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Abstract: A microscopic traffic flow model is developed that incorporates vehicle vibrations due to
pavement condition. The Intelligent Driver (ID) model employs a fixed exponent so traffic behavior
is the same regardless of the road condition. Thus, it ignores the underlying physics. To address this
limitation, the proposed model employs the Pavement Condition Index (PCI) in describing traffic
behavior. The performance of both models is evaluated on a 3000 m circular road using the Euler
numerical discretization technique. The results show that the performance of the proposed model
varies with the pavement condition (PCI), as expected. Furthermore, the traffic flow increases with
vehicle speed. The oscillations in speed and density with the proposed model decrease as the PCI
increases, and are larger when the speed is higher. Consequently, the results with the proposed model
align more closely with reality as they are based on the PCI, and so are a more accurate representation
of traffic behavior.

Keywords: traffic exponent; Intelligent Driver model; microscopic traffic flow; Pavement Condition
Index; vehicle vibration

MSC: 37M05

1. Introduction

Pavement condition significantly impacts traffic behavior. Pavement deterioration
causes traffic accidents, congestion, pollution, and time delays [1]. Moreover, poor roads
impact the smooth flow of traffic, resulting in rider discomfort and increased vehicle
operating costs [2]. Congestion lowers vehicle speeds so emissions are increased [1].
Further, vehicle speed is reduced by an average of 55% when the road condition is poor
compared to when it is excellent, and average emissions increase by 2.49%. Road safety is a
primary concern worldwide as road accidents cause 1.3 million fatalities each year [3]. It is
also dangerous as uneven pavement and potholes, damaged concrete, cracks, and exposed
rebar can cause drivers to lose control, resulting in severe accidents [4]. Efficient traffic
forecasting and control are essential to alleviate traffic problems such as congestion and
improve road infrastructure [5]. This requires a practical model for traffic prediction.

Traffic models are typically microscopic or macroscopic, and mesoscopic. Macroscopic
models focus on speed and density to describe traffic flow [6], while microscopic models
focus on individual vehicles and drivers [7]. They incorporate speed, position, and distance
and time headway [8,9].

Gazis, Herman, and Rothery proposed a microscopic model commonly known as
the GHR model [10]. This model characterizes driver response considering the speed
and distance of leading vehicles. However, driver behavior in changing conditions is
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ignored as speed adjustments are based on a constant and not traffic physics. Newell [11]
characterized vehicle behavior in dense traffic and showed that velocity (speed) is impacted
by the distance headway. An increase in this headway results in higher speeds and lower
density. However, high speeds can produce large acceleration, which is neither safe
nor realistic.

Wiedemann [12] and Fritzsche [13] developed similar models based on driver behavior
under varying conditions. Their results are employed in the PTV VISSIM and PARAM-
ICS simulators, respectively [14]. However, the traffic states have different equations so
their models are complex. Wiedemann [15] created an improved model using simulation
results for traffic on motorways. However, this model is not stable for a large number of
vehicles [16].

An improvement to the Newell model was given in [17], but it neglects speed differ-
ences, resulting in acceleration which is very high. Moreover, driver behavior is based on
a constant and so traffic physics is ignored. It was shown in [18] that speed differences
can be used to accurately characterize speed and time headway in dense traffic. However,
average and slow driver behavior are not considered so the results only pertain to aggres-
sive drivers. The model in [19] is widely used because it produces realistic traffic behavior.
As a consequence, it is employed in the AIMSUN simulator [14]. However, this model
cannot differentiate between acceleration and deceleration and is limited to a small range
of parameters [20].

The Intelligent Driver (ID) model was developed in [20] based on driver reaction.
This model considers desired velocity (speed) and distance headway to characterize driver
behavior [21–23]. Unlike the Gipps model, the ID model provides realistic acceleration
and deceleration [14]. As a consequence, it is widely utilized in Adaptive Cruise Control
(ACC) and cooperative ACC [24–26]. The ID model is also employed in Simulation of
Urban MObility (SUMO) and PTV VISSIM [27]. However, it uses a fixed exponent to
characterize traffic. This means that driver behavior is not based on traffic conditions. This
is unrealistic as real-world traffic dynamics are influenced by various factors including
pavement condition, and this affects driver behavior.

