 73.39 13.49 53.56

DoDNet 1 96.78 63.56 4.52 32.97 96.26 80.06 3.87 11.99 62.55 74.87 13.76 40.9

DoDRepNet [21,32,33] 96.99 66.69 3.29 25.31 96.89 82.68 1.97 14.61 63.6 76.65 13.45 29.06

Methods

Task 4: Pancreas Task 5: Colon Task 6: Lung Task 7: Spleen Average score

Dice HD Dice HD Dice HD Dice HD
Dice↑ HD↓

Organ Tumor Organ Tumor Tumor Tumor Tumor Tumor Organ Organ

Multi-Nets 82.53 58.36 9.23 26.13 34.33 103.91 54.51 53.68 93.76 2.65 71.67 28.95

TAL [28] 81.35 59.15 9.02 21.07 48.08 66.42 61.85 39.92 93.01 3.10 73.35 23.56

Multi-Head [20] 83.49 61.22 6.40 18.66 50.89 59.00 64.75 34.22 94.01 3.86 74.55 26.22

Cond-NO 65.31 46.24 36.06 76.26 42.55 76.14 57.67 102.92 59.68 38.11 60.37 61.24

Cond-Input [34] 82.53 61.20 8.09 31.53 51.43 44.18 60.29 58.02 93.51 4.32 74.68 24.39

Cond-Dec [35] 77.24 55.69 17.60 48.47 51.80 63.67 57.68 53.27 90.14 6.52 72.71 29.63

DoDNet [18] 82.64 60.45 7.88 15.51 51.55 58.89 71.25 10.37 93.91 3.67 75.64 19.50

DoDNet 1 82.54 59.82 8.61 28.56 48.86 58.88 61.5 18.5 94.74 2.13 74.54 20.66

DoDRepNet [21,32,33] 83.67 61.22 7.48 34.07 45.17 70.94 65.82 47.61 94.18 2.68 75.78 22.77

1 Results of DoDNet rerun on our workstation.



Mathematics 2023, 11, 4868 9 of 13

Our DoDRepNet, designed to master the task-specific amalgamation of various task-
agnostic experts, surpasses the performance of current methods on the liver (both on
Dice and HD), kidney (on Dice), hepatic vessel (both on Dice and HD), and pancreas
(on Dice), and achieves better overall performance than DoDNet. Figure 3 displays a
sample of each task and the segmentations of Ground Truth (GT), DoDNet, DoDRepNet,
and the 3D rendering of the three segmentations. From top to bottom, the tasks are
Liver and Liver tumor, Kidney and Kidney tumor, Hepatic vessel and tumor, Pancreas
and tumor, Colon tumor, Lung tumor, and Spleen. Specifically, (a) is a axial slice of the
original resampled volume, (b,c) are its segmentations of Ground Truth (GT), DoDNet, and
DoDRepNet, respectively, and (e,f) are the 3D rendering of the segmentations of Ground
Truth (GT), DoDNet, and DoDRepNet, respectively. From Figure 3, we can see that the
segmentations of DoDRepNet in most tasks are more similar to GT than those of DoDNet
and both segmentations of DoDRepNet and DoDNet are more smooth than GT thanks to
the dynamic parameter θ f organizing based on Re-parameterize Diverse Experts.

In Figure 4, we compared the speed–accuracy trade-off of DoDRepNet with previous
methods, as listed in [18]. From Figure 4, we can see that DoDRepNet has a few more
parameters than DoDNet due to the MoDE blocks. It also has a little more inference time
than DoDNet. However, DoDRepNet achieves the best accuracy.

