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Abstract: Two problems concerning detecting change-points in linear regression models are consid-
ered. One involves discontinuous jumps in a regression model and the other involves regression lines
connected at unknown places. Significant literature has been developed for estimating piecewise
regression models because of their broad range of applications. The segmented (SEG) regression
method with an R package has been employed by many researchers since it is easy to use, converges
fast, and produces sufficient estimates. The SEG method allows for multiple change-points but is
restricted to continuous models. Such a restriction really limits the practical applications of SEG
when it comes to discontinuous jumps encountered in real change-point problems very often. In
this paper, we propose a piecewise regression model, allowing for discontinuous jumps, connected
lines, or the occurrences of jumps and connected change-points in a single model. The proposed
segmentation approach can derive the estimates of jump points, connected change-points, and re-
gression parameters simultaneously, allowing for multiple change-points. The initializations of the
proposed algorithm and the decision on the number of segments are discussed. Experimental results
and comparisons demonstrate the effectiveness and superiority of the proposed method. Several real
examples from diverse areas illustrate the practicability of the new method.

Keywords: piecewise regression model; change-point; discontinuous jump; segmented regressions;
break-point; threshold
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1. Introduction

Piecewise regression models have been widely used in many practical situations where
the relationship between the response and explanatory variables changes abruptly at certain
points. These places are called change-points, break-points, or thresholds. Figure 1 illustrates
some possible piecewise regressions between the response and generic covariate x.

In analyzing regressions with change-points, spline methods and piecewise regressions
have been commonly adopted in the literature. Spline regressions are mainly used to
approximate smooth regression functions. A spline function (q-spline) is a piecewise
polynomial of degree q with q − 1 continuous derivatives at the change-point (c.f. [1]). The
change-points are called knots in spline regressions. Seber [1] commented that regression
splines are appropriate when one aims at finding the best fitted model to utilize in prediction
or in finding extreme values of the regression curve. More applications and discussion
on spline methods can be found in references [1–3]. The emphasis of regression spline is
on modelling smooth regression relationships rather than illustrating structural changes
in the regression relations (c.f. [1]). Thus, the regression coefficients resulted from splines
may not measure the effect on the response and the estimated parameters are not explicitly
interpretable (c.f. [4]).
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By contrast, piecewise regression analyses focus on addressing the tendency relation-
ships between response and explanatory variables, as indicated by abrupt changes be-
tween well-mannered regimes [1]. Therefore, locating change-points and obtaining ade-
quate and meaningful estimates of parameters are the primary purpose for fitting piece-
wise regression models. The estimations for change-points and regression coefficients are 
important in piecewise regressions because they are often the sign for knowing when and 
how the trend of data changes. This information is critical to decision making. Change-
point detection has been identified as a challenging problem for modern, big data appli-
cations [5]. 

Multiphase models provide a simple and interpretable way to deal with non-linear 
problems and provide meaningful regression parameters. Therefore, researchers have ad-
vocated piecewise regression models as better alternatives to solve regression problems 
which involve unknow change-points. This paper aims at dealing with regression prob-
lems involving abrupt changes, with continuous or discontinuous jumps at unknown 
places. This approach involves piecewise regression analyses. 
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Figure 1. Some possible continuous or discontinuous broken-line regressions with one or two break- 
points. 

Change-point regression problems occur in many fields such as molecular biology, 
medicine, climatology, engineering, and econometrics [4,6–8]. In medical science, seg-
mented regression models are employed to see whether the effect of some risk factor on 
the response alters abruptly. For example, the risk of cancer is low for young people, but 
the risk rises quickly for people of age beyond a certain age threshold [9]. In the oil and 
gas industry, sequential well-log data often appear as abrupt jumps at the transitions of 
rock strata. Each change-point in the well-log sequence indicates that a new rock type is 
encountered. Thus, change-point detection is crucial in oil-drilling. An example of well-
log data from [10] was analyzed via many different change-point methods [5,11–13]. Fig-
ure 2a displays data plots of the indexed measurements from 2000 to 2650 in the well-log 
data set and discloses five discontinuous jumps in the data series. Moreover, piecewise 
regressions are also serviceable for clustering objects into groups based on a certain ex-
planatory variable. For instance, one may want to classify cars based on the relationship 
between fuel efficiency (measured by miles per gallon, denoted by MPG), weights (WTs), 
and horsepower (HP). The graph of a data set taken from [8] shows a discontinuous and 
nonlinear relationship between MPG and WT (see Figure 2b). 