This study introduces a microscopic traffic model that incorporates the pavement
condition to accurately represent traffic behavior. The pavement condition is evaluated
using the Pavement Condition Index (PCI), which is an indicator of pavement condition
and quality, and thus affects driver behavior and traffic flow. It ranges between 0 and
100 [2]. Incorporating the PCI results in a model that provides a more comprehensive and
accurate representation of traffic behavior. A flowchart of the methodology employed in
this research is given in Figure 1. First, field experiments to determine the impact of vehicle
vibrations on the PCI were conducted on the Grand Trunk highway in Peshawar, located in
the Khyber Pakhtunkhwa province of Pakistan. This road section spans 7 km and extends
from the Chamkani Bus Rapid Transit (BRT) station to Pabbi. Then, the proposed and
ID models are implemented using the Euler technique in MATLAB. The results obtained
indicate that the proposed model is more suitable for evaluating traffic behavior.
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The rest of this paper is organized as follows. In Section 2, traffic flow models are
introduced and their stability is analyzed in Section 3. Section 4 outlines the Euler technique
and the performance is evaluated in Section 5. The results of this paper are summarized in
Section 6.

2. Traffic Models

The ID model is used for microscopic traffic characterization and incorporates factors
such as the desired speed vd, distance to align with leading conditions s, and the difference
in speed ∆v with the leading vehicle [20]. Driver response is a function of the ratio of
average speed v to desired speed vd, and is expressed as [20]

dv
dt

= a

(
1 −

(
v
vd

)δ

−
(

H
s

)2
)

(1)

where a is the maximum acceleration and δ is a fixed acceleration exponent. H is the desired
distance headway during traffic alignment to leading conditions and is given by [20]

H = J + Tv +
v∆v

2
√

ad
(2)

where d is the deceleration or minimum acceleration, J is the jam spacing as illustrated
in Figure 2, and T is the time required by a vehicle to adjust its speed to the speed of the
leading vehicle [5]. H indicates driver desire to maintain a safe distance from the leading
vehicle. This is crucial for ensuring safety on the road and preventing collisions. The
ID model employs (1) and (2) for traffic by incorporating driver response and distance
headway for the alignment of traffic [5].
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The ID model characterizes driver response to traffic conditions based on a fixed value
δ. Thus, driver behavior does not vary based on these conditions, so it is unrelated to traffic
physics and results in inadequate and unrealistic traffic characterization.

An acceleration exponent based on the PCI is proposed for the realistic characterization
of traffic. Then, δ is a function of vehicle vibrations which are mechanical oscillations. These
vibrations are largely generated by the interaction between the road surface and tires, and
thus are a major contributor to passenger fatigue and discomfort.

Field experiments were conducted by driving a test vehicle over the road segment in
Peshawar, Pakistan, between 12 AM and 2 AM. One lane in each direction was traversed
12 times with speeds of 35 km/h (9.72 m/s), 45 km/h (12.50 m/s), and 55 km/h (15.27 m/s).
Thus, for a given speed, a lane was traversed four times. These speeds were selected to
represent typical traffic observed on the road segment. Data were collected using an
On-Board Diagnostic-II scanner connected to a smartphone with the BotlnckDectr [28]
mobile app. This allowed for the recording of various parameters including GPS location,
in-vehicle noise, vibration, and time [28]. During the experiments, the smartphone was
positioned on the vehicle dashboard. The data were transmitted to the Amazon Web
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Services (AWS) cloud. It was then analyzed to obtain the PCI of the road segment. The
relationships between PCI and vehicle vibrations obtained are

δ = −0.0169PCI + 4.068 (3)

δ = −0.0265PCI + 5.037 (4)

δ = −0.0251PCI + 5.209 (5)

for speeds of approximately 9.72 m/s, 12.50 m/s, and 15.27 m/s, respectively. The PCI
ranges from 0 to 100 where 0 corresponds to a poor road condition and 100 to an excellent
road condition. Thus, δ and PCI are linearly related. As the pavement condition degrades,
the oscillations increase, which reduces passenger comfort, i.e., a higher PCI corresponds
to lower vibrations. Substituting (3), (4) and (5) in (1) gives the proposed model for speeds
of 9.72 m/s, 12.50 m/s, and 15.27 m/s, respectively

dv
dt

= a

(
1 −

(
v
vd

)(−0.0169PCI+4.068)
−
(

H
s

)2
)

(vd = 9.72 m/s) (6)

dv
dt

= a

(
1 −

(
v
vd

)(−0.0265PCI+5.037)
−
(

H
s

)2
)

(vd = 12.50 m/s) (7)

dv
dt

= a

(
1 −

(
v
vd

)(−0.0251PCI+5.209)
−
(

H
s

)2
)

(vd = 15.27 m/s) (8)

An excellent road condition is required to avoid traffic congestion and accidents and
efficiently align to forward vehicles. In this case, there is free flow traffic which corresponds
to PCI = 100. A poor road condition can result in congestion due to the reduction in
vehicle speed. In this case, PCI = 0 and vehicle acceleration and deceleration are large so
the emissions are high. With the proposed model, alignment is according to the PCI and is
more realistic compared with fixed δ.

