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Abstract: Perovskite solar cells (PSCs) exhibit hysteresis in their J-V characteristics, complicating
the identification of appropriate electrical models and the determination of the maximum power
point. Given the rising prominence of PSCs due to their potential for superior performance, there
is a pressing need to address this challenge. Existing solutions in the literature have not fully
addressed the hysteresis issue, especially in the context of dynamic modeling. To bridge this gap,
this study introduces Artificial Rabbits Optimization (ARO) as an innovative method for optimizing
the parameters of an enhanced PSC dynamic model. The proposed model is constructed based on
experimental J-V data sets of PSCs, ensuring that it accounts for the hysteresis characteristics observed
in both forward and backward scans. The study conducted a rigorous statistical analysis to validate
the Modified Two-Diode Model performance with that of the Energy Balance (MTDM_E) optimized
using the innovative ARO algorithm. The performance metric utilized for validation was the Root
mean square error (RMSE), a widely recognized degree of the differences between values predicted
by a model and the values observed. The statistical analysis encompassed 30 independent runs to
ensure the robustness and reliability of the results. The summary statistics for the MTDM_E model
under the ARO algorithm demonstrated a minimum RMSE of 4.84E−04, a maximum of 6.44E−04,
and a mean RMSE of 5.14E−04. The median RMSE was reported as 5.07E−04, with a standard
deviation of 3.17E−05, indicating a consistent and tight clustering of results around the mean, which
suggests a high level of precision in the model’s performance. Validated using root mean square error
(RMSE) across 30 runs, the ARO algorithm showcased superior precision in parameter determination
for the MTDM_E model, with a mean RMSE of 5.14E−04, outperforming other algorithms like GWO,
PSO, SCA, and SSA. This affirms ARO’s robustness in optimizing solar cell models.

Keywords: artificial rabbits optimizer; parameter extraction; dynamic models; hysteresis features;
multi-layer perovskite solar cells

MSC: 65K10

1. Introduction

Energy is fundamental to powering essential facets of modern life, from computing
and transportation to advanced medical equipment. The global imperative is to ensure
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a reliable and cost-effective energy supply. Solutions to the energy challenge encompass
the development of low-power consumption devices [1–3] that replace older counterparts
while introducing novel functionalities [4–6], optimization of conventional power sources
to reduce losses and enhance power flow [7], and the advancement and refinement of
renewable energy sources such as wind energy [8], and solar energy [9].

Solar energy harnesses the sun’s radiant heat and light to generate electricity, facilitate
solar architecture, and produce thermal energy [10]. As a prominent renewable energy
source, solar energy systems are categorized into active or passive solar based on their
energy capture, distribution, and conversion mechanisms. Passive solar techniques involve
building orientation toward the sun, selecting materials with favorable light dispersion or
thermal mass properties, and designing spaces for natural air circulation [11]. In contrast,
active solar techniques, which include concentrated solar power, photovoltaic systems, and
solar water heating, are employed to capture energy directly.

Since 2009, perovskite materials have garnered significant attention [12]. These direct
band-gap semiconductor compounds, characterized by long carrier diffusion lengths, high
absorbance, and elevated open circuit voltage, are apt for photovoltaic generation. Conse-
quently, perovskite solar cells (PSCs) are emerging as a promising avenue for enhanced
solar energy performance [13]. However, a notable limitation of PSCs is the hysteresis
observed in their J-V characteristics, which complicates electrical modeling and the determi-
nation of the maximum power point [14,15]. This makes parameter estimation challenging
and motivates this work to propose a novel and advanced electrical model to PSCs side by
side to an efficient technique to find its parameters.

Initial electrical modeling efforts for PSCs drew from research on silicon solar cells,
specifically the single-diode model (SDM) [16], which accounts for diffusion and recom-
bination in the emitter’s quasi-neutral regions and majority zones. This was followed by
the double-diode model (DDM) [17], elucidating recombination in the space charge region
in addition to the SDM functions. More recently, the three-diode model (TDM) was intro-
duced, factoring in imperfections in zone recombination, losses, and grain boundaries [18].
Advanced models for multicrystalline silicon solar cells, such as the modified DDM and
TDM, have also been proposed.