Figure 3. A sample of each task and the segmentations of Ground Truth (GT), DoDNet, and DoDRep-
Net, and the 3D rendering of the three segmentations. From top to bottom, the tasks are Liver and
Liver tumor, Kidney and Kidney tumor, Hepatic vessel and tumor, Pancreas and tumor, Colon tumor,
Lung tumor, and Spleen. In the example images red denotes organ and green denotes tumor for the
first four tasks; Red denotes colone tumor for Task 5 and lung tumor for Task 6; Red denotes spleen
for Task 7. Specifically, (a) is a axial slice of the original resampled volume, (b–d) are its segmentations
of Ground Truth (GT), DoDNet, and DoDRepNet, respectively, and (e–g) are the 3D rendering of the
segmentations of Ground Truth (GT), DoDNet, and DoDRepNet, respectively.
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Figure 4. Speed vs. accuracy. The accuracy refers to the overall Dice score on the MOTS test set. The
inference time is computed based on a single input with 64 slices of spatial size 128× 128, as in [18].
Part of the results are copied from [18]. ‘#P’: the number of parameters. ‘M’: Million.

4. Discussion

A single network with dynamic heads [18,19] offers a good way for leveraging partially
annotated data for multi-organ abdominal and tumor segmentation tasks. However,
substantial differences in the relative sizes of distinct target organs lead to imbalances in
segmentation objectives. In the training process, the size differences between organs create
substantial competition, which can be detrimental to smaller organs. In order to address the
diverse prediction subtasks effectively and enhance the network’s representational capacity
for robust generalization, we introduce the MoDE block as a fundamental building block of
the U-shaped encoder–decoder network with dynamic segmentation heads. The MoDE
block is put forth as a potent alternative to the conventional convolutional layer. Within
the MoDE block, an array of diverse experts is meticulously crafted, each responsible
for exploring a distinctive convolutional configuration. Furthermore, a gating module is
intricately devised to harness task-specific information, enabling the generation of gating
weights for dynamic parameter organization.

This design enables DoDRepNet to focus on learning dynamic compositions of experts
with varying receptive fields specific to each organ and tumor. This capability make it able
to acquire multi-scale features adaptively in a task-specific way, addressing the multi-scale
challenges of abdominal organ and tumor segmentation. Compared with DoDNet, which
only uses task-related information at the decoder end for the segmentation head, we utilize
it in both the encoder–decoder section and the segmentation head. By incorporating task-
dependent gating and Mixture-of-Diverse-Experts, DoDRepNet can learn the generalized
parameters for all tasks by combine experts with diverse configurations, and generate
the specialized parameters for each task with gating re-parameterization (GatRep) in the
encoder–decoder section. This approach offers greater flexibility in modeling various
scenarios, thus improving segmentation performance.
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While DoDRepNet showed promising segmentation performance, there were still
some instances of suboptimal predictions. Additionally, our best model did not surpass the
performance of other methods on all the organs and tumors. One limitation of our model
is that the task-related information is a simple one-hot vector, the same as in DoDNet,
which cannot offer task-specific semantic information. In addition, the current method
does not consider anatomical prior among organs or of organs, which makes it fail when
the boundaries between organs are quite unclear, resulting in necessary postprocessing, as
in DoDNet [18]. Future work includes task-specific semantic information and anatomical
priors, which may improve MOTS results. In addition, ensemble deep learning [36],
combining several individual deep neural network models to obtain better generalization
performance, has shown potential in tumor detection [37] and classification [38], and its
utilization in MOTS is also a direction worth exploring.

5. Conclusions

We present DoDRepNet by integrating RepMode into DoDNet to suit the demands of
abdominal organ and tumor segmentation. By dynamically organizing its parameters based
on task-aware priors, we overcame the multi-scale challenge by combining experts with
varying receptive fields, resulting in dynamic multi-scale feature learning. Task-dependent
gating in both the encoder–decoder and segmentation head provides flexibility in modeling
diverse scenarios. Our experiments on the MOTS dataset demonstrated that DoDRepNet
outperformed other methods in several organ and tumor segmentation tasks, showcasing
the effectiveness of DoDRepNet. However, some challenges remain, such as handling
unclear organ boundaries and leveraging anatomical priors effectively.
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