The traffic density can be expressed as D = 1/se [29] where se is the distance headway
at equilibrium. In this case, ∆v = 0 so substituting (2) in (1) gives for the ID model

a

(
1 −

(
v
vd

)δ

−
(

J + Tv
se

)2
)

= 0 (9)

and rearranging we obtain

se = (J + Tv)

(
1 −

(
v
vd

)δ
)− 1

2

(10)

Thus, the fixed δ in the ID model results in a constant distance headway between vehicles
at equilibrium regardless of the traffic conditions. In contrast, in the proposed model the
distance headway is based on the PCI. The distance headway at equilibrium is obtained by
substituting (3), (4), and (5) in (10) which gives

se = (J + Tv)

(
1 −

(
v
vd

)(−0.0169PCI+4.068)
)− 1

2

(vd = 9.72 m/s) (11)

se = (J + Tv)

(
1 −

(
v
vd

)(−0.0265PCI+5.037)
)− 1

2

(vd = 12.50 m/s) (12)



Mathematics 2023, 11, 4911 5 of 24

se = (J + Tv)

(
1 −

(
v
vd

)(−0.0251PCI+5.209)
)− 1

2

(vd = 15.27 m/s) (13)

The product of density and speed is traffic flow [8,30] so that

F =
v
se

(14)

and substituting (10) in (14) gives the flow for the ID model as

F =
v

(J + Tv)
(

1 −
(

v
vd

)δ
)− 1

2
(15)

This is unrealistic as it relies on a fixed exponent. The proposed model considers the PCI to
determine traffic flow and so is more realistic. The traffic flow can be expressed as

F =
v

(J + Tv)
(

1 −
(

v
vd

)(−0.0169PCI+4.068)
)− 1

2
(vd = 9.72 m/s) (16)

F =
v

(J + Tv)
(

1 −
(

v
vd

)(−0.0265PCI+5.037)
)− 1

2
(vd = 12.50 m/s) (17)

F =
v

(J + Tv)
(

1 −
(

v
vd

)(−0.0251PCI+5.209)
)− 1

2
(vd = 15.27 m/s) (18)

The proposed model indicates that when the road condition is poor, the vehicle
vibrations are large and the flow is small, whereas when the road condition is excellent, the
vehicle vibrations are small and the flow is large. Further, the proposed model can predict
traffic behavior in real-time to help ACC systems better anticipate and adapt to changes in
traffic conditions. An ACC system guided by the proposed model can adjust the vehicle
speed and following distance in response to the observed traffic density. When the density
is high, the ACC can reduce the speed and maintain a safe distance to ensure safety and a
smooth traffic flow. Conversely, when the density is low, the ACC can increase the speed
while maintaining a safe distance to improve efficiency.

3. Stability Analysis

This section presents an analysis of the stability of traffic models considering an
infinitely long road. Identical vehicles are assumed with a constant equilibrium distance
headway [31]. Therefore, drivers adjust to forward conditions with minimal acceleration,
so there are only small changes in the equilibrium velocity ve associated with se. The
corresponding change in distance headway, denoted by a, is also small as is the change in
velocity denoted by b. The distance headway can then be expressed as

s = se + a, (19)

and
v = ve(se) + b. (20)

The temporal change in velocity during traffic alignment over the distance headway
is [32]

a(t) =
da
dt

= bl − bF, (21)
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where the subscripts F and l denote the following and leading vehicles, respectively. Given
the minor variations in ve(se), the adjustments in headway are negligible. Consequently,
b(t) during alignment can be expressed as [31]

b(t) =
db
dt

= fsaF + ( f v + f∆v)bF − f∆vbl , (22)

where fv, f∆v , and fs denote the partial derivatives w.r.t. velocity, change in velocity, and
distance headway, respectively, which are

fv =
∂ f
∂v

, f∆v =
∂ f
∂∆v

and fs =
∂ f
∂s

.

Using Fourier–Ansatz to express (21) and (22) gives

a(t) = âeγt+ik, (23)

b(t) = b̂e
γt+ik

, (24)

so (23) and (24) can be written as (
a(t)
b(t)

)
=

(
â
b̂

)
eγt+ik, (25)

where γ = α + iω corresponds to the traffic oscillations during alignment and i =
√
−1.

The real part α corresponds to the amplitude change and ω = 2π
T is the oscillation frequency

with oscillation period T. The parameter k denotes driver delay [31], while â and b̂ are the
changes in velocity and distance headway, respectively.