Addressing modeling challenges often involves mathematical (numerical and ana-
lytical) or computer vision techniques. However, metaheuristic algorithms have gained
traction in recent years due to their efficiency, reduced computational demands, and expe-
dited processing compared to deterministic algorithms [19]. Owing to their implementation
simplicity, reproducibility, and robustness, meta-heuristic optimization methods stand out
as potent tools for accurately determining PSC model parameters. Broadly, these algorithms
can be classified into evolutionary algorithms (EA) [20,21] and swarm-based techniques [22].
These algorithms have proven to be more versatile and effective in addressing engineering
challenges than conventional optimization methods [23], as subsequently discussed.

Several strategies have been proposed for parameter identification in PV models. These
include the improved Hunger Games Search (IHGS) algorithm integrating a quantum rota-
tion gate method [24] and arithmetic optimization algorithm-based parameterization of the
PV double-diode model [25]. In [26], the starling murmuration optimizer (SMO) is inspired
by the amazing behaviors of starlings during their collective flight. The SMO algorithm
can solve complex and engineering optimization problems effectively and efficiently; a
differential evolution algorithm known as the quantum-based avian navigation optimizer
algorithm (QANA), which was motivated by exceptional precision navigating of migratory
birds a long distance aerial paths [27], and the equilibrium optimizer for dynamic electrical
models of PSCs [13]. Additionally, various optimization algorithms have been employed
for parameter estimation across different energy systems, as detailed in the subsequent
references [28,29].

Given the continuous advancements in optimization algorithms and the “no-free-
lunch” theorem, which posits that no singular algorithm can address all optimization
problems, researchers are continually innovating to tailor algorithms to specific challenges
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across domains. Artificial Rabbits Optimization (ARO) is inspired by natural rabbit survival
strategies, such as detour foraging and random hiding [30]. Concurrently, the simulation
of rabbit energy depletion facilitates the transition from detour foraging to random hiding.

In the intricate landscape of renewable energy research, particularly solar energy,
achieving precise modeling of perovskite solar cells (PSCs) is of paramount importance.
This study delineates a pioneering approach by introducing Artificial Rabbits Optimization
(ARO) for the optimization of PSC dynamic models. Grounded in empirical evidence
and bolstered by a rigorous comparative framework, the ARO emerges as a robust solu-
tion, adeptly addressing the inherent hysteresis challenges in PSCs and showcasing its
preeminence over traditional methodologies. The main contribution points of this work are
represented as follows:

• The innovative ARO technique is inspired by the natural survival strategies of rabbits,
offering a fresh perspective on optimization methodologies;

• The paper presents an advanced and novel PSC dynamic model declaring the effect of
the generation and recombination rates on the forward and reverse scan, which results
in hysteresis optimized using ARO;

• The model stands out in its fidelity, offering a representation that aligns closely with
experimental J-V data sets;

• A thorough comparison of the ARO algorithm with established optimizers underscores
its superior performance;

• The versatility of the introduced ARO methodology is evident. Its potential applicabil-
ity extends beyond PSCs, making it a valuable tool across various domains;

• The validation is solidified by benchmarking the approach against existing models
and solution techniques prevalent in the literature.

The remaining text of this work has been assigned as follows: The Section 2 describes
the improved PSC dynamic model. Section 3 goes over the ARO processes in specifics
and the problem formulations regarding the objective function. Section 4 goes over the
simulation results. Section 5 concludes with a summary of the final decisions and potential
for extending this effort.

2. Theoretical Model

Perovskite solar cells (PSCs) are composed of three primary layers: Two transport
layers, electron and hole transport layers, and an active layer, namely the intervening
perovskite absorber. Within the perovskite layer, photons are absorbed, leading to the
formation of electron–hole pairs. These pairs subsequently traverse through the transport
layers. Notably, charge accumulation occurs at the interfaces of the perovskite with both the
electron and hole transport layers. The perovskite layer’s non-uniformity is attributed to
the rapid generation rate of electron–hole pairs, which surpasses their transfer rate through
the respective transport layers.

