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Abstract: Functional movement screening (FMS) is a crucial testing method that evaluates funda-
mental movement patterns in the human body and identifies functional limitations. However, due to
the inherent complexity of human movements, the automated assessment of FMS poses significant
challenges. Prior methodologies have struggled to effectively capture and model critical human
features in video data. To address this challenge, this paper introduces an automatic assessment
approach for FMS by leveraging deep learning techniques. The proposed method harnesses an 13D
network to extract spatiotemporal video features across various scales and levels. Additionally, an
attention mechanism (AM) module is incorporated to enable the network to focus more on human
movement characteristics, enhancing its sensitivity to diverse location features. Furthermore, the
multilayer perceptron (MLP) module is employed to effectively discern intricate patterns and features
within the input data, facilitating its classification into multiple categories. Experimental evaluations
conducted on publicly available datasets demonstrate that the proposed approach achieves state-
of-the-art performance levels. Notably, in comparison to existing state-of-the-art (SOTA) methods,
this approach exhibits a marked improvement in accuracy. These results corroborate the efficacy of
the I3D-AM-MLP framework, indicating its significance in extracting advanced human movement
feature expressions and automating the assessment of functional movement screening.

Keywords: functional movement screening (FMS); human movement feature; Inflated 3D ConvNet
(I3D); attention mechanism; multilayer perceptron (MLP)

MSC: 68T45

1. Introduction

Functional movement screening (FMS) serves as a crucial tool in the realm of exer-
cise rehabilitation and training, aimed at assessing an individual’s physical function and
motion capabilities. By identifying adverse movement patterns or functional deficiencies,
FMS offers the opportunity for intervention before exercise, thereby facilitating health
management and rehabilitation plans to mitigate the risk of sports-related injuries. How-
ever, conventional FMS heavily relies on subjective judgments made by human assessors,
leading to inefficiencies and subjective biases, which may not fully align with the needs
of athletes and individuals. Consequently, the need to realize a rapid and objective FMS
evaluation process is of paramount social importance and practical significance.

In recent years, researchers have introduced a multitude of methods to automate the
evaluation of FMS. Hong et al. [1] utilized a Gaussian mixture model and explored various
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machine learning techniques, such as naive Bayes, AdaBoost, M1, and traditional Gaussian
models, to address this issue. However, these methods face difficulties in modeling complex
human motion patterns, which can lead to a decrease in accuracy. FMS involves coordinated
movements of multiple joints, muscles, and body parts. These movements require a
comprehensive understanding and accurate grasp of continuous changes in joint angles,
speeds, and accelerations [2]. A comprehensive understanding of these features is crucial
for the accurate analysis and assessment of human motion. In a distinct approach, Spilz
et al. [3] harnessed 17 inertial measurement units to gather data, training a neural network
consisting of convolutional layers, long-term and short-term memory layers, and fully
connected layers to generate FMS scores. While this deep learning method introduces a
faster and more objective assessment tool, it exhibits a substantial reliance on training data,
leaving room for further enhancements. Wang et al. [4] adopted skeleton joint points as
shared features and leveraged depth sensors in the evaluation process.

Nevertheless, the existing FMS methods are not devoid of limitations. Firstly, some ap-
proaches lack well-defined key points, impeding their capacity to fully capture the nuances
of entire movements, thus compromising evaluation accuracy. Secondly, certain methods
grapple with complexities when modeling intricate human movement patterns, resulting
in decreased accuracy. Additionally, current methodologies heavily lean on training data
and network structures, posing challenges for optimization and parameter adjustments.

To address the aforementioned shortcomings, this paper introduces an innovative
automated evaluation method grounded in the attention mechanism and score distribution
prediction. This novel approach leverages the I3D network for video feature extraction,
combining the attention mechanism and multilayer perception to acquire the score dis-
tribution features of individual movements, thereby elevating evaluation accuracy and
reliability. The primary contributions of this paper encompass the effective handling of
missing frames through video frame interpolation, the introduction of an I3D network
enriched with self-attention mechanisms to enhance evaluation accuracy, and the adoption
of a score prediction methodology to comprehensively evaluate FMS based on probability
distribution. In summary, the main contributions of the paper are as follows:

*  We handle the missing frames by means of video frame interpolation based on linear
interpolation. Through pixel interpolation, we achieve smooth transitions between
image frames and the frame number supplement, which enhances the availability of
the dataset.

