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Abstract: This paper proposes a modification of a Sliding Mode Classical Observer (SMCO) to
adapt it to the fractional approach. This adaptation involves using a set of definitions based on
fractional calculus theory, particularly the approach developed by Riemann–Liouville, resulting
in a Sliding Mode Fractional Observer (SMFO). Both observers are used to perform disturbance
reconstruction considered additive in a Quadrotor Unmanned Aerial Vehicle (UAV) model. Then,
this work presents the fractional-order sliding mode observer’s mathematical formulation and
integration into the Quadrotor UAV model. To validate the quality of the disturbance reconstruction
process of the proposed SMFO observer scheme, numerical simulations are carried out, where a
reconstruction quality indicator (BQR) is proposed based on the analysis of performance indices
such as the Mean Square Error (MSE), the First Probability Moment (FPM), and Second Probability
Moment (SPM), which were obtained for both the SMCO and the SMFO. The simulation results
demonstrate the efficacy of the proposed observer in accurately reconstructing disturbances under
various environmental conditions. Comparative analyses with SMCO highlight the advantages of
the fractional-order approach in terms of reconstruction accuracy and improvement of its transitory
performance. Finally, the presented SMFO offers a promising avenue for enhancing the reliability
and precision of disturbance estimation, ultimately contributing to the advancement of robust control
strategies for Quadrotor UAV systems.

Keywords: sliding mode observer; disturbance reconstruction; fractional-order observer; UAV
quadrotor mathematical model; reconstruction quality indicator

MSC: 93C83; 93-10

1. Introduction

In recent years, the Unmanned Aerial Vehicle (UAV) has garnered considerable at-
tention due to its versatility in performing various tasks in both military and civilian
environments. A specific subtype of UAV is the quadrotor, an aerial vehicle equipped
with four actuators (also referred to as rotors in the literature). Quadrotors are utilized for
various tasks, including search and rescue operations, surveillance, and photography [1,2].
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To prevent confusion in the subsequent sections of this paper, the terms UAV and quadro-
tor will be used as synonyms. The quadrotor requires effective motion control to carry
out tasks in environments with high performance and significant autonomy. Therefore,
the control system objective on the quadrotor UAV is to follow desired trajectories and
enable autonomous movements [3]. Several linear control schemes have been proposed for
the quadrotor using Proportional-Integral-Derivative (PID) [4], Linear Quadratic Regulator
(LQR) [5], and Linear Quadratic Gaussian (LQG) controllers [6]. Nevertheless, given that
the quadrotor is a multivariable nonlinear system influenced by aerodynamic forces, pa-
rameter uncertainties, and external disturbances, the efficacy of classical control schemes is
constrained [7].

To elevate the performance demands on the quadrotor, several advanced control meth-
ods, such as feedback linearization [8], neural network control [9], intelligent control [10],
sliding mode control [11], backstepping [12], model predictive control [13], robust optimal
control [14], and a fractional-order controller [15], have been proposed. However, advanced
controllers require complete information on the quadrotor state variables. Moreover, the in-
creased number of sensors makes the overall system more complex in implementation
and expensive in realization. To overcome this problem, various control algorithms using
dynamic observers have been proposed [16]. A backstepping controller for the quadrotor
using an extended state observer is proposed in [17]. The observer estimates unmeasurable
velocity states and distances in translational and rotational dynamics. A robust tracking
controller, utilizing feedback linearization and Luenberger observers for state estimation,
is applied to the quadrotor as described in [18]. To further reinforce the robustness of the
controller, an adaptive estimator is incorporated to estimate the effects of disturbances.
In [19], an Unknown Input Observer (UIO) is designed to estimate the Inertial Measure-
ment Unit (IMU) signals. The UIO is used in a fault detection scheme considering external
disturbance in the IMU.

Moreover, in [20], a robust H∞ observer is proposed to perform actuator fault and state
estimations in a quadrotor. The effects of external disturbances, parameter uncertainties,
and nonlinear terms are considered in the H∞ observer design using a Linear Matrix
Inequality (LMI) optimization approach. Han et al. [21] proposed an adaptive control
scheme for a quadrotor combined with a filter-based disturbance observer. In this scheme,
a set of low-pass filters was used to derive filter outputs and a high-gain observer was
designed to estimate uncertainty. Fethalla et al. [22] introduced a robust trajectory tracking
controller for a quadrotor, incorporating a nonlinear disturbance observer. This observer
was integrated with backstepping and sliding mode control techniques to facilitate tracking
the desired position and attitude trajectories for the quadrotor. The results of the proposed
scheme demonstrated superior performance compared to the control approach that did not
employ the nonlinear disturbance observer.

On the other hand, the use of Sliding Mode Observers (SMOs) for estimating states and
disturbances in a quadrotor is presented in [23]. Also, in [24], a sliding mode control law
was designed to compensate for the estimated disturbance in real time, aiming to achieve
attitude control and enhance the quadrotors’ ability in precision agriculture. In addition,
in this work, a high-order SMO is used with a feedback linearization-based controller to
improve the performance of the motion control subject to disturbance. Therefore, SMOs
have become increasingly popular for controlling UAVs due to their numerous benefits.
Firstly, they facilitate robust estimation of the system’s state and disturbances, effectively
handling unknown disturbances and measurement noise. Secondly, SMOs contribute to
an improved control performance, providing valuable information for designing control
strategies that enhance trajectory tracking, stability, and the quadrotor’s response speed.
Lastly, the robustness of SMOs to uncertainties in the system parameters and operating
conditions makes quadrotor systems more adaptable to different situations, especially in
dynamic and variable environments [22,23,25,26].