Figure 1a shows that lumped R-C circuits indicate the charge buildup at interfaces.
This accumulation of the charge at the corresponding interfaces causes hysteresis in PSCs,
and it is also affected by the scan rate used to measure the J-V curves. Consequently, in PSC
modeling, charge accumulation (Ceq) and scan rate are considered to be the hysteresis effect.
As long as shunt resistances Rp1, Rp2, and Rp3 are all quite large, their effect can be ignored,
as revealed in Figure 2. C3, C2, and C1 denote the charge accumulation at the interfaces of
the perovskite/electron transportation layer, the perovskite layer, and the perovskite/hole
transportation layer, respectively. The three capacitances are series connected, as revealed
in Figure 1b.
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Figure 2 depicts the general formulation of the TDM denoted by VVCTDM, which
is the adjustment to take into consideration the effect of charge accumulations that are
expressed in the following equation:

Is = Iph − Is1

[
exp

(
q(Vt + Rs.Is)

(m1) · k · T

)
− 1

]
− Is2

[
exp

(
q(Vt + Rs.Is)

(m2) · k · T

)
− 1

]
− Is3

[
exp

(
q(Vt + Rs.Is)

(m3) · k · T

)
− 1

]
− Vt + Rs.Is

Rsh
− Ceq

d(V + Rs.Is)

dt
(1)

where the photo-generated current is represented by jph (A), Is1, Is2, and Is3, denote the
reverse saturation current in the Ampere of diode 1, diode 2, and diode 3. The associated
ideality factors for the diodes are defined by m1, m2, and m3, respectively. The series
resistance is represented by Rs (Ω), the shunt resistance is represented by Rsh (Ω), the
output voltage is represented by V (V), the Boltzmann’s constant is K (1.38065e−23 J/K),
and the cell temperature is T (K0).

The different layer biases have a strong influence on the resulting capacitors; it has
been proposed that the resulting capacitances (Ceq) that are variable voltage-dependent
and 1st, 2nd, and 3rd order equations that can be used to describe the current density and
applied potential, as shown in Equations (2a–c) below [13].

Ceq = a + b(V + RS.Is) (2a)

Ceq = a + b(V + RS.Is) + c(V + RS.Is)
2 (2b)

Ceq = a + b(V + RS.Is) + c(V + RS.Is)
2 + d(V + RS.Is)

3 (2c)

The advanced study of this model resulted in a better representation of this charge
situation by the following exponential form in Equation (2d):

Ceq = a eb(V+RS .Is) − c ed(V+RS .Is) (2d)

where the parameters a, b, c, and d are positive and selected based on the chosen model.
These two exponential terms might represent the effect of generation and recombina-

tion rates on the hysteresis caused by forward and reverse scans.

3. Parameter Estimation of PSCs and ARO

Artificial Rabbits Optimization (ARO) draws inspiration from the natural survival
tactics of rabbits, including behaviors like detour foraging and random hiding. Simulta-
neously, the simulation of energy depletion in rabbits is replicated to facilitate a seamless
transition from detour foraging to random hiding.

3.1. The Parameters of PSCs

The primary goal concerning the dynamic modeling of PSCs is to identify and extract
the best values of the parameters of the electrical models. These parameters are optimized to
ensure that the root mean square errors (RMSE) between the simulated model’s current and
the observed voltage current is reduced to its lowest. The model in discussion has thirteen
optimized parameters, with its objective function being represented by Equation (3).

f(Vt , jt , y) =
[

Iph − k1.Is1

[
exp

(
q(Vt + Rs .Is)

(m1) · k · T

)
− 1

]
− k2.Is2

[
exp

(
q(Vt + Rs .Is)

(m2) · k · T

)
− 1

]
− k3.Is3

[
exp

(
q(Vt + Rs .Is)

(m3) · k · T

)
− 1

]
− Vt + Rs .Is

Rsh
− Ceq

d(V + Rs .Is)

dt
− Imeas

]2

(3)

3.2. Artificial Rabbits Optimization (ARO)
3.2.1. Detour Foraging (Exploration)

During their foraging activities, rabbits tend to focus on distant areas, often overlook-
ing what is immediately available to them. They exhibit a behavior where they consume
grass from regions other than their own in a random manner, termed “detour foraging.” In
the context of ARO, it is posited that each rabbit in the swarm possesses a distinct territory
with grass and burrows, and these rabbits randomly forage in the territories of their peers.
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Owing to the detour foraging characteristic inherent in ARO, every individual searcher
is inclined to adjust its position in relation to another randomly selected searcher from the
swarm, incorporating a disturbance to its original position.