*  We propose an I3D network based on the self-attention mechanism to learn the subtle
changes in complex action quality assessment (AQA), and apply it to FMS to improve
the accuracy of the evaluation results. At the same time, we conducted ablation
and comparison experiments on the attention module for this network to verify the
effectiveness of the attention mechanism in FMS.

*  We adopt a score prediction method to convert the label data after the multilayer
perceptron into a score distribution and use the Gaussian distribution to compare the
loss of the true value and the predicted value of the samples. The prediction score
based on the probability distribution can perform FMS more comprehensively.

2. Related Work
2.1. Functional Movement Screening

Functional movement screening (FMS) stands as a vital tool in the assessment of an
individual’s motion abilities and potential risks associated with movements, particularly
within the context of sports and physical activity. FMS scrutinizes the subject’s stability dur-
ing movement execution and the flexibility of their joints. This comprehensive evaluation
encompasses diverse tests, including deep-squat assessments, hurdle exercises, front and
rear split squats, shoulder joint flexibility tests, straight leg raises, trunk stability push-ups,
and rotational stability assessments.

The effectiveness of FMS lies in its scoring system, which quantifies the quality and
stability of an individual’s movements. Scores are categorized into four levels: 0, 1, 2, and
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3. A higher score reflects a superior performance in executing the movements, indicating
greater proficiency. It is noteworthy that a score of 0 is assigned if the subject experiences
pain during any part of the evaluation, relying on the physical sensations reported by the
subjects themselves. Therefore, the scoring system'’s other three levels are contingent on the
degree and stability of movement execution without discomfort or pain. FMS has proven
instrumental in the prevention of sports injuries, with notable applications in a variety
of domains.

These insights underscore the instrumental role of FMS as a robust assessment tool
with a substantial impact on the prevention and evaluation of sports-related injuries.
The adoption of FMS facilitates the development of personalized training plans aimed
at enhancing movement proficiency while minimizing the risk of injury. Furthermore,
this approach possesses versatile applications spanning diverse sports and specialized
environments. However, the conventional FMS scoring methods primarily rely on human
adjudicators to assess movement completion and stability. As the volume of subjects
increases, this manual scoring process becomes increasingly burdensome, amplifying the
probability of judgment errors. The ensuing sections will elucidate a novel and automated
approach to FMS evaluation, addressing these limitations and offering a more efficient and
objective methodology.

2.2. Video Action Quality Assessment

Video action quality assessment (AQA) serves the fundamental purpose of detecting
and evaluating the execution of actions within video content. In methodologies employing
quality score-based evaluations, the video under consideration is typically segmented
into suitable units at either the clip or the frame level. Subsequently, a feature extraction
module is employed to process this segmented data and derive feature vectors that capture
pertinent action features. These feature vectors are then utilized as input for regression or
classification functions to determine the corresponding quality assessment scores.

In the domain of video action quality assessment, previous efforts have been made to
enhance the accuracy and reliability of the evaluation process. Bai et al. [5] explored the
use of a time decoder for AQA; however, limitations arise due to the absence of labeled
data, which can impact performance. Gordon [6] devised a scoring method based on
human center trajectory, an approach that has shown promise in small-scale applications
but requires further validation in larger-scale scenarios. Li et al.’s key segment extraction
system [7] primarily captures partial scores, a characteristic misaligned with the intricacies
of certain sports like diving, where comprehensive assessments are necessary. Tao et al. [8]
introduced a hierarchical classification framework based on the hidden Markov model
(HMM). While demonstrating merit, this model grapples with a small dataset, limiting its
generalization capabilities. Parmar et al. [9] employed diverse techniques, including sup-
port vector machines, neural networks, and enhanced decision trees, for the classification
of physical therapy rehabilitation. However, the paucity of data samples poses a challenge.
Meanwhile, Xu et al.’s [10] proposed multi-scale convolution LSTM network, tailored for
figure skating, displays promise. Still, it may encounter significant prediction errors when
confronted with complex backgrounds.