Recently, it has been shown that many dynamic systems can be better characterized
using non-integer order dynamic models, achieved via fractional calculus, as opposed
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to traditional calculus [27]. In the literature, several works have addressed the control
problem of dynamic systems using Fractional Order Control (FOC) [28–30]. FOCs have
demonstrated superior performance in many control systems compared to controllers
designed using the traditional approach [31]. In [32], fractional calculus is incorporated
with the observer’s gain, providing an improved solution that effectively balances anti-noise
capabilities with control performance considerations for disturbance rejection in hypersonic
vehicles. In [33], a combination of disturbance observer-based control and fractional-order
control is employed to enhance robustness and performance. This approach is specifically
applied in the presence of nonlinearities, uncertainties, and external perturbations to
stabilize nonlinear vibrations in fractional-order arch MEMS resonators. In [34], a sliding
surface incorporating both integer and fractional-order derivatives is proposed to enhance
the quadrotor’s attitude-tracking performance. Furthermore, the global sliding mode
control approach grounded in fractional calculus enhances the system response speed
and robustness while offering a more adaptable controller structure than the conventional
sliding mode controller [35]. This effectiveness holds even in the presence of disturbances
and complex trajectories. This has originated an interest in applying FOC to systems
subject to uncertainties and disturbances, such as the quadrotor. Therefore, this research
proposes to modify a Sliding Mode Classical Order observer (SMCO) by adapting it to
the fractional calculus approach using a set of definitions based on the Riemann–Liouville
sense. Consequently, in this work, the following contributions are addressed: (a) present
a novel Sliding Mode Fractional Order observer (SMFO), (b) present a comparison of
the performance of the reconstruction of perturbations of the linear model of a UAV
quadrotor type focusing on its transitory response of the SMFO compared with the SMCO,
and (c) propose a reconstruction quality indicator (Best Quality of Reconstruction BQR)
based on the analysis of performance indices such as the Mean Square Error (MSE), the First
Probability Moment (FPM), and the Second Probability Moment (SPM) obtained for both
observers, which allows for validating the accuracy of the disturbance reconstruction and
the improvement in the transient response provided via the SMFO over the SMCO, as well
as for determining their future applicability in physical implementations.

This paper is organized as follows: Section 2 presents the non-linear and linear dynam-
ical model of a UAV, which will support the validation of the reconstruction of disturbances
carried out via the analyzed observers, SMCO and SMFO. Section 3 presents the design of
the SMFO observer as one of the main results, which has been obtained by proposing the
modification of an SMCO based on a fractional approach for the estimation of states and
the reconstruction of additive disturbances to the system. Section 4 presents the validation
and discussion of the results based on numerical simulations of the application of both
observers (SMCO and SMFO) to the UAV model via the proposed quality indicator (Best
Quality of Reconstruction BQR). Finally, the conclusions are presented in Section 5.

2. UAV Mathematical Modeling
2.1. UAV Kinematics

This section deals with the mathematical description of a quadrotor-type Unmanned
Aerial Vehicle (UAV) model. The UAV has four actuators, and by manipulating these,
the possible movements that can be made are defined: (a) Pitch movement, which allows
the UAV to move along the x axis. For this, the drone must increase the angular velocity in
rotor 1, reduce the angular velocity of rotor 3, and maintain a medium velocity in rotors 2
and 4, generating the torque τθ (see Figure 1). When performing these actions, an inclination
of the drone is generated, and consequently, the angle θ is generated. (b) Roll movement,
which allows the quadrotor to move along the y axis. For this, the drone must increase
the angular velocity in rotor 2, reduce the angular velocity of rotor 4, and maintain an
intermediate velocity in rotors 1 and 3, generating the torque τφ. When performing these
actions, an inclination of the UAV is generated, and consequently, the angle φ is generated.
(c) Yaw movement, which is generated in the vertical plane of the quadrotor. To generate
this movement, the angular velocity of rotors 1 and 3 must be varied equally, and the
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angular velocity of rotors 2 and 4 must be decreased (or increased) equally, generating the
torque τψ. Consequently, the UAV tends to rotate around its center of mass, generating the
angle ψ. It is important to mention that the slightest inclination in the angles of the UAV
can complicate the altitude, compromising the system’s stability.

Considering the above, it is helpful to define how the orientation of the quadrotor is
represented mathematically. It should be noted that the UAV is subject to the reference
frames C and I (see Figure 1). In this sense, C represents the non-inertial reference frame,
that is, a coordinate axis whose center is the center of mass of the quadrotor, and I represents
the inertial reference frame, which is attached to the earth’s surface (platform from where
the UAV starts its navigation).

On generating the pitch θ, roll φ, and yaw ψ angles, it is possible to modify the spatial
position of the drone. The movements described above must be controlled simultaneously
in order for the quadrotor to follow the particular trajectories assigned via a flight plan.

Figure 1. UAV quadrotor kinematics and frames of reference.