This paper is presented as follows. Section 2 presents the literature review. Section 3 
describes Muggeo’s segmented method and proposes an advanced segmentation ap-
proach for piecewise regression models free of the continuity restriction. The IJD method 
is introduced for choosing proper initial values. Section 4 provides experimental examples 
and comparisons to demonstrate the effectiveness and superiority of the proposed 
method. Severa real data sets are used to illustrate the practicability of the new approach. 
Finally, Section 5 provides concluding remarks. 

  

Figure 1. Some possible continuous or discontinuous broken-line regressions with one or two break-points.

By contrast, piecewise regression analyses focus on addressing the tendency relation-
ships between response and explanatory variables, as indicated by abrupt changes between
well-mannered regimes [1]. Therefore, locating change-points and obtaining adequate and
meaningful estimates of parameters are the primary purpose for fitting piecewise regression
models. The estimations for change-points and regression coefficients are important in
piecewise regressions because they are often the sign for knowing when and how the trend
of data changes. This information is critical to decision making. Change-point detection
has been identified as a challenging problem for modern, big data applications [5].

Multiphase models provide a simple and interpretable way to deal with non-linear
problems and provide meaningful regression parameters. Therefore, researchers have
advocated piecewise regression models as better alternatives to solve regression problems
which involve unknow change-points. This paper aims at dealing with regression problems
involving abrupt changes, with continuous or discontinuous jumps at unknown places.
This approach involves piecewise regression analyses.

Change-point regression problems occur in many fields such as molecular biology,
medicine, climatology, engineering, and econometrics [4,6–8]. In medical science, seg-
mented regression models are employed to see whether the effect of some risk factor on
the response alters abruptly. For example, the risk of cancer is low for young people, but
the risk rises quickly for people of age beyond a certain age threshold [9]. In the oil and
gas industry, sequential well-log data often appear as abrupt jumps at the transitions of
rock strata. Each change-point in the well-log sequence indicates that a new rock type
is encountered. Thus, change-point detection is crucial in oil-drilling. An example of
well-log data from [10] was analyzed via many different change-point methods [5,11–13].
Figure 2a displays data plots of the indexed measurements from 2000 to 2650 in the well-log
data set and discloses five discontinuous jumps in the data series. Moreover, piecewise
regressions are also serviceable for clustering objects into groups based on a certain ex-
planatory variable. For instance, one may want to classify cars based on the relationship
between fuel efficiency (measured by miles per gallon, denoted by MPG), weights (WTs),
and horsepower (HP). The graph of a data set taken from [8] shows a discontinuous and
nonlinear relationship between MPG and WT (see Figure 2b).
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Figure 2. Scatter plots of well-log data and the car data with MPG vs. WT. 

2. Literature Review 
Change-point problems, first introduced in the quality control context, have devel-

oped into a fundamental issues in many areas. Numerous methodologies have been in-
troduced for solving change-point problems. Maximum likelihood approaches, Bayesian 
analyses, grid-searching approaches, quantile regression, and non-parametric methods 
are among the approaches which have been employed to resolve change-point problems. 
A major difficulty in the estimations for change-point regression models is the non-

smoothness of the likelihood function with respect to the change-point parameter. Many 
authors have tried to bypass this problem through various smooth transitions between 
two adjoining segments. Muggeo [4] presented a segmented (SEG) regression method 
thorough a linear transition to estimate change-points and the regression model. The SEG 
method is available for simultaneous inference on change-points and regression coeffi-
cients, but it is only feasible for connected regression models. Lu and Chang [12] (2018) 
adopted mixture modelling approaches to bypass the non-smooth difficulty and created 
two algorithms, called EM-BP and FCM-BP, to obtain estimates. These two algorithms can 
produce maximum likelihood estimates for change-points and regression coefficients sim-
ultaneously, but they are computationally intensive in cases of multiple change-points or 
large data sets due to the calculations required for each possible collection of change-
points. Bayesian approaches are also considered for change-point regressions [14,15]. One 
concern with Bayesian analysis is the computational effort, due to a large number of iter-
ations required in Markov chain Monte Carlo simulations. 