2.3. C3D and I3D Architecture

The C3D-LSTM framework, as introduced by previous work [11], represents an amal-
gamation of 3D convolutional networks and long-term and short-term memory networks,
with a primary focus on predicting video action quality in the context of individual Olympic
Games events. Figure 1 (adapted from [11]) illustrates the network structure of C3D-LSTM.
C3D integrates the power of convolutional neural networks (CNN) with 3D convolutional
operations, facilitating spatiotemporal modeling and video data feature extraction. The
LSTM model, with its ability to capture long-term dependencies in sequential data, has an
advantage in handling time-series data such as videos. At each time step, the LSTM model
receives activation features from the C3D network as input, which contain information
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from individual frames of the video and exist in a more compact representation than in-
dependently processing each frame with a CNN [12]. After each LSTM layer, an FC (fully
connected) regression layer can be connected to map the LSTM features to a score. How-
ever, for tasks demanding a more intricate and nuanced quality assessment, the network
architecture of C3D-LSTM may exhibit limitations in achieving the desired outcomes.

In scenarios necessitating intricate quality assessment, the deployment of deeper and
more intricate network structures, such as I3D-LSTM, proves advantageous in capturing
critical video quality-related information. Wang et al. [13] have introduced a network ar-
chitecture known as I3D-LSTM, showcasing a leading performance on the UCF-101 dataset.
The design of the I3D-LSTM network structure revolves around two key components:
I3D and LSTM. The initial step entails employing a pre-trained Inception 3D CNN [14]
as a feature extractor, with pre-training conducted on the Kinetics dataset to extract rich
spatiotemporal information and semantic features from videos. The I3D network model,
stemming from the Inception vl module of GoogLeNet [15] through temporal convolution
kernel expansion, is adept at parallel processing of feature extraction via multiple branches.
Subsequently, the feature vectors derived from I3D are fed into the LSTM network, which
excels in capturing temporal dependencies and modeling in video sequences. The LSTM
network transforms the I3D output features, generating a high-level temporal feature
representation. Lastly, through the incorporation of a Softmax layer, the resulting temporal
features facilitate prediction and classification. The I3D-LSTM network structure excels at
comprehensive spatiotemporal information and semantic feature extraction from videos,
making it well-suited for complex and delicate quality assessment tasks, aligning with the
anticipated outcomes.

Conv Conv

3*3+3 3%53*3

Stride 1 Stride 1

Conv Conv Conv

3*3*3 3¥3%3 3®3¥3
Stride 1 Stride 1 Stride 1

Conv Conv Conv
3*3*3 3*3*3 3*3%3
Stride 1 Stride 1 Stride 1

Figure 1. The network structure of C3D-LSTM [11].

3. Scheme in This Article

This study presents a comprehensive network model designed for the evaluation
of functional movement screening. The model encompasses a three-dimensional initial
network, an attention mechanism, and a multilayer perceptron, as depicted in Figure 2.
To begin, the irregular dataset undergoes processing via linear interpolation, ensuring a
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uniform time dimension for the input data. Subsequently, the I3D network takes a sequence
of video frames as input, effectively considering both temporal and spatial features through
3D convolution operations. The I3D network’s inherent capacity for feature extraction at
varying scales and levels empowers it to capture the intricate spatiotemporal dependencies
and feature expression capabilities within video data.

The subsequent step involves the application of an attention mechanism that adap-
tively assigns weights to different feature positions, enhancing the model’s sensitivity
and its capacity to represent key information. The features, now imbued with improved
representation, are then relayed to the multilayer perceptron. This section of the network
imparts weight to the input data through multiple fully-connected layers and employs
nonlinear activation functions to facilitate the learning of nonlinear data representations.
Through the multilayer perceptron, the model engages in a deeper exploration and rep-
resentation of high-level spatial features inherent in the video data. Finally, the model
conducts Softmax operations on the features generated by the multilayer perceptron, yield-
ing a predicted distribution that signifies the model’s analytical insights and learning from
the input videos. This predicted distribution provides a measure of the model’s confidence
in various categories.

In essence, the proposed comprehensive network model combines the strengths of
3D convolutional operations, attention mechanisms, and multilayer perceptrons to yield a
holistic approach to functional movement screening evaluation. This approach leverages
spatiotemporal information, feature representation, and adaptive weighting to enhance
the model’s understanding and prediction capabilities, offering a robust solution for video-

based assessment tasks.
— 13D AM P
Clip 1
i_. o ﬂ‘ .
Linear » Clip2
videos Interpolation Frames .