The non-linear dynamic model of the UAV is taken from [36], where it is presented
in detail, and it is specified that the dynamics of the UAV are defined by combining
translational and rotational dynamics, resulting in the following mathematical model:

ψ̈ =
τψ

Izz
+

(Ixx − Iyy)φ̇θ̇

Izz
+ φ̇θ̇,

θ̈ =
τθ

Iyy
+

(Izz − Ixx)ψ̇φ̇

Iyy
− ψ̇φ̇,

φ̈ =
τφ

Ixx
+

(Iyy − Izz)ψ̇θ̇

Ixx
+ ψ̇θ̇,

ẍ = (SψSφ + CψSθCφ)
u
m

,

ÿ = (−CψSφ + SψSθCφ)
u
m

,

z̈ = (CθCφ)
u
m
− g, (1)

where Ixx, Iyy, Izz represent the inertial parameters and m the quadrotor mass. The inputs
to the model are defined by (2):

u = f1 + f2 + f3 + f4,

τψ = ( f1 + f3)l − ( f2 + f4)l,

τθ = ( f1 − f3)l,

τφ = ( f2 − f4)l, (2)
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with l representing the length of the arms of the UAV, g the acceleration due to gravity, u
the thrust that defines the input to the translational dynamics, and the torques τθ , τφ and
τψ representing the inputs to the rotational dynamics [36]. Finally, the forces fi generated
by each one of the rotors incorporated into the quadrotor are defined as:

fi = kiωi
2, i = 1, 2, 3, 4. (3)

From (3), it follows that ωi represents the angular velocity of each rotor and ki is a
proportionality constant.

2.2. UAV State-Space Model

The UAV quadrotor model described above in (1) and (2) can be represented in a
state-space form as follows:

Ẋ = f(X, U). (4)

Then, the states’ vector X = (x1, x2, x3, . . . , x12), is defined as can be seen in Table 1:

Table 1. State-space variables definition.

State-Space Variables State-Space Variables

x1 = φ x7 = x
x2 = φ̇ = ẋ1 x8 = ẋ = ẋ7

x3 = θ x9 = y
x4 = θ̇ = ẋ3 x10 = ẏ = ẋ9

x5 = ψ x11 = z
x6 = ψ̇ = ẋ5 x12 = ż = ẋ11

Considering the state vector previously defined, the non-linear state-space model of
the quadrotor is expressed as follows:

Ẋ = f(X, U) =



x2
x4x6a1 + x4x6 + b1u2

x4
x2x6a2 − x2x6 + b2u3

x6
x2x4a3 + x2x4 + b3u4

x8
uxu1/m

x10
uyu1/m

x12
(uzu1/m)− g



, (5)

where:
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u1 = u,

u2 = τφ,

u3 = τθ ,

u4 = τψ,

a1 = (Iyy − Izz)Ixx,

a2 = (Izz − Ixx)Iyy,

a3 = (Ixx − Iyy)Izz,

b1 = 1/Ixx,

b2 = 1/Iyy,

b3 = 1/Izz,

ux = (SψSφ + CψSθCφ) = (Sx5Sx1 + Cx5Sx3Cx1),

uY = (−CψSφ + SψSθCφ) = (−Cx5Sx1 + Sx5Sx3Cx1),

uZ = (CθCφ) = (Cx3Cx1). (6)

The values given in Table 2 are considered for the numerical simulation of the UAV.

Table 2. UAV model parameters.

Description Parameter Value

UAV mass m = 1.4 kg
UAV rotor mass 0.088 kg

UAV arms length l = 1.0 m
x-axis inertia Ixx = 0.0116 kgm2

y-axis inertia Iyy = 0.0116 kgm2

z-axis inertia z Izz = 0.0232 kgm2

2.3. UAV Mathematical Model Linearization

The non-linear model of the quadrotor expressed by (5) and (6) has been linearized
around its equilibrium point defined as Pe = (φ, θ, ψ, z̈) = (0, 0, 0, 0). Thus, the linear repre-
sentation of the non-linear model is derived and expressed alternatively in the generalized
state-space form as defined by (7).

Ẋ(t) = AX(t) + BU(t),

Y(t) = CX(t) + DU(t), (7)

where X(t) ∈ Rn is the state vector, Y(t) ∈ Rp is the output vector, and U(t) ∈ Rm is the
input vector. A ∈ Rn×n is the system matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is
the output matrix, and D ∈ Rn×q is the input distribution matrix. The coefficients of the
matrices A, B, C, and D are obtained from the linearized state-space model expressed in
the continuous time domain, as shown in (8).
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A =
∂f
∂X

∣∣∣∣
Pe

=



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 g 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
−g 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



,

B =
∂f
∂U

∣∣∣∣
Pe

=



0 0 0 0
0 l/Ixx 0 0
0 0 0 0
0 0 l/Iyy 0
0 0 0 0
0 0 0 l/Izz
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1/m 0 0 0



,

C = I12×12,

D = 012×4. (8)

The linear model given in expression (8) has been discretized using the z-transform
with a sampling period of 25 ms. This sampling period was chosen based on the technical
specifications of synchronous communication operations of commercial sensors and the
experiments reported in [36], where a real-time simulation of a quadrotor is discussed.
Thus, the equivalent discrete-time domain linear model is defined as (9).