Substituting (25) in (21) and (22), gives

a(t) = b − beik, (26)

b(t) = fsaeik + ( fv + f∆v)beik − f∆vb. (27)

Model stability requires that the real components of the eigenvalues are negative. The
eigenvalues are the solution of ∣∣∣∣j −(λ 0

0 λ

)∣∣∣∣ = 0. (28)

The Jacobian matrix is

j =
(

j11 j12
j21 j22

)
,

where j11 and j21 are the gradients of (26) and (27) w.r.t. a and j12 and j22 are the gradients
of (26) and (27) w.r.t. b. We have

j = eik
(

0 e−ik − 1
fs ( fv + f∆v)− f∆ve−ik

)
. (29)

and substituting this in (28) gives∣∣∣∣ λ 1 − e−ik

− fs λ − fv − f∆v + f∆ve−ik

∣∣∣∣ = 0, (30)

so that
λ2 +

(
− fv − f∆v + f∆ve−ik

)
λ + fs

(
1 − e−ik

)
= 0. (31)
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Setting M(k) = − fv − f∆v + f∆ve−ik and N(k) = fs

(
1 − e−ik

)
, (24) becomes

λ2 + M(k)λ + N(k) = 0. (32)

Thus, the eigenvalues from (32) are

λ1,2 = −M(k)
2

(
1 ±

√
1 − 4N(k)

M2(k)

)
, (33)

A model is string stable [31] if the real components of the eigenvalues are negative.
Under this condition, traffic oscillations diminish over time and the flow becomes stable
and smooth [33]. Conversely, a model is considered unstable if traffic oscillations increase
and are large as in congestion. In this case, acceleration is high unlike when there is string
stability [29]. As the model becomes unstable, k → 0 , leading to minimal delay between
flow changes (traffic waves) [31].

Approximating M(k) and N(k) using Taylor series for a small delay, i.e., k → 0 , gives

M(k) = − fv − i f∆vk, (34)

N(k) = i fsk +
fs

2
k2. (35)

From [31], at equilibrium
fs = −v′e(se) fv. (36)

where v′e(se) is the equilibrium speed gradient relative to the distance headway. Then,
(35) becomes

N(k) = −iv′e(se) fv −
v′e(se)

2
fv. (37)

Let
M(k) = x1 + x2k,

N(k) = y1k + y2k2,
(38)

where
x1 = − fv,

x2 = −i f∆v,

y1 = −iv′e(se) fv = iv′e(se)x1,

y2 = − v′e(se)
2 fv = v′e(se)

2 x1.

(39)

Considering a Taylor series expansion, the square root in (33) can be approximated as√
1 − 4N(k)

M2(k)
= 1 − 2N(k)

M2(k)
− 2N2(k)

M4(k)
, (40)

which gives

λ2 =
−N(k)M2(k)− N2(k)

M3(k)
. (41)

Using (38)

λ2 = − y1

x1
k +

(
y1x2

x2
1

− y2

x1
−

y2
1

x3
1

)
k2, (42)

and then from (39), we obtain

λ2 = −iv′e(se)k +
v′e(se)

fv

[
−2 f∆v − fv

2
−v′e(se)

]
k2. (43)
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The real part of (43) represents the rate at which the traffic oscillation amplitude
changes, signifying growth or decay. When this real part is negative, the traffic flow is
string-stable, since

v′e(se) ≥ 0 and fv < 0. (44)

Then,
[
−2 f∆v− fv

2 − v′e(se)
]

is the string stability criterion [27] which can be expressed as

v′e(se) ≤ − fv

2
− f∆v. (45)

From (44) and (45), the product of
[
− 2 f∆v− fv

2 − v′e(se)
]

and v′e(se)
fv

indicates that λ2 has a
negative real part. Further, at equilibrium

fv = a

(
− δve(se)

δ−1

vδ
d

− 2T(J + ve(se)T)
s2

e

)
, (46)

f∆v = −ve(se)

se

√
a
d

(
J + ve(se)T

se

)
. (47)

Using (46) and (47), the criterion for string stability from (44) is

v′e(se) ≤
a
(

δ(se)
2ve(se)

δ−1 + 2TJvδ
d + 2ve(se)T

2vδ
d

)
2(se)

2vδ
d

+
ve(se)

√
ad(se + Tve(se))

(se)
2d

(48)