Figure 2. Network structure of I3D-AM-MLP.
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3.1. Data Preprocessing

In FMS data, there are some cases where the number of video frames does not meet
the requirements of the model, resulting in the failure to obtain effective features. To solve
this problem, this scheme uses a video frame interpolation based on linear interpolation
to interpolate between adjacent frames, generating the additional interpolate frames. It
ensures that the motion and movements from the original video are preserved in the
interpolated frames. By approximating the motion trajectories between frames through
linear interpolation, not only does it maintain overall temporal consistency of the video,
but it also has higher efficiency compared to optical flow-based and deep learning-based
frame interpolation methods. It effectively preserves the motion and actions in FMS videos
while minimizing the generation of erroneous motion information.

Firstly, two adjacent frames are selected as the starting and ending points of the
interpolation. Using linear interpolation techniques, a series of equidistant interpolation
frames are generated between these two frames. The interpolation frames can be achieved
by weighted summation of adjacent two frames of images. The method is as follows:

I=(1—a)Xv+aXxuvy; 1)
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a represents the interpolation factor. By adjusting the size of the interpolation factor,
the weighting ratio between two values can be controlled. v; and v, represent the value to
be interpolated, and the value of two adjacent pictures. Specifically, in video interpolation,
the value can represent the pixel value of the image or video frame, and the color component
value or other feature values that need to be interpolated. If the interpolation is performed
at the pixel level, the value can represent the value of the image in each RGB color channel.
If the interpolation is performed at the feature level, the value can represent the coordinates
of the feature points, i.e., the feature vectors. The value used in the preprocessing here is
the interpolation of pixel level, which weights each pixel in the previous and next frames
to obtain a new frame. It can achieve a smooth transition between image frames and
supplement the number of frames.

3.2. Feature Extraction

In the feature extraction section, a comprehensive network model is used to address
the limitations of traditional 2D CNN in extracting video features. The backbone network
of this model selects the I3D model, which extends 2D convolution operations to 3D
convolution operations while considering the time and space dimensions of the video.
The I3D model divides the video into a series of consecutive video frames and processes
them through an RGB feature flow. In the feature flow, each video frame extracts the space
features through the convolution operations, and then fuses and transmits them over time
to model the temporal information in the video. The structure of the I3D network is shown
in Figure 3, where the Inc. module is the expanded Inception 3D module.

Conv Maxpool Conv Conv Maxpool
Video —™ TxT=T - 1x3%3 L 1x1x1 | 3x3x3 L 1x3%3 —  Inc.
stride 2 stride 1,22 stride 1 stride 1 stride 1,2.2
Maxpool
Inc. Inc. Inc. Inc. Inc. [ 3x3x3 Inc.
stride 2

Maxzpool Avgpool Conv

2x2x2 Inc. Inc. 2xT=T I=1=1 ———® Prediction

stride 2 stride 1 stride 1

Figure 3. The structure of the I3D network.

To further capture key features in the video, this paper introduces three attention mech-
anism modules. By employing attention, dependencies between channels are captured, and
the learned attention weights are normalized and weighted onto each channel feature. The
introduction of attention mechanisms enables the model to learn action features for each
score in the input data and prominently reflect these features in subsequent MLP layers.
This helps enhance the model’s learning ability for motion information in the input data,
achieve weighted processing of video features, and enable the model to extract and utilize
relevant information more effectively. As a result, the algorithm’s performance is improved.
The attention mechanism is shown in Figure 4.

Figure 4a illustrates Simple-AM, a simple yet effective version of attention mechanism
derived from the adjustment of the SE attention mechanism [16]. This attention module is
capable of adaptively focusing on specific parts or elements of the data, thereby enhancing
the model’s sensitivity and representation capacity for video information. Figure 4b
showcases CBAM [17], which consists of two sub-modules, namely the channel attention
module (CAM) and the spatial attention module (SAM). CAM performs attention on the
channel dimension, while SAM focuses on spatial attention. This design not only saves
parameters and computational resources but also allows for CBAM to be easily integrated
as a plug-and-play module into existing network architectures. Figure 4c represents the
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non-local attention mechanism [18]. The proposed non-local operations capture long-range
dependencies by directly computing interactions between arbitrary positions, rather than
being limited to neighboring points. It can be viewed as constructing a convolutional
kernel with the same size as the feature map, thereby maintaining more information.
Non-local attention has demonstrated significant performance improvements in video
classification tasks.