X(k + 1) = AkX(k) + BkU(k),

Y(k) = CkX(k) + DkU(k). (9)

The matrix coefficients that define the state-space linearized model expressed in the
discrete-time domain are:
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Ak =



1 A1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 A2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 A3 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 A4 A5 0 0 1 A6 0 0 0 0
0 0 A7 A8 0 0 0 1 0 0 0 0
−A9 −A10 0 0 0 0 0 0 1 A11 0 0
−A12 −A13 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 A14
0 0 0 0 0 0 0 0 0 0 0 1



,

Bk =



0 0.007543 0 0
0 0.6034 0 0
0 0 0.007543 0
0 0 0.6034 0
0 0 0 0.0002399
0 0 0 −0.01919
0 0 3.854×10−6 0
0 0 0.0006166 0
0 −3.854×10−6 0 0
0 −0.0006166 0 0

0.0002399 0 0 0
0.01786 0 0 0



,

Ck = I12×12,

Dk = 012×4, (10)

where the elements of matrix Ak are given by A1 = A2 = A3 = A6 = A11 = A14 = 0.025,
A4 = A8 = A9 = A13 = 30.66 × 10−4, A5 = A10 = 2.5̄ × 10−5, A7 = A12 = 0.2453.

Therefore, in simulating the quadrotor model and the observers discussed in Section 3,
the discrete matrices Ak, Bk, Ck, and Dk are used. This yields an approximate dynamic
response, contrasting with that obtained when considering the continuous event system
defined in (8). In this context, minimizing approximation errors may be achievable by
opting for a shorter sampling period. However, notice that this could compromise sensor
interaction when an implementation is required.

3. Main Results

This Section introduces a Sliding Mode Classical Observer (SMCO) designed with the
parameters derived from the dynamic matrices of the quadrotor linear model, as detailed in
the preceding section. Subsequently, we adapt and modify the SMCO to incorporate a frac-
tional approach, resulting in a Sliding Mode Fractional Observer (SMFO). This development
stands as the primary contribution of this research.

3.1. Sliding Mode Classical-Observer (SMCO) Desing

The principal purpose of a state observer is to estimate the non-measurable states
of a dynamical system based only on the measured outputs and inputs of the system.
An observer is a mathematical replica of the system driven by the system input and
the difference between the system’s outputs and the observer’s outputs, named output
estimation error. The output estimation error’s signal feedback into the observer is used as
a corrective term to enable the observer states to converge to the system states.
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In linear observers, the output estimation error is sent as feedback linearly into the
observer. This type of observer, however, is unable to force the output estimation error
to zero in the presence of disturbances or uncertainties in the system, and consequently,
the observer states will not converge to the system states. Unlike a linear observer, a sliding
mode classical observer (SMCO) fed back the output estimation error using a nonlinear
function, providing two advantages. Firstly, the SMCO can force the output estimation
error to zero in a finite time, even in the system’s presence of disturbances or uncertainties.
Therefore, the observer states converge asymptotically to the system states. Secondly,
once the output estimation error is forced to zero, it is said that a sliding motion occurs.
During the sliding motion, the nonlinear output estimation signal injected into the SMCO
contains information about the unknown signals (disturbances or uncertainties) affecting
the system. Using a suitable filtering process on the nonlinear output estimation error,
disturbance signals can be reconstructed [37].

To perform the disturbances’ reconstruction, two conditions are required. First,
bounded disturbances are required, and second, the disturbances should meet the matching
condition. Therefore, this subsection addresses the problem of bounded disturbance recon-
struction acting in the input channels of the quadrotor by designing an SMCO. A classical
methodology for the design of an SMCO considers the linear dynamical model, subject to
disturbances acting in the input channel, described as follows:

Ẋ(t) = FX(t) + GU(t) + Dξ(t), (11)

Y(t) = CX(t). (12)

where X(t) ∈ Rn is the vector state, Y(t) ∈ Rp are the measured outputs, and U(t) ∈ Rm

are the system inputs. F ∈ Rn×n is the parameters’ matrix, G ∈ Rn×m is the input matrix,
C ∈ Rp×n is the output matrix, and D ∈ Rn×q is an input distribution matrix. Assume that
the matrices G, F, and D are the full rank and the function ξ : R+ → ∈ Rq represents a
disturbance which is assumed to be bounded so that ‖ξ(t)‖ ≤ α with α ∈ R+.

It is assumed that the dynamical system given in (11) and (12) satisfies the following
two conditions: rank(CD) = q and the invariant zeros of the triple (F, G, C) must lie in C−.

Under the above conditions exist a linear change in coordinates T such that the model
of the system can be rewritten as:[

Ẋ1(t)
Ẋ2(t)

]
=

[
F11 F12
F21 F22

][
X1(t)
X2(t)

]
+

[
G1
G2

]
U(t) +

[
0

D2

]
ξ(t), (13)

Y(t) =
[
0 Ip

][X1(t)
X2(t)

]
, (14)

where X1(t) ∈ Rn−p denotes the non-measurable states and X2(t) ∈ Rp denotes the mea-
sured states. Ip ∈ Rp is the identity matrix and F11 has stable eigenvalues. The transforma-
tion of coordinates is used to rewrite the system model in a new coordinate system that
facilitates the SMCO design. The transformed model of the system given by (13) and (14)
will be used as a basis for the design of an SMCO. The observer structure that will be
considered can be written in the form:[

˙̂X1(t)
˙̂X2(t)

]
=

[
F11 F12
F21 F22

][
X̂1(t)
X̂2(t)

]
+

[
G1
G2

]
U(t)−

[
F12

F22 − F22
s

]
ey(t) +

[
0
Ip

]
v(t), (15)

Ŷ(t) =
[
0 Ip

][X̂1(t)
X̂2(t)

]
, (16)
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where F22
s is a stable design matrix and the discontinuous signal v(t), is given as:

v(t) =

{
−ρ‖D2‖

Q2ey(t)
‖Q2ey(t)‖ if ey(t) 6= 0

0 if ey(t) = 0,
(17)

where Q2∈ Rpxp is a symmetric positive definite Lyapunov matrix for F22
s.