The aforementioned detour foraging model for rabbits is encapsulated in a mathemat-
ical representation as follows:

pi(z + 1) = xj(z) + R.(xi(z)− xj(z)) + round(0.5.(0.05 + r1)).n1,
i, j = 1, . . . , n and i 6= j

(4)

R = L.c (5)

L = (e− e(
z−1

Z )
2
). sin(2πr2) (6)

c(k) =
{

1 i f k == g(l)
0 else

k = 1, . . . , d and l = 1, . . . , [r3.d] (7)

g = randperm(d) (8)

n1 ∼ N(0, 1) (9)

where ith rabbit’s candidate location at time z + 1 is zi (z + 1), ith rabbit’s location at time z is
xi(z), size of a rabbit population is n, problem dimension is d, maximum iterations number
is Z, ceiling function is
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, round indicates rounding to the nearest integer, randperm returns
a random permutation of integers from 1 to d, r1, r2, and r3 are three random numbers in
(0,1), movement pace as performing detour foraging represented by L, and n1 is subjected
to standard normal distribution.

A mapping vector c can help an algorithm choose a random number of search indi-
viduals to modify in foraging behavior. Running operator R is used to simulate rabbit
running behavior. Equation (1) states that search individuals carry out a random search for
food based on their location. This behavior allows a rabbit to travel long distances from
its specific area to other rabbits’ areas. This distinct foraging behavior of rabbits that visit
other people’s nests instead of their own plays a significant role in exploration and ensures
the ARO algorithm’s global search potential.

3.2.2. Random Hiding (Exploitation)

The d- burrows are generated along each dimension by Equation (10) in the vicinity of
a rabbit. The hiding parameter is represented by H and is reduced in a linear manner from
1 to 1/T over the course of the iteration with a random perturbation. These burrows start
out in a larger rabbit’s neighborhood, based on this parameter. As the number of iterations
rises, the size of this neighborhood shrinks. The ith rabbit’s jth burrow is generated by:

bi,j = xi(z) + H.g.xi(z), i = 1, . . . , n and j = 1, . . . , d (10)

H =
Z− z + 1

Z
.r4 (11)

n2 ∼ N(0, 1) (12)

g(k) =
{

1 i f k == j
0 else

k = 1, . . . , d (13)

The following set of equations is proposed for modeling mathematically random
hiding strategy:

pi(z + 1) = xi(z) + R.(r4.bi,r(z)− xi(z)), i = 1, . . . , n (14)

gr(k) =
{

1 i f k == [r5.d]
0 else

k = 1, . . . , d (15)

bi,r(z) = xi(z) + H.gr.xi(z) (16)
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where bi,r represents a randomly chosen burrow to hide from its d burrows, and r4 and r5
are two random numbers in (0,1). Depending on Equation (14), ith search individual will
try to change its location towards a selected random burrow from its d burrows.

When random hiding or one of detour foraging is completed, the location of the ith
rabbit is changed:

xi(z + 1) =
{

xi(z) f (xi(z)) ≤ f (pi(z + 1))
pi(z + 1) f (xi(z)) ≥ f (pi(z + 1))

(17)

If the fitness of ith rabbit’s applicant location is higher than the fitness of the existing
location, the rabbit will leave the present location and remain at the candidate location
produced by either Equation (4) or Equation (14).

3.2.3. Energy Decrease (The Transition from Exploration to Exploitation)

During the early phases of ARO, rabbits predominantly engage in detour foraging.
However, as the iterations progress, they tend to hide randomly. This behavioral shift is
influenced by the gradual depletion of a rabbit’s energy. As a result, an energy factor is
introduced to emulate the transition from exploration to exploitation.

The specific definition of the ARO energy factor is elaborated upon further below:

A(z) = 4(1− z
Z
) ln(

1
r
) (18)

where a random number between (0,1) is represented as r.
A substantial value of the energy factor indicates that the rabbits possess adequate

energy and vitality to engage in detour foraging. Conversely, a diminished energy factor
suggests that the rabbits exhibit reduced physical activity, necessitating a shift towards
random hiding. A flowchart detailing the ARO process is presented in Figure 3.
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4. Results and Discussion

This research has formulated an optimally estimated model, drawing from the ex-
perimental J-V dataset pertaining to PSCs. The hysteresis characteristic, encompassing
both forward and backward scans, emerges as a significant aspect of PSCs for which the
optimal model must duly account. Table 1 delineates the primary characteristics observed
during the forward and backward scanning directions. As discerned from the table, the
open circuit voltage stands at 0.96 for the forward scan, while it registers at 1.03 for the
reverse scan. The efficiencies recorded for the forward and backward scans are 13.62% and
16.97%, respectively. The hysteresis index is determined to be 20%.