Nonparametric methods are needed when data cannot be well approximated 
through parametric distributions. An efficient nonparametric maximum likelihood ap-
proach was proposed via dynamic programming (DP) [16]. Garreau and Arlot [17] pro-
posed a nonparametric kernel change-point algorithm (KCP) to locate CPs through model 
selection associated with a penalized kernel criterion. Thus, the performance of KCP de-
pends on a suitable penalty. Moreover, Frick et. al. [18] introduced a simultaneous mul-
tiscale change-point estimator (SMUCE) method which does not only give the estimates 
of the change-point but also the confidence intervals. Pein et al. [19] further advanced 
SMUCE to be used for heterogeneous models. Moreover, some authors proposed a wild 
binary segmentation (WBS) method for improving the binary segmentation (BS) approach 
[20,21]. These two methods assume that regression errors are normally distributed; hence, 
they are not robust to atypical data. Some researchers focused on the issue of computa-
tional efficiency. Haynes et al. [22] presented an efficient algorithm to find a suitable pen-
alty choice so that the computational cost can be reduced. Recently, the resistance of algo-
rithms in the presence of abnormal observations has been studied [23–26]. A common as-
pect of these methods is the computational effort. For a review of more research on 
change-point issues, we refer to articles [27] and the references therein. 
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This paper is presented as follows. Section 2 presents the literature review. Section 3
describes Muggeo’s segmented method and proposes an advanced segmentation approach
for piecewise regression models free of the continuity restriction. The IJD method is
introduced for choosing proper initial values. Section 4 provides experimental examples
and comparisons to demonstrate the effectiveness and superiority of the proposed method.
Severa real data sets are used to illustrate the practicability of the new approach. Finally,
Section 5 provides concluding remarks.

2. Literature Review

Change-point problems, first introduced in the quality control context, have developed
into a fundamental issues in many areas. Numerous methodologies have been introduced
for solving change-point problems. Maximum likelihood approaches, Bayesian analyses,
grid-searching approaches, quantile regression, and non-parametric methods are among
the approaches which have been employed to resolve change-point problems. A major
difficulty in the estimations for change-point regression models is the non-smoothness of
the likelihood function with respect to the change-point parameter. Many authors have
tried to bypass this problem through various smooth transitions between two adjoining
segments. Muggeo [4] presented a segmented (SEG) regression method thorough a lin-
ear transition to estimate change-points and the regression model. The SEG method is
available for simultaneous inference on change-points and regression coefficients, but it is
only feasible for connected regression models. Lu and Chang [12] (2018) adopted mixture
modelling approaches to bypass the non-smooth difficulty and created two algorithms,
called EM-BP and FCM-BP, to obtain estimates. These two algorithms can produce max-
imum likelihood estimates for change-points and regression coefficients simultaneously,
but they are computationally intensive in cases of multiple change-points or large data sets
due to the calculations required for each possible collection of change-points. Bayesian
approaches are also considered for change-point regressions [14,15]. One concern with
Bayesian analysis is the computational effort, due to a large number of iterations required
in Markov chain Monte Carlo simulations.

Nonparametric methods are needed when data cannot be well approximated through
parametric distributions. An efficient nonparametric maximum likelihood approach was
proposed via dynamic programming (DP) [16]. Garreau and Arlot [17] proposed a non-
parametric kernel change-point algorithm (KCP) to locate CPs through model selection
associated with a penalized kernel criterion. Thus, the performance of KCP depends
on a suitable penalty. Moreover, Frick et al. [18] introduced a simultaneous multiscale
change-point estimator (SMUCE) method which does not only give the estimates of the
change-point but also the confidence intervals. Pein et al. [19] further advanced SMUCE
to be used for heterogeneous models. Moreover, some authors proposed a wild binary
segmentation (WBS) method for improving the binary segmentation (BS) approach [20,21].
These two methods assume that regression errors are normally distributed; hence, they
are not robust to atypical data. Some researchers focused on the issue of computational
efficiency. Haynes et al. [22] presented an efficient algorithm to find a suitable penalty
choice so that the computational cost can be reduced. Recently, the resistance of algorithms
in the presence of abnormal observations has been studied [23–26]. A common aspect of
these methods is the computational effort. For a review of more research on change-point
issues, we refer to articles [27] and the references therein.