Defining both the state estimation error and the output estimation as e1(t) = X̂1(t)−
X1(t) and ey(t) = X̂2(t)− X2(t), respectively, the dynamical of the error is given by:[

ė1(t)
ėy(t)

]
=

[
F11 0
F21 F22

s

][
e1(t)
ey(t)

]
+

[
0
Ip

]
v(t)−

[
0

D2

]
ξ(t). (18)

Edwards and Spurgeon in [37] show that the error dynamics given by (18) is quadrat-
ically stable. Therefore, both ey(t) and ėy(t) are forced to zero once the error dynamic
achieves the sliding motion in finite time. The SMCO given by (15) and (16) can be more
conveniently expressed in terms of the original coordinates of the system as:

˙̂X(t) = FX̂(t) + GU(t)−Gley(t) + Gnlv(t), (19)

where the matrices Gl and Gnl are the linear and nonlinear gains of the SMCO given by:

Gl = T−1
[

F12
F22 − F22

s

]
, (20)

Gnl = ‖D2‖T−1
[

0
Ip

]
. (21)

To calculate the gains Gn and Gnl of the SMCO, it is necessary to utilize the coordinate
transformation T, which maps the system’s dynamics into the specific form given by (13)
and (14). Then, v(t) is the output estimation error injection term, which is a nonlinear
discontinuous signal defined as:

v(t) =

{
−ρ‖D2‖ Q2Cex(t)

‖Q2Cex(t)‖ if Cex(t) 6= 0
0 if Cex(t) = 0,

(22)

where now the state estimation error is defined as ex(t) = X̂(t)− X(t) and the scalar ρ is
chosen so that ‖ξ(t)‖ ≤ ρ with ρ ∈ R+. To address the problem of quadrotor disturbance
reconstruction, the robustness properties of the SMCO are used. Therefore, when a sliding
motion is attained, both ey(t) and ėy(t) are forced to zero in finite time. Then, the dynamics
of error in (18) becomes:

0 = F21e1(t) + v(t)−D2ξ(t). (23)

Since the matrix F11 is stable, it follows that e1(t) → 0 with which v(t) → D2ξ(t).
Therefore, the disturbance information is contained in the signal v(t). Due to v(t) being a
high-frequency signal, one way to recover the dynamics of the disturbance is by using a
filtering process. To demonstrate this, it is proposed to apply a low-pass filter implemented
via the first-order differential equation given by (24) to each component of the nonlinear
function v(t).

τξ̇e,i(t) + ξe,i(t) = vi(t), (24)

with i = 1, 2, . . . , p, where ξe,i(t) is the i-th low-frequency component of the signal vi(t),
which provides an accurate estimate of the disturbances acting on the input channel of
the system, and τ is the filter time constant. Figure 2 shows the architecture of the SMCO
proposed for disturbance reconstruction.
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Figure 2. Sliding Mode Classical Observer (SMCO) architecture for disturbance reconstruction.

To achieve a sliding motion even in the presence of disturbances, it is only required that
the magnitude of the disturbance is bounded and that it satisfies the matching condition.
Therefore, when the SMCO achieves the sliding motion and attains the convergence of the
state estimation error to zero, the disturbances ξ(t) are estimated via the low-frequency
component of the observer’s signal v(t). This enables the observer to recover information
about the disturbances affecting the system while simultaneously achieving an accurate
estimation of the states despite the presence of disturbances or uncertainties in the system.

It is important to mention that in this work, it is assumed that all the quadrotor model’s
state variables are measurables, with which the rank of the matrix C is n (i.e., rank C = n),
Therefore, in this special case, the matrices F11, F12 and F21 are empty matrices, and the
rest of the matrices are given as:

T =

−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1



, (25)
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F22 =

1 F3 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 F3 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 F3 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 F1 0 0 0 1 F3 0 0 0 0
0 0 F2 F1 0 0 0 1 0 0 0 0
−F1 0 0 0 0 0 0 0 1 F3 0 0
−F2 −F1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 F3
0 0 0 0 0 0 0 0 0 0 0 1



, (26)

where the elements of the matrix F22 are given by: F1 = 31× 10−4, F2 = 0.2453, and F3 = 0.025.

Fs
22 =

−2 0 0 0 0 0 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0 0 0 0
0 0 −4 0 0 0 0 0 0 0 0 0
0 0 0 −5 0 0 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 0 0 0 0
0 0 0 0 0 −7 0 0 0 0 0 0
0 0 0 0 0 0 −8 0 0 0 0 0
0 0 0 0 0 0 0 −9 0 0 0 0
0 0 0 0 0 0 0 0 −10 0 0 0
0 0 0 0 0 0 0 0 0 −11 0 0
0 0 0 0 0 0 0 0 0 0 −3 0
0 0 0 0 0 0 0 0 0 0 0 −5



, (27)

with these matrices, the matrix Gl is obtained, which is shown below:

Gl =

3 g3 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
0 0 5 g3 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 0
0 0 0 0 7 g3 0 0 0 0 0 0
0 0 0 0 0 8 0 0 0 0 0 0
0 0 g1 0 0 0 9 g3 0 0 0 0
0 0 g2 g1 0 0 0 10 0 0 0 0
−g1 0 0 0 0 0 0 0 11 g3 0 0
−g2 −g1 0 0 0 0 0 0 0 12 0 0

0 0 0 0 0 0 0 0 0 0 4 g3
0 0 0 0 0 0 0 0 0 0 0 6



, (28)

where the elements of the matrix Gl are given by: g1 = 31 × 10−4, g2 = 0.2453, and
g3 = 0.025.