Table 1. The main characteristics of the tested Perovskite solar cells.

Direction of Scan SC Current Density, Jsc
(mA/cm2) OC Voltage, Voc (V) Fill Factor, FF PCE (%) Index of

Hysteresis

Forward 23.79 0.96 0.6 13.62
20%

Backward 23.78 1.03 0.7 16.97

To derive an optimal model for PSCs, the proposed theoretical model is juxtaposed
with the experimental dataset. This comparison aids in extracting the parameters of the
proposed PSC model, aiming for the lowest root mean square error (RMSE). The ARO
algorithm is employed to optimize four modified TDMs with a variable voltage capacitor
(VVC) and the basic TDM (without VVC), considering the hysteresis characteristic. A
comparative analysis among the five proposed models is undertaken to identify the most
precise model. In Table 2, the optimal parameters of TDM are determined using the ARO
algorithm for four models, as delineated in Equations (2a–d). The first model is termed
MTDM_P1 and is based on Equation (2a). The second model, MTDM_P2, is derived from
Equation (2b). The third model, MTDM_P3, is formulated using Equation (2c). Lastly, the
fourth model, MTDM_E, is predicated on Equation (2d).

Table 2. Optimal extracted parameters of TDM and four different modified hysteresis models of PSCs
via ARO algorithm.

Parameter
Boundary Estimated Parameters

Lower Upper TDM MTDM_P1 MTDM_P2 MTDM_P3 MTDM_E

Iph (A) 1.0E−03 3.0E−03 2.364E−02 2.364E−02 2.352E−02 23.5E−03 23.6E−03

Is1 (A) 1.0E−20 5.0E−05 9.981E−07 9.706E−07 5.820E−06 2.61E−06 4.65E−07

Is2 (A) 1.0E−20 5.0E−05 9.933E−07 9.426E−07 9.910E−07 2.63E−06 5.23E−07

Is3 (A) 1.0E−20 5.0E−05 9.980E−07 9.929E−07 9.262E−07 4.81E−07 8.67E−07

m1 1.0 7.0 4.5073558 4.56863778 5.76711927 6.7415043 3.8101073

m2 1.0 7.0 4.5738409 4.37133684 4.1360156 5.4096713 5.0123932

m3 1.0 7.0 4.5785989 4.53651836 5.88400168 3.8191766 4.8583545

Rsh 10 7000 235.8762 306.306573 381.432951 337.17687 280.64165

Rs 1E−05 1.0 0.1476878 0.47618352 0.55175709 0.7773554 0.7914187

a 1E−12 1 - 2.590E−05 1.281E−05 5.28E−05 0.0338228

b 1E−12 3 - 3.386E−02 1.797E−02 1.04E−02 0.9413091

c 1E−12 1 - - 1.927E−02 2.92E−02 0.0370024

d 1E−12 3 - - - 2.01E−03 0.1953177

RMSE 3.31E−03 7.70E−04 6.77E−04 5.03E−04 4.84E−04
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The simulation outcomes indicate that the MTDM_E model yields the optimal pa-
rameters with minimal RMSE in comparison to other models. To validate the precision
and efficacy of the proposed models, a statistical evaluation was conducted over 30 runs.
Table 3 presents the statistical metrics derived from the optimization of various PSC mod-
els. As evident from Table 3, the MTDM_E model exhibits the lowest RMSE, mean, and
standard deviation values, recorded at 4.84E−4, 5.14E−04, and 3.17E−05, respectively.
These statistical indicators collectively affirm that MTDM_E, followed by MTDM_P3, are
the most representative models capturing the intrinsic characteristics of PSCs.

Table 3. Statistical evaluation of TDM and different four modified models addressing perovskite
solar cell hysteresis via ARO algorithm.