TxHxWx1024
X
X F
l Input + ¥ +
Previous feature
cx1x1
Layer \ \% Q K
¢/rx1x1 Channel
FC Attention
Module
Y cxIx1 v
¥y cxdIxl
. Spatial
ST Attention
Module il<ilesl
A 4
TxHxW ol N
ex1x1 Scale x1024 " B
(a)Simple-AM (b)CBAM (c)Non-local

Figure 4. The attention mechanism.

Finally, the MLP model is used to improve the advanced features of the modeled
videos. MLP is a multilayer feedforward neural network used to learn nonlinear repre-
sentations of data. In the model, the features learned by the underlying I3D model are
transmitted to the MLP network. Through the weighted summation of multiple fully
connected layers and nonlinear activation function processing, MLP can further learn and
represent the advanced space features of the videos. This process helps to better understand
the motion function in the video, and enhances the discrimination of individual movement
differences.

As shown in Figure 5, the attention mechanism module first compresses and motivates
the input through blocks, enhancing the model’s attention to different parts of the input
data. Subsequently, the features are transmitted through a series of linear and ReLU layers
to learn nonlinear representations. Finally, the predicted distribution is obtained through
linear and Softmax layers. Formula (2) is the Softmax activation function. Given the input
vector x = [xl, X2, ..., xn}, each element x; is converted into y;, where e is the base number
of the natural logarithm (Euler Number) and the output y; represents the probability of i-th
category of the output.

Yi= s x )
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Figure 5. The AM-MLP module framework.

The comprehensive network integrating the I3D model, the AM, and the MLP model
can process the video features effectively and play an important role in the evaluation of
functional movement screening. It can simultaneously capture the low-level motion fea-
tures and model the advanced space features. The introduction of the attention mechanism
module enables the model to focus on the motion changes in the data, which improves the
model’s performance and generalization ability. Learning nonlinear representation, the
MLP model further improves the ability to represent video features. These components
work together to enable the comprehensive network to accurately evaluate movement
function and provide important information about an individual’s motion ability.

4. Score Prediction

Video action quality assessment is different from image recognition in that each of the
two adjacent frames has similar image features. Therefore, when processing the features
learned by both I3D and MLP models, introducing uncertainty into the scoring process can
better capture changes and fluctuations in action quality, which can provide more accurate
and reliable scoring results.

4.1. Gaussian Distribution of Initial Data

In the last fully connected layer of the algorithm structure in Figure 2, four outputs
are set, representing four levels that meet the FMS scoring standards. In the phase of data
preprocessing, the label data are converted into a score distribution, and the Gaussian
function is used to process it.

_ 1 (c—s) 3
g(c)—ﬁexp Y 3)

8(ci)
S TR 4)
]mzl 8 (Cj )
g(c) = [g(c1),8(c2), ..., g(cm)] represent the probability density value. m is the number
of categories. tmp is the normalized probability value.

tmp; =

4.2. Kullback-Leibler Divergence

After passing through the last fully connected layer of the MLP model, the dimension
of the feature output is m, where m is the total number of categories. Using the Soft-
max layer, the output values are converted into the probability distribution scores, i.e.,
pred = [predy, predy, ..., pred,,]. In the process of optimizing neural network parameters
through backpropagation, KL divergence is used to measure the difference between two
probability distributions. Formula (5) represents the calculation of KL divergence.

tmp;
pred;’

n
KL(tmp||pred) = Y tmp;log (5)
i=1
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When making predictions, the value with the highest probability in the prediction
score is selected to determine the final prediction category. The final prediction result can
be determined by the index corresponding to this probability value.

5. Experiment
5.1. Data and Experimental Environment

The dataset used in this paper was constructed by Xing et al. [19]. It was collected
from two Azure Kinect depth cameras, with 45 participants aged 18 to 45. The dataset
includes a squat test, hurdle stands, front and rear split squats, shoulder joint flexibility,
straight leg up, trunk stable push-ups, rotational stability, and other movements. Each
action is divided into left and right sides. Using this dataset, we find that there are too
many videos with a score of 2. In order to achieve better results, we select a dataset of
8 movements, that is, M01, M03, M05, M07, M09, M11, M12, and M14. Only the left side of
the body was analyzed.