For the matrix Gnl is required the D2 matrix, then:

D2 =
[
0 0 0 0 0 0 0 0 0 0 0 1

]T .
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This gives rise to the required matrix based on (21), which is shown in (29).

Gnl = I12×12. (29)

To obtain the output estimation error injection term v(t), we refer to (22), where the
matrices Q2 and C are given by:

Q2 =

q1 0 0 0 0 0 0 0 0 0 0 0
0 q2 0 0 0 0 0 0 0 0 0 0
0 0 q3 0 0 0 0 0 0 0 0 0
0 0 0 q4 0 0 0 0 0 0 0 0
0 0 0 0 q5 0 0 0 0 0 0 0
0 0 0 0 0 q6 0 0 0 0 0 0
0 0 0 0 0 0 q7 0 0 0 0 0
0 0 0 0 0 0 0 q8 0 0 0 0
0 0 0 0 0 0 0 0 q9 0 0 0
0 0 0 0 0 0 0 0 0 q10 0 0
0 0 0 0 0 0 0 0 0 0 q11 0
0 0 0 0 0 0 0 0 0 0 0 q12



, (30)

C = I12×12, (31)

where the elements of the matrix Q2 are given by q1 = 0.25, q2 = 0.1667, q3 = 0.125,
q4 = 0.1, q5 = 0.0833, q6 = 0.0714, q7 = 0.0625, q8 = 0.0556, q9 = 0.05, q10 = 0.455,
q11 = 0.1667, q12 = 0.1. It is worth mentioning that the value of ρ is considered greater than
the norm of the disturbance amplitude to be reconstructed. Additionally, the value of τ
for (24) is considered to be 0.02.

3.2. Sliding Mode Fractional-Observer (SMFO) Design

In this section, a Sliding Mode Classical Observer (SMCO) is modified, adapting to
the Riemann–Liouville fractional calculus approach. This modification allows for obtaining
a new observer called the Sliding Mode Fractional Observer (SMFO). This allows for
highlighting the advantages that can be presented and discerning possible improvements
in the transient response of state estimation and disturbance reconstruction compared to
the SMCO observer. To validate this modification, the following section presents numerical
simulations applied to the model of a quadrotor-type UAV, where the results are evaluated
using performance indices.

To carry out the adaptation of the SMCO to the proposed SMFO, as a first step, it is
important to consider the following fractional calculus definitions:

Definition 1. The iterated Cauchy integral of order nc ∈ N is defined by the following expression:

C
a Inc

x { f (x)} = 1
(nc − 1)!

∫ x

a
(x− t)nc−1 f (t)dt,

C
a I0

x{ f (x)} = f (x). (32)

Definition 2. The Euler’s Gamma function is one that generalizes the factorial concept and extends
it to the real numbers set. This function is described by the following expression:

Γ(n) =
∫ ∞

a
tn−1e−tdt, n ∈ R. (33)
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The following expressions define some of the fundamental properties of the Euler’s Gamma
function:

Γ(n + 1) = nΓ(n),

Γ(n) = (n− 1)!,

Γ(1) = Γ(2) = 1,

Γ
(

1
2

)
=
√

π. (34)

When considering the definition and properties of Euler’s Gamma function in the
Cauchy iterated integral, the fractional-order integral operator described by Definition 3
is defined.

Definition 3. The Riemann–Liouville integral operator of order α ≥ 0 with a ≥ 0 is defined as:

RL
a Iα

x{ f (x)} = 1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt,

RL
a I0

x{ f (x)} = f (x), (35)

where Γ(α) is the Euler’s Gamma function and α ∈ R.

As a second step, considering the previous definitions and the properties of the Gamma
function, the sliding mode classical observer SMCO is modified to adapt its integral effect
in a sense described by (35) in the SMFO observer as shown in (40). For this purpose,
the following methodology must be addressed.

As a next step, based on the aforementioned fractional approach and considering the
classical observer dynamics given by (19), a new state vector X̂F and output ŶF = CX̂F

estimation are obtained. In this sense, the estimation error of the SMFO is defined as:

exF(t) = X̂F(t)− X(t), (36)

such that,

eyF(t) = CX̂F(t)− CX(t) = ŶF(t)− Y(t),

eyF(t) = C
[
X̂F(t)− X(t)

]
= C[exF(t)]. (37)

Therefore, the general structure of the SMFO is proposed analogously to the classical
observer SMCO to guarantee that eyF(t)→ 0, such that:

˙̂XF(t) = FX̂F(t) + GU(t)−GleyF(t) + GnlvF(t), (38)

where Gl and Gnl are appropriate gain matrices given in (20)–(21) and vF(t), which is
defined as:

vF(t) =


−ρ‖D2‖

Q2eyF (t)

‖Q2eyF (t)‖
if eyF(t) 6= 0

0 if eyF(t) = 0

(39)

Finally, the state vector estimation achieved via the sliding mode fractional observer
SMFO based on the Riemann–Liouville integral operator (Definition 3) proposed in this
work is carried out as follows:
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RL
a Iα

x

{
˙̂XF(t)