Metric TDM MTDM_P1 MTDM_P2 MTDM_P3 MTDM_E

Min.*10−4 33 7.7 6.77 5 4.84

Max. *10−4 3.33 8.56 8.3 8.82 6.44

Mean. *10−4 33.1 8.30 7.34 7.44 5.14

Variance *10−9 0.0377 0.469 1.58 7.14 1.0

Median *10−4 33.1 8.40 7.31 7.6 5.07

STD. *10−6 6.14 21.6 39.7 84.5 31.7

The estimated J-V curve alongside the measured curve is depicted in Figure 4a–d.
Figure 4a shows that the basic TDM does not adequately simulate the hysteresis char-
acteristics in both forward and backward directions. The most precise representation
is observed in Figure 4d, succeeded by Figure 4c, corresponding to the MTDM_E and
MTDM_P3 models, respectively. The power-voltage curves for both experimental and
estimated models across the four distinct models are presented in Figure 5a–d. Consistent
with previous observations, the MTDM_E model offers the most accurate portrayal of PSCs,
closely followed by the MTDM_P3 model.

To elucidate the efficacy of the proposed ARO algorithm, it is benchmarked against
four renowned optimizers: GWO [31], PSO [18], SCA [32], and SSA [33]. Tables 4 and 5
present the optimal simulation parameters for the most precise models, MTDM_E and
MTDM_P3, utilizing the ARO in comparison to the aforementioned four optimizers. The
results distinctly highlight that the ARO achieves a lower RMSE, underscoring its superior
capability in parameter extraction for the models. The convergence rates of ARO relative
to GWO, PSO, SCA, and SSA for the MTDM_E and MTDM_P3 models are illustrated in
Figure 6. The convergence patterns depicted in Figures 6 and 7 reveal ARO’s proficiency
in swiftly attaining the minimum RMSE in contrast to other optimizers, affirming ARO’s
robustness and stability in reaching the optimal solution. Furthermore, to accentuate the
superior performance and efficiency of ARO, a statistical analysis is conducted alongside
the selected four optimizers for the MTDM_E and MTDM_P3 models. The outcomes of
this statistical analysis, based on 30 iterations, are documented in Tables 6 and 7. The
derived statistical metrics from these 30 runs, as presented in Table 8 for both MTDM_E
and MTDM_P3 models, further validate the preeminence of ARO over the other four
competing algorithms.
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Table 4. Optimal extracted parameters of PSCs for MTDM_E by the proposed ARO and four optimizers.

Parameter
Boundary Estimated Parameters

Lower Upper ARO GWO [31] PSO [18] SCA [32] SSA [33]

Iph (A) 1.0E−03 3.0 E−03 23.6E−03 23.6E−03 23.6E−03 22.0E−03 23.6E−03

Is1 (A) 1.0E−20 5.0E−05 4.65E−07 9.63E−07 1.00E−06 1.50E−20 7.08E−07

Is2 (A) 1.0E−20 5.0E−05 5.23E−07 2.88E−09 1.00E−06 1.61E−20 7.56E−07

Is3 (A) 1.0E−20 5.0E−05 8.67E−07 6.91E−07 1.26E−11 1.00E−06 9.19E−07

m1 1.0 7.0 3.810 5.625 7.000 3.588 4.327

m2 1.0 7.0 5.012 4.896 4.011 2.770 5.943

m3 1.0 7.0 4.858 3.888 7 4.000 4.161

Rsh 10 7000 280.64 266.858 280.574 4041.589 292.071
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Table 4. Cont.

Parameter
Boundary Estimated Parameters

Lower Upper ARO GWO [31] PSO [18] SCA [32] SSA [33]

Rs 1E−05 1.0 0.7914187 0.805 0.772068 0.7708324 0.6316555

a 1E−12 1 0.0338 0.0245 0.0591 0.0217 0.593

b 1E−12 3 0.941 1.0629 0.578 1.67E−11 1.2166221

c 1E−12 1 0.037 0.0285 0.0646 0.00028 0.5914

d 1E−12 3 0.1953 0.01322 1.00E−12 9.48E−12 1.2003

RMSE 4.84E−04 4.92E−04 5.09E−04 2.58E−03 7.76E−04

Table 5. Optimal extracted parameters PSCs using ARO for MTDM_P3 compared with four optimizers.