Thus, the velocity with the ID model is determined by δ. A higher value improves stability
but may lead to optimistic performance in congestion. Consequently, increasing δ for
stability reasons ignores traffic physics and can produce unrealistic results [5]. Changes
in velocity during traffic alignment are influenced by driver response and thus pavement
condition. Hence, more realistic behavior is obtained using (3), (4), and (5) for δ according
to the speed. The stability criteria for the proposed model with speeds 9.72 m/s, 12.50 m/s,
and 15.27 m/s are then

v′e(se) ≤

a

(−0.0169PCI + 4.068)(se)
2ve(se)

(−0.0169PCI+4.068)−1 + 2TJv(−0.0169PCI+4.068)
d +

2ve(se)T
2v(−0.0169PCI+4.068)

d


2(se)

2v(−0.0169PCI+4.0679)
d

+ ve(se)
√

ad(se+Tve(se))

(se)
2d

(49)

v′e(se) ≤

a

(−0.0265PCI + 5.037)(se)
2ve(se)

(−0.0265PCI+5.037)−1 + 2TJv(−0.0265PCI+5.037)
d +

2ve(se)T
2v(−0.0265PCI+5.037)

d


2(se)

2v(−0.0265PCI+5.037)
d

+ ve(se)
√

ad(se+Tve(se))

(se)
2d

(50)

v′e(se) ≤

a

(−0.0251PCI + 5.209)(se)
2ve(se)

(−0.0251PCI+5.209)−1 + 2TJv(−0.0251PCI+5.209)
d +

2ve(se)T
2v(−0.0251PCI+5.209)

d


2(se)

2vδ
d

+ ve(se)
√

ad(se+Tve(se))

(se)
2d

(51)

respectively. When the pavement is in good condition, vehicles can more easily adjust to
changes in traffic ensuring string stability. Conversely, pavement in poor condition results
in greater adjustments to changes in traffic which may not result in a smooth flow.
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4. The Euler Technique

The Euler technique is used to evaluate the proposed and ID models. It is a simple
but effective method to solve systems of differential equations and is widely used in traffic
simulators such as SUMO [34] and AIMSUN [35]. This technique divides time into discrete
steps and the vehicle position, speed, and acceleration are approximated using the model
at each time step. The change in distance w.r.t. time results in a change in speed given by

ds
dt

= v, (52)

and temporal changes in speed lead to changes in acceleration. Denote the right-hand side
of (1), (6), (7), and (8) by Y, then

dv
dt

= Y. (53)

For the Euler technique, the position and speed for the ID and proposed models is

sx+1
f = sx

f + ∆t × vx
f (54)

vx+1
f = vx

f + ∆t × Yx
f (55)

where x is the current time step and x + 1 is the next time step. sx
f , vx

f , and Yx
f are the

position, speed, and acceleration, respectively, of the following vehicle in the xth time
interval where

t = x∆t (56)

and ∆t is the duration of a time step.

5. Performance Evaluation

In this section, the performance of the proposed model and ID models is evalu-
ated on a circular road of length 3000 m. The Euler scheme is employed with time step
∆t = 0.50 s. The proposed model is simulated for 400 s and the ID model for 150 s. Based
on (3), (4), and (5) the desired speed vd for the proposed model is set to 9.72 m/s, 12.50 m/s,
and 15.27 m/s. The desired speed for the ID model is 20 m/s [22]. The jam spacing is
set to 2.0 m [31], the maximum acceleration is 0.73 m/s², and the minimum acceleration
is 1.67 m/s² [20]. The acceleration exponent δ is typically 1 or greater and is often set to
4 [20]. Thus, here δ = 1, 4 and 20. The PCI values considered are PCI = 0, 50 and 100.
The maximum normalized density is set to 1/J = 0.50 and the critical density is 0.25 [36].
The maximum flow is obtained at the critical density with speed vd. Thus, the speed is
normalized by vd and the flow is normalized by 0.25 × vd. The simulation parameters are
summarized in Table 1.

Table 1. Simulation Parameters.

Parameter Values

Desired speed for the proposed model, vd 9.72 m/s, 12.50 m/s and 15.27 m/s
Desired speed for the ID model, vd 20 m/s
Time headway for ID and proposed models, T 2.0 s
Critical density 0.25
Jam spacing, J 2.0 m
Maximum density 1/J = 0.50
Maximum acceleration, a 0.73 m/s2

Vehicle length, L 5.0 m
Acceleration exponent for the ID model, δ 1, 4 and 20
Pavement Condition Index, PCI 0, 50 and 100
Minimum acceleration, d 1.67 m/s2

Time step, ∆t 0.50 s
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Figure 3 gives the normalized flow for the proposed model with vd = 9.72 and
PCI = 0, 50, and 100. When PCI = 0, the flow at 19.0 s is 0.0010. It is 0.0021 at 106.5 s,
increasing to 0.0032 at 293.0 s and 0.0035 at 400 s. When PCI = 50, the flow at 19.5 s is
0.0010. It is 0.0020 at 162.5 s, increasing to 0.0031 at 288.0 s and 0.0038 at 400 s. When
PCI = 100, the flow at 21.5 s is 0.0010. It is 0.0025 at 172.0 s, increasing to 0.0033 at 285.5 s
and 0.0044 at 400 s.
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Figure 3. Normalized flow for the proposed model with vd = 9.72 m/s over a 3000 m circular road.