The experiment was run on the server provided by AutoDL Computing Cloud. The
operating environment was a 32 vCPU AMD EPYC 9654 96-Core Processor, with 120 G
memory. GPU is RTX 4090(24GB) * 2, PyTorch is 1.10.0, and python is 3.8 (ubuntu20.04).
Table 1 describes the composition structure of the dataset for each action, including the
training and testing sets of the action, as well as the composition of each action on 1, 2, and
3 points.

Table 1. The number of individual movements on different scores.

Training Set Testing Set
ID 1 2 3 1 2 3
MoO1 13 69 17 4 23 5
MO03 28 54 18 9 18 8
MO5 8 75 17 2 25 8
Mo07 18 9 5 6 3 2
M09 9 54 39 3 18 12
M11 7 88 9 3 18 12
M12 3 77 8 2 26 3
Mi14 6 88 1 2 28 1

5.2. Evaluation Indicators

The evaluation indicators in this paper include accuracy, macroscopic F1, and the
Kappa coefficient. Accuracy is used to predict the effectiveness of the model. Formula (6)
shows the ratio of the number of all correctly predicted samples to the total number of
samples. C is the number of categories, T; is the number of i-th correctly classified samples,
and # is the total number of samples.

YT
po = == 6)

Ziczl F1_score; 7
sl O, )

Macroscopic F1 (macro_F1): This is used to measure the accuracy of multiple classifi-
cation problems. The prerequisite for calculating macro_F1 is to calculate F1_Score first. C
represents number of categories.

The Kappa coefficient is used to measure consistency and can also be used as an
indicator of precision. The difference between Kappa and accuracy is that Kappa can
penalize the “bias” of the model, that is, if the number of samples in each category is

macro_F1 =
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unbalanced, the model can easily favor large categories and abandon small categories.
According to Formula (8), it can be obtained that:

Kappa = M‘ (8)

In Formula (8), pg is the precision and is consistent with Formula (6). p. represents the
accidental consistency.

6. Experiment and Result Analysis
6.1. Analysis of Prediction Results

Unless otherwise specified, the AM used in this work defaults to Simple-AM. This
paper conducts comparative experiments on a single action between the FMS dataset
and the improved Gaussian mixture model (GMM) [1]. It also conducts comparative
experiments with the advanced methods of video action quality evaluation in this paper,
verifying that the proposed method can effectively predict the FMS dataset and achieve
excellent results. Subsequently, to verify the effectiveness of the attention mechanism
module, ablation experiments are conducted.

In this paper, the ratio of the training set to the testing set is 3:1. The train batch size
(train_batch_size) of 8 and the test batch (test_batch_size) size of 20 are selected. The num-
ber of training iterations is 100. In order to address the uncertainty of learning rate selection,
this paper uses the Adam optimizer as a common gradient optimization algorithm. The
Adam optimizer combines the characteristics of the momentum method and the adaptive
learning rate. It can automatically adjust the learning rate in accordance with the gradient
of each parameter, and use the momentum to accelerate the convergence of the model.
When calculating the loss value, the KL divergence is used as an indicator to measure the
difference between probability distributions predicted by the model. KL divergence can be
used to evaluate the gap between the prediction and the actual distribution. The training
process is shown in Figure 5. When the epoch is 38, the model almost reaches its optimal
level, with a Kappa coefficient value of approximately 0.85 and an accuracy of 0.9. Overall,
the model performs well on FMS.

This paper selects three movements, M01, M03, and M14, for display. As shown in
Figure 6, the model in this paper predicts the probability distributions for action videos.
Figure 6a, 6b, and 6¢, respectively, represent the original video, the predicted probability
distribution of the video, and the true probability distribution of the video. In M01, the
probability distribution with a result of 2 points is the highest; therefore, the model predicts
it to be 2 points. The model will calculate KL divergence according to the probability
distribution of the true score, perform the backpropagation, and optimize the parameters.