Parameter
Boundary Estimated Parameters

Lower Upper ARO GWO [31] PSO [18] SCA [32] SSA [33]

Iph (A) 1.0E−03 3.0 E−03 23.5E−03 23.5E−03 23.5E−03 23.5E−03 23.5E−03

Is1 (A) 1.0E−20 5.0E−05 2.61E−06 1.55E−08 1.00E−20 5.04E−20 7.48E−06

Is2 (A) 1.0E−20 5.0E−05 2.63E−06 1.42E−06 4.35E−09 3.18E−20 2.19E−08

Is3 (A) 1.0E−20 5.0E−05 4.81E−07 1.01E−06 1.00E−05 1.00E−05 4.22E−06

m1 1.0 7.0 6.742 3.176 7.000 3.493 6.589

m2 1.0 7.0 5.410 5.618 2.800 7.000 3.595

m3 1.0 7.0 3.819 4.145 5.424 5.136 4.774

Rsh 10 7000 337.177 311.671 426.093 1963.074 486.156

Rs 1E−05 1.0 0.777 0.853 0.879 0.274 0.386

a 1E−12 0.1 5.28E−05 7.25E−04 1.00E−12 1.66E−12 2.79E−03

b 1E−12 0.1 1.04E−02 9.29E−04 1.00E−12 2.91E−02 5.61E−03

c 1E−12 0.1 2.92E−02 3.63E−02 4.45E−02 5.24E−12 2.68E−02

d 1E−12 0.1 2.01E−03 5.76E−03 1.00E−12 1.08E−12 1.00E−12

RMSE 5.03E−04 5.31E−04 5.13E−04 1.10E−03 8.02E−04

Table 6. Statistical performance of MTDM_E considering five different optimizers (30 runs).

Metric ARO GWO [31] PSO [18] SCA [32] SSA [33]

Min. *10−4 4.84 4.92 5.09 25.8 7.76

Max. *10−4 6.44 33.7 35.1 37.3 25.2

Mean *10−4 5.14 11.4 14.2 35.1 15.1

Variance *10−9 1.0 590 967 59 1.88

Median *10−4 5.07 8.79 10.4 35.7 14.3

STD *10−4 0.317 7.68 9.83 2.43 4.33
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Table 7. Statistical performance of MTDM_P3 considering five different optimizers (30 runs).

Metric ARO GWO [31] PSO [18] SCA [32] SSA [33]

Min. *10−4 5.03 5.31 5.13 11 8.02

Max. *10−3 0.882 1.11 4.04 3.29 1.83

Mean *10−4 7.44 8.86 11.1 22.1 9.56

Variance *10−9 7.14 16.4 435 713 36.6

Median *10−4 7.60 8.69 9.75 19.7 9.03

STD *10−4 0.845 1.28 6.59 8.44 1.91
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Table 8. Statistical robustness performance of MTDM_E and MTDM_P3 considered five different
optimizers (30 runs).

Run
ARO GWO [31] PSO [18] SCA [32] SSA [33]