}
=

RL
a Iα

x
{

FX̂F(t) + GU(t)−GleyF(t) + GnlvF(t)
}

. (40)

4. Results Validation and Discussion

This section presents the numerical simulation results carried out in the MATLAB
R2022b® software of the comparison between the SMCO and the SMFO applied to the UAV
linearized model given by (7) to (10) described in Section 2. For this purpose, the UAV
model parameters denoted in Table 2 are considered. These simulations intend to illustrate
the performance and possible improvements in the transient behavior of the reconstruction
of the additive disturbances when the proposed SMFO approach is applied, and then
compare it with the SMCO performance. Therefore, for the validation and quantitative and
qualitative analysis of the obtained reconstruction results, the Best Quality of Reconstruction
(BQR) indicator is proposed based on three performance indices: the Mean Square Error
(MSE), the First Probability Moment (FPM), and the Second Probability Moment (SPM).

4.1. Comparison of the Disturbance Reconstruction SMFO vs. SMCO

To evaluate the performance of the proposed observer SMFO, non-zero initial condi-
tions and perturbations ξ1(t), ξ2(t) y ξ3(t) acting on the UAV linear model are considered.
These disturbances are bounded-time and additive signals that are applied to the input
channels of the UAV, which are defined as follows:

• ξ1(t): bounded-magnitude sinusoidal signal.
• ξ2(t): bounded-magnitude square signal.
• ξ3(t): bounded-magnitude sawtooth signal.

These signals represent the variability of disturbances applied to the UAV model.
These disturbances can arise from multiple sources, such as atmospheric turbulence, sud-
den changes in payload, weather variations, gusts of wind, and altitude changes. The nature
and intensity of these disturbances can significantly affect the trajectory, stability, and per-
formance of the UAV.

The results of the disturbance reconstructions obtained via the SMCO for ξ1(t), ξ2(t)
and ξ3(t), are shown in Figures 3–5, respectively. Concerning Figures 3–5, it can be
appreciated that the disturbances’ reconstruction has a convergence time of 5 s. However,
focusing on the disturbances’ reconstruction ξ1(t) and ξ2(t), oscillatory behaviors are
perceived to arise in the time intervals (5 s, 7 s) and (5 s, 11 s), respectively. Note that these
oscillatory behaviors are undesirable behaviors in dynamic systems since they could, at any
moment, saturate the sensors and actuators during implementation.
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Figure 3. Disturbance reconstruction of ξ1(t) using the SMCO approach.
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Figure 4. Disturbance reconstruction of ξ2(t) using the SMCO approach.
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Figure 5. Disturbance reconstruction of ξ3(t) using the SMCO approach.

Similarly, Figures 6–8 show the results of the disturbances’ reconstructions obtained
via the SMFO. When analyzing these results, it can be specified that, for all cases, sig-
nals without oscillations (desired dynamics to avoid saturations in the UAV sensors and
actuators during implementation) have been obtained.
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Figure 6. Disturbance reconstruction of ξ1(t) using the proposed observer SMFO.
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Figure 7. Disturbance reconstruction of ξ2(t) using the proposed observer SMFO.
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Figure 8. Disturbance reconstruction of ξ3(t) using the proposed observer SMFO.

It is worth mentioning that the reconstructions carried out via the SMCO and the
SMFO are based on the estimation of the state variables, so if the disturbance reconstruction
indicates convergence, the estimated states also converge. However, it should be noted that
the reconstructions obtained via the SMFO denote a better convergence with the original
disturbances than the results obtained using the SMCO since the latter is susceptible to
generating oscillations.

4.2. Discussion

In order to highlight one of the contributions of this work, Figures 9–11 show superim-
posed results of the disturbances’ reconstruction of ξ1(t), ξ2(t), and ξ3(t) carried out via
the SMCO and the SMFO. These figures illustrate that both reconstructions have the same
convergence time. However, the SMCO, in most cases, tends to generate oscillations. There-
fore, it is necessary to use performance indices that describe the efficiency of each approach.
Hence, it is proposed to quantitatively and qualitatively determine the performance of
the disturbance reconstruction process via the Mean Square Error MSE, First Probability
Moment FPM, and Second Probability Moment SPM.

Figures 12–14 present the dynamics of the MSE performance indices of the distur-
bances’ reconstruction ξ1(t), ξ2(t), and ξ3(t) carried out via the SMCO and the SMFO
observers. These indices are a quantitative test of the convergence quality such that a
small MSE in magnitude denotes a minor error in the reconstruction process. In addition,
to denote the best performance in the transient response of the disturbances’ reconstruction
between the SMCO and the SMFO, an indicator of the Best Quality of Reconstruction (BQR)
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described in Table 3 is proposed. In this table, it can be specified that the MSE is lower for
all cases in the proposed SMFO approach.
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Figure 9. Disturbance reconstruction of ξ1(t) using the SMCO classical observer and the SMFO
proposed fractional observer.
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Figure 10. Disturbance reconstruction of ξ2(t) using the SMCO classical observer and the SMFO
proposed fractional observer.
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Figure 11. Disturbance reconstruction of ξ3(t) using the SMCO classical observer and the SMFO
proposed fractional observer.
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Figure 12. MSE obtained from the reconstruction of ξ1(t) using the SMCO and SMFO observers.
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Figure 13. MSE obtained from the reconstruction of ξ2(t) using the SMCO and SMFO observers.
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Figure 14. Mean Square Error MSE obtained from the reconstruction of ξ3(t) using the SMCO and
SMFO observers.