6.2. Analysis of Comparative Experiments

(1) Comparative Experiment for a Single Movement.

In order to verify the effect of the I3D-AM-MLP method proposed in this paper, the
comparative experiment for a single movement is analyzed. The evaluation indicator is
accuracy. The predicted results of three scores for a single movement are shown in Table 2.
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Table 2. Accuracy of a single movement.

Improved GMM Ours
ID 1 2 3 1 2 3
MO1 0.86 0.63 0.71 0.92 1 1
MO03 0.77 0.37 0.88 0.86 0.96 0.94
MO05 0.97 0.69 0.68 0.87 0.98 0.82
MO07 0.50 0.56 1 0.94 0.88 0.80
MO09 0.95 0.8 0.89 1 0.98 0.97
M11 0.85 0.56 0.84 1 1 0.88
M12 0 0.88 0.94 1 0.98 0.87
M14 0.92 0.83 0 0.83 1 0
Avg 0.800 0.895

8 B

Probability

Probability
5 &

0.00 0.00/

1 2 3 [ 1 2
MO1 Predicted Score MO1 True Score

Probability
Probability

& &

0.00 0.00/

1 2 3 3
MO3 Predicted Score

1 2
MO3 True Score

obability

13

P
Probability

3

1 2 1 2
M14 Predicted Score M14 True Score

(a)Original Image (b)Predicted Score (c)True Score

Figure 6. Predicted and actual distributions of M01, M03, and M14.

According to the analysis in Table 2, the average accuracy of the I3D-AM-MLP model
is 8.95% higher than that of the improved GMM model. In addition, in the test of single
movements (such as M01, M09, M12, and M14), the method proposed in this paper shows
an excellent performance, and the accuracy of some movements can even reach 100%. This
result further proves the superiority of this method. The experimental results indicate that
the I3D-AM-MLP model has a better performance in action recognition tasks and provides
higher accuracy. Thanks to the attention mechanism and multilayer perceptron introduced
in this model, the model can better capture the information of movements and perform
accurate classification.

From Tables 1 and 2, it can be analyzed that the model in this paper can achieve good
accuracy in an unbalanced data environment, which reflects that the model is effective on
this dataset. However, there are also situations in which the results are not satisfactory, such
as M14, where the accuracy rate is 0. As the number of samples with scores of 1 and 3 in
M14 is too small, the feature extraction on the samples with scores of 1 and 3 is insulfficient,
resulting in poor prediction results. From Table 1, it is found that the number of samples in
MO3 is relatively balanced, which can serve as a good example for automatically scoring
a single movement. The accuracies of these samples are, respectively, 9%, 59%, and 6%
higher than those of the Improved GMM model.

(2) Comparative Experiment for the Overall Data.
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Kappa Coefficient by Epoch - Train

In this paper, the superiority of this method is verified by comparing it with the
advanced video quality assessment algorithms in terms of the FMS dataset. As shown
in Figure 7a—d respectively represent the C3D-LSTM, I3DLSTM, I3D-MLP I3D-AM-MLP
models. The x-axis Epoch of the coordinate graph represents the training frequency of
all the samples in the training set, while the y-axis represents the corresponding value of
evaluation indicators such as Kappa, Accuracy, and Loss. The model begins to converge in
the 32nd round and reaches the optimum in the 64th round of the training process. At this
time, Kappa and Accuracy are, respectively, 0.91 and 0.94. From the figure, it can be seen
that the method using I3D as the backbone network has a fast fitting speed during training.
The method using C3D as the backbone network has a slow fitting speed. It indicates that
using a more complex network like I3D can better extract the spatiotemporal features of
FMS. Compared to I3D-LSTM and I3D-MLP, the model proposed in this paper shows more
stable changes in evaluation indicators during the training.
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Figure 7. Process diagram of model training.

As shown in Figure 8, the x-axis represents the predicted score, and the y-axis repre-
sents the true score. The sum of each row is the true number of samples. From the results
of these four models, using I3D as the backbone network to extract features can improve
the accuracy of the test. The accuracies of the four models are not high in action evaluation
with a score of 2. As for the actions with scores of 1 and 3, the accuracy of the model in this
paper is 96% and 93%, respectively. This model is closer to the real value than the other
three advanced methods. Generally speaking, the model proposed in this paper is better
than the above three advanced methods.
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The final experimental results of each model are further compared in Table 3. Com-
pared with I3D-MLP, the method in this paper has improved the Accuracy index by 3.33%
and improved the maF1 and Kappa indexes by 3.14% and 5%. These results show that the
method proposed in this paper has good performance and superiority on FMS datasets.
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Figure 8. Confusion matrix diagram of each model in the testing stage.