Figure 4 gives the normalized flow for the proposed model with vd = 12.50 m/s and
PCI = 0, 50, and 100. When PCI = 0, the flow at 20.0 s is 0.0012. It is 0.0029 at 156.0 s,
increasing to 0.0042 at 268.5 s and 0.0054 at 400 s. When PCI = 50, the flow at 22.5 s is
0.0013. It is 0.0033 at 167.0 s, increasing to 0.0045 at 276.0 s and 0.0063 at 400 s. When
PCI = 100, the flow at 23.5 s is 0.0010. It is 0.0037 at 179.0 s, increasing to 0.0062 at 313.5 s
and 0.0110 at 400 s.
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Figure 5 gives the normalized flow for the proposed model with vd = 15.27 m/s and
PCI = 0, 50, and 100. When PCI = 0, the flow at 22.0 s is 0.0013. It is 0.0050 at 217.5 s,
increasing to 0.0079 at 307.5 s and 0.0140 at 400 s. When PCI = 50, the flow at 25.0 s is
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0.0013. It is 0.0052 at 220.5 s, increasing to 0.0110 at 324.0 s and 0.0270 at 400 s. When
PCI = 100, the flow at 27.5 s is 0.0010, increasing to 0.0070 at 234.5 s and 0.0770 at 400 s.
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Figure 5. Normalized flow for the proposed model with vd = 15.27 m/s over a 3000 m circular road.

Figure 6 gives the normalized flow for the ID model with δ = 1, 4, and 20 and
vd = 20 m/s. When δ = 1, the flow at 31.5 s is 0.0013, increasing to 0.0024 at 94.0 s and
0.0063 at 150 s. When δ = 4, the flow at 33.0 s is 0.0017. It is 0.0020 at 80.0 s, increasing to
0.0039 at 116.0 s and 0.0088 at 150 s. When δ = 20, at 28.0 s the flow is 0.0012. It is 0.0032 at
100.5 s, increasing to 0.0060 at 130.0 s and 0.0095 at 150 s.
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Figure 6. Normalized flow for the ID model with δ = 1, 4, and 20 over a 3000 m circular road.