MTDM_E MTDM_P3 MTDM_E MTDM_P3 MTDM_E MTDM_P3 MTDM_E MTDM_P3 MTDM_E MTDM_P3

1 0.000489 0.000759 0.002160 0.001060 0.003510 0.001020 0.002580 0.001450 0.001420 0.000852
2 0.000484 0.000686 0.000648 0.001110 0.001040 0.000864 0.003490 0.003240 0.001440 0.000848
3 0.000538 0.000810 0.000739 0.001020 0.003460 0.000795 0.003590 0.001920 0.001780 0.000916
4 0.000525 0.000741 0.001070 0.000531 0.000849 0.000940 0.003580 0.002110 0.001130 0.000925
5 0.000518 0.000882 0.002290 0.000862 0.001480 0.004040 0.003540 0.003290 0.002520 0.000837
6 0.000516 0.000791 0.000571 0.000913 0.000659 0.000821 0.003730 0.001180 0.001460 0.000966
7 0.000494 0.000760 0.000747 0.000791 0.002300 0.000997 0.003520 0.003220 0.001620 0.000861
8 0.000508 0.000766 0.000628 0.000788 0.001070 0.002230 0.003570 0.003220 0.001250 0.000920
9 0.000529 0.000754 0.000916 0.000776 0.001040 0.000610 0.003650 0.001100 0.001470 0.000836
10 0.000504 0.000770 0.000920 0.000686 0.000666 0.000866 0.003670 0.003230 0.001850 0.000822
11 0.000511 0.000806 0.000824 0.001050 0.001090 0.000814 0.003500 0.001530 0.001640 0.000835
12 0.000507 0.000806 0.002380 0.000818 0.003320 0.000967 0.003560 0.001710 0.001880 0.000889
13 0.000497 0.000744 0.000956 0.001020 0.003360 0.000934 0.003530 0.001980 0.001130 0.000892
14 0.000528 0.000819 0.000993 0.000984 0.000669 0.001240 0.003590 0.001200 0.001890 0.000883
15 0.000488 0.000823 0.001050 0.000868 0.001470 0.000997 0.003590 0.003210 0.001480 0.001220
16 0.000493 0.000698 0.000492 0.000852 0.001040 0.001110 0.003580 0.001490 0.001350 0.000867
17 0.000487 0.000694 0.003370 0.000845 0.002100 0.000866 0.003660 0.001320 0.001330 0.000875
18 0.000564 0.000787 0.000650 0.000940 0.003360 0.000546 0.003520 0.003210 0.000838 0.000885
19 0.000644 0.000722 0.003360 0.000869 0.000835 0.001170 0.003510 0.002090 0.000974 0.000914
20 0.000496 0.000751 0.000877 0.001070 0.001070 0.002120 0.003610 0.003280 0.002000 0.001030
21 0.000490 0.000725 0.000909 0.000831 0.000850 0.000983 0.003570 0.001960 0.001410 0.001010
22 0.000497 0.000778 0.000854 0.000893 0.000668 0.000876 0.003550 0.003280 0.001200 0.000984
23 0.000503 0.000723 0.001300 0.000881 0.001040 0.001140 0.003590 0.001950 0.000924 0.001030
24 0.000506 0.000580 0.000819 0.000864 0.001040 0.001000 0.003520 0.003290 0.001830 0.001010
25 0.000515 0.000806 0.000881 0.000967 0.001040 0.000863 0.003500 0.001360 0.002470 0.000960
26 0.000528 0.000750 0.000648 0.000730 0.001060 0.000997 0.003590 0.001360 0.001420 0.001180
27 0.000490 0.000511 0.000900 0.000748 0.000668 0.001150 0.003560 0.003210 0.001320 0.000802
28 0.000554 0.000806 0.000616 0.001050 0.000666 0.001140 0.002700 0.001450 0.001340 0.000928
29 0.000530 0.000503 0.000680 0.000925 0.000509 0.000513 0.003600 0.002150 0.002160 0.001830
30 0.000496 0.000776 0.000851 0.000860 0.000651 0.000809 0.003510 0.001410 0.000776 0.000870

5. Conclusions

In the domain of renewable energy, especially concerning the modeling of perovskite
solar cells (PSCs), achieving an optimal model that accurately represents the inherent
hysteresis characteristics remains a critical endeavor. This research has championed the
Artificial Rabbits Optimization (ARO) as a pivotal tool for this objective. Utilizing exper-
imental J-V datasets of PSCs, we formulated an optimal model, emphasizing the salient
features of both forward and backward hysteresis scans intrinsic to PSCs. Our comparative
analysis distinctly positions ARO’s superior efficacy against four renowned optimizers:
GWO, PSO, SCA, and SSA. The empirical results underscore ARO’s unmatched perfor-
mance, as manifested by its attainment of the lowest RMSE, indicating its enhanced prowess
in parameter extraction for the models. Moreover, the convergence metrics showcase ARO’s
agility in swiftly reaching the minimum RMSE, surpassing its contemporaries. ARO’s
inherent robustness and stability are further validated, demonstrating its unwavering
capability to consistently identify the optimal solution. An exhaustive statistical analysis
further corroborates the efficiency and supremacy of ARO. The statistical metrics, derived
from multiple simulation iterations, consistently highlight ARO’s dominance over its com-
petitors. Building on the foundational success of ARO in this context, there are several
avenues for future exploration. One promising direction is extending the application of
ARO to other varieties of solar cells or alternative renewable energy sources to assess
its adaptability. Additionally, probing potential refinements or hybrid combinations of
ARO with other optimization techniques could unveil avenues for further efficiency gains.
Real-time applications of ARO in dynamic environments, where parameters are in flux, also
present an intriguing area of study. Lastly, a deeper dive into the scalability of ARO in larger,
intricate systems could shed light on its boundaries and potential enhancement zones.
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