Table 3. Comparison experiment for overall data.

Accuracy/% maF1/% Kappa/%
Improved GMM [1] 80.00 77.00 67.00
C3D-LSTM [11] 74.44 74.35 61.66
I3D-LSTM 71.11 70.90 56.66
I3D-MLP [20] 84.44 84.53 76.66
Ours 87.77 87.67 81.66

6.3. Analysis of Ablation Experiments

In this paper, the contribution of the attention mechanism to model performance is
studied through ablation experiments. The attention mechanism adjusts the importance
of different parts by assigning weights, making the model pay less attention to edge
information while focusing on specific image regions. As shown in Table 4, under the same
number of MLP layers, the models with the attention mechanism increased the Kappa
coefficient by 4.87%, 3.34%, and 6.66% compared to those without the attention mechanism.
This shows that the introduction of an attention mechanism has a significant positive impact
on the performance of the model. Specifically, when the number of MLP layers is 4 and
the attention mechanism module is included, the model reaches the best performance. The
accuracy, maF1 and Kappa coefficient of its prediction are 87.77%, 87.67%, and 81.66%. The
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experimental results indicate that the attention mechanism has played a positive role in
improving model performance. By weighting the pixels, the model can better distinguish
and focus on the subtle changes in the FMS, thereby improving the classification accuracy
and consistency of the model.

This work further compares the impacts of the three mentioned attention mechanisms
in the I3D-AM-MLP model. The experiment result is presented in Table 5. The CBAM
mechanism achieves an accuracy of 88.89% and an maF1 score of 88.54%, which are both
1% higher than that of the Simple-AM. However, the Kappa coefficient slightly decreases,
indicating that CBAM improves precision but compromises a bit on discrimination. In other
words, the ability to differentiate between the four levels of actions in the FMS task slightly
decreases. On the other hand, the non-local attention mechanism, although more complex
compared to Simple-AM, results in a decrease of approximately 2% in both Accuracy
and maF1. This suggests that the effectiveness of the non-local mechanism is relatively
mediocre when extracting low-dimensional features from the I3D model. Since the non-
local mechanism typically requires more feature dimensions to capture global relationships,
it may struggle to effectively model long-range dependencies between features when the
input feature dimension is limited.

Table 4. Exploring the impact of the attention mechanism.

Attention Mechanism # of MLP Layers Accuracy/% maF1/% Kappa/%
x 2 83.33 62.79 75.13
x 3 84.44 84.53 76.66
x 4 83.33 83.11 75.00
v 2 86.66 86.58 80.00
v 3 86.66 86.47 80.00
Vv 4 87.77 87.67 81.66

Table 5. The impact of different attention mechanisms.

Attention Mechanism Accuracy/% maF1/% Kappa/%
Simple-AM 87.77 87.67 81.66
CBAM 88.89 88.54 79.75
Non-local 85.56 85.05 80.60

7. Conclusions

In this paper, a comprehensive network based on an attention mechanism and score
distribution prediction, which is superior to some mainstream methods in terms of per-
formance, is introduced for the automatic evaluation of FMS. This algorithm learns the
advanced spatiotemporal features of FMS video actions by inputting the data into the
I3D model and uses an attention weight mechanism to allow the model to focus on the
relevant features of FMS. MLP is used to perform nonlinear transformation and learning
on the input data, and the results are mapped to a nonlinear space through the activation
function. With the performance being verified on the FMS dataset, the algorithm proposed
in this paper shows significant advantages compared with other mainstream methods. It
demonstrates the potential application of deep learning in FMS automatic evaluation.

In future research, we will continue to improve the performance of the model on the
FMS dataset. The possible research directions include adding more data and annotation
information to further improve the generalization ability of the model. In addition, you can
try to introduce other deep learning models or improve the structure of existing models
to further improve the performance of the FMS automatic evaluation algorithm based on
deep learning.
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