Figure 7 gives the normalized speed with vd = 9.72 m/s and PCI = 0, 50 and 100 for
the proposed model. When PCI = 0, the speed is 0.39 from 0.5 s to 15.0 s, decreasing to
0.23 at 15.5 s, and then increasing to 0.46 at 20.0 s. The speed oscillates between 0.16 and
0.64 from 236.5 s to 399.0 s as indicated in Figure 7a. The speed when PCI = 50 is similar
to that when PCI = 0. It is 0.39 from 0.5 s to 15.0 s, decreasing to 0.23 at 15.5 s, and then
increasing to 0.46 at 21.0 s. The speed oscillates between 0.21 and 0.58 from 263.0 s to 399.5 s
as indicated in Figure 7b. When PCI = 100, the speed is 0.40 from 0.5 s to 15.0 s, decreasing
to 0.23 at 15.5 s, and then increasing to 0.46 at 19.5 s. The speed oscillates between 0.32
and 0.48 from 315.0 s to 399.0 s as indicated in Figure 7c. For all PCI values, there are road
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segments where the speed is constant such as between −1947.8 m and −426.7 m at 397.5 s
when PCI = 0, between −1932.3 m and −228.4 m at 392.0 s when PCI = 50, and between
−1962.4 m and −428.1 m at 393.5 s when PCI = 100.
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Figure 8 gives the normalized speed with vd = 12.50 m/s and PCI = 0, 50, and 100
for the proposed model. When PCI = 0, the speed from 0.5 s to 15.0 s is 0.15, decreasing to
0.09 at 15.5 s, and then increasing to 0.18 at 19.5 s. The speed oscillates between 0.06 and
0.27 from 255.0 s to 399.0 s as indicated in Figure 8a. Similarly, when PCI = 50 the speed is
0.15 from 0.5 s to 15.0 s, decreasing to 0.09 at 15.5 s, and then increasing to 0.18 at 20.5 s.
The speed oscillates between 0.06 and 0.26 from 258.0 s to 399.0 s as indicated in Figure 8b.
The speed is also similar when PCI = 100. It is 0.15 from 0.5 s to 15.0 s, decreasing to
0.09 at 15.5 s and then increasing to 0.18 at 19.5 s. The speed oscillates between 0.09 and
0.22 from 294.5 s to 399.5 s as indicated in Figure 8c. For all PCI values, there are road
segments where the speed is constant such as between −2022.5 m and −237.5 m at 397.0 s
when PCI = 0, between −1922.7 m and −245.5 m at 395.0 s when PCI = 50, and between
−1953.75 m and −230.0 m at 390.0 s when PCI = 100.
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Figure 9 gives the normalized speed with vd = 15.27 m/s and PCI = 0, 50, and 100
for the proposed model. When PCI = 0, the speed from 0.5 s to 15.0 s is 0.11, decreasing to
0.06 at 15.5 s, and then increasing to 0.13 at 19.5 s. The speed oscillates between 0.04 and
0.20 from 241.0 s to 399.0 s as indicated in Figure 9a. The speed behavior is similar when
PCI = 50. It is 0.11 from 0.5 s to 15.0 s, decreasing to 0.06 at 15.5 s, and then increasing
to 0.14 at 20.5 s. The speed oscillates between 0.04 and 0.20 from 267.5 s to 399.0 s as
indicated in Figure 9b. Similar speed behavior also occurs when PCI = 100. It is 0.11 from
0.5 s to 15.0 s, decreasing to 0.06 at 15.5 s, and then increasing to 0.13 at 20.5 s. The speed
oscillates between 0.05 and 0.18 from 278.5 s to 399.5 as indicated in Figure 9c. For all PCI
values, there are road segments where the speed is constant such as between −1945.4 m
and −244.3 m at 391.0 s when PCI = 0, between −1911.8 m and −239.7 m at 388.5 s when
PCI = 50, and between −1817.1 m and −371.4 m at 384.0 s when PCI = 100.
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Figure 10 gives the normalized speed for the ID model with vd = 15.27 m/s and
δ = 1, 4, and 20. When δ = 1, the speed is 0.10 until 15.0 s. It is 0.05 at 15.5 s and then
increases to 0.11 at 21.0 s. The speed oscillates between 0.09 and 0.10 from 118.0 s to 149.5 s
as indicated in Figure 10a. When δ = 4, the speed is 0.09 until 15.0 s, decreasing to 0.05
at 15.5 s, and then increasing to 0.11 at 19.5 s. The speed oscillates between 0.08 and 0.11
from 122.5 s to 149.5 s as indicated in Figure 10b. When δ = 20, the speed is 0.1 until
15.0 s, decreasing to 0.05 at 15.5 s, and then increasing to 0.11 at 20.5 s. The speed oscillates
between 0.08 and 0.11 from 118.5 s to 150.0 s as indicated in Figure 10c. For all the values
of δ, there are road segments where the speed is constant such as between −2590.0 m and
−322.0 m at 148.0 s when δ = 1, between −2498.0 m and −292.0 m at 147.0 s when δ = 4,
and between −2594.0 m and −374.0 m at 149.0 s when δ = 20.
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Figure 11 gives the normalized density for the proposed model with vd = 9.72 m/s
and PCI = 0, 50 and 100. When PCI = 0, the density is 0.17 until 31.0 s. It is 0.20 at 32.0 s,
decreasing to 0.13 at 32.5 s. The density oscillates between 0.13 and 0.21 from 279.5 s to
398.5 s as indicated in Figure 11a. When PCI = 50, the density is 0.16 until 31.0 s. It is 0.20
at 32.0 s, decreasing to 0.13 at 33.0 s. The density oscillates between 0.14 and 0.19 from
277.5 s to 399.5 s, and then it varies between 0.16 and 0.23 as indicated in Figure 11b. When
PCI = 100, the density is 0.16 until 31.0 s. It is 0.20 at 32.0 s, decreasing to 0.13 at 32.5 s. It
oscillates between 0.14 and 0.18 from 313.5 s to 398.5 s, and then varies between 0.16 and
0.18 as indicated in Figure 11c.
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Figure 12 gives the normalized density for the proposed model with vd = 12.50 m/s
and PCI = 0, 50 and 100. When PCI = 0, the density is 0.17 until 31.0 s, increasing to
0.20 at 32.0 s and then decreasing to 0.13 at 32.5 s. The density oscillates between 0.13
and 0.21 from 271.5 s to 398.0 s, and then it varies between 0.17 and 0.28 as indicated in
Figure 12a. When PCI = 50, the density is 0.17 until 31.0 s, increasing to 0.20 at 32.0 s,
and then decreasing to 0.13 at 32.5 s. The density oscillates between 0.13 and 0.23 from
269.0 s to 399.0 s, and then it varies between 0.17 and 0.27 as indicated in Figure 12b. When
PCI = 100, the density is 0.16 until 31.0 s, increasing to 0.20 at 31.5 s, and then decreasing
to 0.13 at 32.5 s. From 275.5 s to 398.0 s, the density oscillates between 0.14 and 0.19, and
then it varies between 0.16 and 0.21 as indicated in Figure 12c.
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Figure 13 gives the normalized density for the proposed model with vd = 15.27 m/s
and PCI = 0, 50 and 100. When PCI = 0, the density is 0.17 until 31.0 s, increasing to
0.20 at 32.0 s, and then decreasing to 0.13 at 33.0 s. The density oscillates between 0.13
and 0.21 from 266.5 s to 398.0 s, and then it varies between 0.17 and 0.28 as indicated in
Figure 13a. When PCI = 50, the density is at 0.17 until 31.0 s, increasing to 0.20 at 32.0 s,
and then decreasing to 0.13 at 33.0 s. The density oscillates between 0.13 and 0.22 from
269.5 s to 398.0 s as indicated in Figure 13b. When PCI = 100, the density is 0.16 until 31.0 s,
increasing to 0.20 at 32.0 s, and then decreasing to 0.13 at 33.0 s. The density oscillates
between 0.13 and 0.20 from 288.5 s to 398.5 s as indicated in Figure 13c.
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Figure 14 gives the normalized density for the ID model with vd = 15.27 m/s and
δ = 1, 4, and 20. When δ = 1, the density is 0.15 until 31.0 s, increasing to 0.19 at 32.0 s, and
then decreasing to 0.12 at 32.5 s. The density oscillates between 0.14 and 0.16 from 123.0 s to
149.0 s, and then it varies between 0.15 and 0.16 as indicated in Figure 14a. When δ = 4, the
density is 0.16 until 31.0 s, increasing to 0.20 at 32.0 s, and then decreasing to 0.13 at 32.5 s.
It oscillates between 0.15 and 0.17 from 102.5 s to 149.0 s as indicated in Figure 14b. When
δ = 20, the density is 0.16 until 31.0 s, increasing to 0.20 at 32.0 s, and then decreasing to
0.13 at 33.5 s. The density oscillates between 0.15 and 0.17 from 96.5 s to 149.0 s and then it
varies between 0.16 and 0.18 as indicated in Figure 14c.
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The results for the proposed model indicate that pavement condition influences traffic
flow as expected. In particular, the flow increases with speed as shown in Figures 3–5. The
flow with the ID model increases with δ, which is not based on traffic physics. Furthermore,
the oscillations in speed and density with the proposed model vary with the PCI and
decrease over time as the PCI increases. These results are more realistic as they are based
on real parameters such as the PCI. Conversely, the oscillations in speed and density with
the ID model are the result of an arbitrary fixed parameter, and they increase over time as δ
increases with no justification. This is an inadequate and unrealistic traffic characterization.