Similarly, in Figures 15–17, the performance indices obtained using the first probability
moment FPM and the second probability moment SPM are presented. These indices
are references of the quality of convergence of the disturbances’ reconstruction since
the SPM represents a measure of the dispersion concerning its FPM. Thus, a small SPM
magnitude describes reconstructed disturbances with less dispersion; consequently, these
denote smaller oscillations. Therefore, there could be fewer complications in the physical



Mathematics 2023, 11, 4876 20 of 23

implementation, avoiding saturation in actuators and sensors. From Table 3, it can be
concluded that for all cases, the SPM is greater in the SMCO approach than in the proposed
SMFO approach. Then, considering the BQR indicator, it is possible to conclude that the
SMFO performs better disturbances’ reconstruction for all cases since its MSE and SPM
performance indices are smaller than the SMCO indices.

Table 3. SMCO and SMFO performance indices and BQR indicator.

MSE FPM SPM

Disturbance SMCO SMFO SMCO SMFO SMCO SMFO BQR

ξ1(t) 2.669 2.668 −0.132 −0.130 5.052 4.918 SMFO
ξ2(t) 3.286 3.277 −0.147 −0.144 5.396 5.246 SMFO
ξ3(t) 2.995 2.983 0.345 0.344 3.216 3.171 SMFO
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Figure 15. FMP and SMP obtained from the reconstruction of ξ1(t) using the SMCO and
SMFO observers.

0 5 10

0

1

2

M
a

g
n

it
u

d
e

SMCO FPM reconstruction 
2
(t)

0 5 10
0

5

M
a

g
n

it
u

d
e

SMCO SPM reconstruction 
2
(t)

0 5 10

Time [s]

0

1

2

M
a

g
n

it
u

d
e

SMFO FPM reconstruction 
2
(t)

0 5 10

Time [s]

0

5

M
a

g
n

it
u

d
e

SMFO SPM reconstruction 
2
(t)

X 12.567

Y -0.147712

X 12.567

Y -0.144686

X 12.566

Y 5.24653

X 12.566

Y 5.39672

Figure 16. FMP and SMP obtained from the reconstruction of ξ2(t) using the SMCO and
SMFO observers.
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Figure 17. FMP and SMP obtained from the reconstruction of ξ3(t) using the SMCO and
SMFO observers.

In summary, the results obtained using the Sliding Mode Classical and Fractional
Observers (SMCO and SMFO) provide a solid theoretical framework for state estimation
and disturbance reconstruction in dynamic systems, taking, as a particular example, the
UAV mathematical model. Although the design of the observers is carried out considering
the linearized model of the UAV, its applicability in the aircraft context lies in its ability
to deal with different disturbances, providing a fundamental basis for enhancing state
estimation and disturbance reconstruction accuracy in more complex systems. Finally,
these results establish a robust theoretical foundation that can be extended and applied in
the operational context of the UAV, considering its specific dynamics and different flight
environment conditions.

5. Conclusions

This research has introduced and rigorously examined a novel Sliding Mode Frac-
tional Observer (SMFO) tailored for disturbance reconstruction in a quadrotor UAV model
via performance indices. Using fractional calculus principles, specifically employing the
Riemann–Liouville approach, the proposed observer SMFO demonstrated superior capabil-
ities in enhancing the precision and reliability of disturbances’ estimation compared to the
Sliding Mode Classical Observer (SMCO). In addition, a mathematical formulation that de-
scribes integrating the fractional approach to the classical observer has been applied to the
quadrotor UAV model, highlighting its seamless adaptability and efficacy in capturing the
intricate dynamics of disturbances affecting the system. To denote one of the contributions
of the work, the SMCO and SMFO observers are applied to a quadrotor-type UAV model,
presenting numerical simulations that illustrate a comparison between the convergence of
the reconstructions obtained using both observers. The simulation results across diverse
environmental conditions unequivocally showcased the SMFO ability to achieve accurate
disturbance reconstruction with an improved transient response compared to the tradi-
tional SMCO. Furthermore, quantitative and qualitative assessments, utilizing performance
indices such as Mean Square Error (MSE), the first probability moment (FPM), and the
second probability moment (SPM), consistently favored the SMFO, reaffirming its superior-
ity in transient response during disturbance reconstruction. The introduction of the Best
Quality of Reconstruction (BQR) indicator provided an additional metric supporting the
preference for SMFO, particularly in scenarios where heightened precision is imperative for
physical implementations. In this context, if it is of interest to carry out the implementation
in a physical prototype of the SMCO and the SMFO, a study of the real-time performance
and temporary computational complexity of the observers is required, which should be
based on temporary constraints, priority management, real-time task-scheduling criteria,
and real-time operating systems, which is marked in another context outside the scope of
the objective of this article. Finally, the presented Sliding Mode Fractional Observer (SMFO)
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offers a promising and advanced solution for enhancing the reliability and precision of
disturbance estimation in Quadrotor UAV systems. The findings contribute to robust con-
trol strategies and open avenues for further exploration and refinement in fractional-order
control methodologies for dynamic aerial systems. The demonstrated improvements in
disturbance reconstruction achieved via the SMFO underscore its potential significance in
advancing state-of-the-art UAV control technologies.
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