6. Conclusions

A microscopic traffic flow model was developed based on pavement condition. The
Pavement Condition Index (PCI) was used to characterize traffic behavior. The performance
of the proposed model was evaluated and compared with that of the Intelligent Driver
(ID) model. The results obtained demonstrate that the proposed model provides realistic
traffic flow dynamics. In particular, the traffic flow under excellent pavement conditions
(PCI = 100) is high while the flow under poor pavement conditions (PCI = 0) is low,
as expected. Conversely, the ID model has a fixed acceleration exponent which does not
reflect the relationship between flow and road condition. Furthermore, the oscillations in
speed and density with the proposed model vary according to the pavement condition.
They are negligible when the PCI is high, which is expected traffic behavior. In contrast,
the ID model produces unrealistic speed and density oscillations based on δ. The results
given indicate that the proposed model can be used in traffic simulators for realistic and
effective traffic prediction.

The proposed model is a deterministic rather than a probabilistic system. Future
research can integrate random variables to provide a probabilistic framework. This will
allow the model to deal with the uncertainties and variability in complex traffic environ-
ments. Furthermore, it can be implemented for road networks to examine challenging
traffic situations and propose solutions. Future research can also consider additional pa-
rameters. While PCI is a key factor in traffic flow dynamics, it is important to include other
factors such as road emergencies to increase the applicability and improve the accuracy
and effectiveness in real-world scenarios. This will contribute to the development of more
comprehensive and robust models for traffic flow analysis and management.
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