There are often some restrictions on the aforementioned methods. Muggeo [4] pro-
posed a segmented regression method by using Taylor expansions to deal with change-point
regressions. The segmented method is allowable for multiple change-points but restricted
to continuous regression lines. Muggeo’s segmented (SEG) method is easy to implement,
converges fast, and produces adequate estimators. Particularly, Muggeo [28] further intro-
duced an R package called “segmented” to facilitate the use of the segmented regression
method. The SEG method has been widely employed in a great many applications [28–32],
especially in several recent analyses of the COVID-19 epidemic curve [33–35]. Because of
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its easiness and high efficiency, the segmented regression method was further combined
with rank-based estimation to make the segmented method more resistant against out-
liers (c.f. [7,32]). Many researchers [7,12,32,36] recognized that the SEG method works
well when the piecewise model is known to be continuous at change-points. But small
deviations from continuity in the regression lines may distort the estimations made by
SEG method. For real applications, continuity cannot be simply assumed when solving
a change-point problem. Continuity may be very probable and reasonable for medical
or biological problems, while such a supposition may not be appropriate in economics,
finance, and quality control [36]. As shown in Figure 2, continuity is clearly infeasible for
both well-log data and car data; hence, the segmented method is not attainable for these
real problems. The restriction of continuity really limits the practical applications of the
SEG method. This motivates us to develop a new method for change-point regressions,
without requiring continuity limitation.

In this paper, we introduce an advanced segmented regression model to solve piece-
wise regression problems. We propose a segmentation procedure to fit the piecewise
regression model, allowing for multiple change-points free of the continuity restriction.
We further propose an intuitive jump detection (IJD) method to make the new proposed
method more robust to initializations and, hence, increase the precision of estimates. The
proposed method is applicable to problems in diverse areas. It is useful for areas where
jumps are very likely to occur, such as applications in finance and engineering [37–39].

3. Methodology
3.1. Muggeo’s Segmented Regression Method

We first review Muggeo’s [4] segmented (SEG) regression method. Suppose a piece-
wise regression model of K segments is represented by

g(E(Y)) = f (X) + βh(z; ψ)

where Y is the response, g(·) represents the link function for E(Y), f (X) is the predictor
allowing any variable with a linear parameter, and h(z; ψ) is the non-linear term for the Z
variable with parameter ψ. For simplicity, the predictor f (X) will be omitted because there
is no difference among regression models in the following. Thus, a segmented regression
model can be represented by

E(Y) = α0 + β0z + ∑
k

βk(z− ψk)+ (1)

where ψ = (ψ1, ψ2, . . . , ψK)
T are change-points and (z− ψk)+ = (z− ψk)× I(z > ψk) for

k = 1, . . . , K. Muggeo [4] proposed to approximate the non-linear term using a first-order
Taylor’s expansion around ψ

(0)
k :

(z− ψk)+
.
= (z− ψ

(0)
k )

+
+ (ψ− ψ

(0)
k )(−1)I(z > ψ

(0)
k ), for k = 1, . . . , K.

Thus, Equation (1) can be rewritten as

E(Y) .
= α0 + β0z + ∑

k
βk(z− ψ

(0)
k )

+
+ ∑

k
βk(ψ− ψ

(0)
k )(−1)I(z > ψ

(0)
k )

= α0 + β0z + ∑
k

βkU(0)
k +∑

k
γkV(0)

k

(2)

where
U(s)

k = (z− ψ
(s)
k )

+
, V(s)

k = −I(z > ψ
(s)
k ), γ

(s)
k = β

(s)
k (ψk − ψ

(s)
k ). (3)
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Hence, in the (s + 1)th iteration,

ψ
(s+1)
k

.
= ψ

(s)
k +

γ
(s)
k

β
(s)
k

, for k = 1, . . . , K. (4)

We summarize the SEG method as follows.
Given the initial ψ(0) and stop criterion ε, perform the following steps in the

(s + 1)th iteration:

1. Calculate U(s) and V(s) by (3).
2. Fit the model given by (2) to derive α(s), β(s), γ(s).

3. Update ψ
(s+1)
k by (4).

4. Repeat steps 1–3 until
∥∥∥ψ(s+1) −ψ(s)

∥∥∥ < ε.

3.2. The Proposed DSR Method
3.2.1. The New Defined Piecewise Regression Model

Following the previous illustrations, Muggeo [4] introduced a segmented regression
model with K change-points, as given by Equation (1). For simplicity, other predictors are
omitted. Next, we propose an approach to deal with the infeasibility of SEG in detecting
discontinuous jumps. The new proposed method is attainable for locating both continuous
change-points and discontinuous jump points simultaneously.

Since disjoint jump points are exactly the break-points of piecewise regression models,
we define a piecewise regression model allowing for the occurrence of jumps at change-
points by

E(Y) = α0 + β0z + ∑
k

αk I(z > ψk) + ∑
k

βk(z− ψk)+ (5)

where ψ = (ψ1, ψ2, . . . , ψK)
T are change-points and (z− ψk)+ = (z − ψk) × I(z > ψk),

k = 1, . . . , K. Similar to Muggeo’s SEG method, the other predictors are omitted for
simplicity. In accordance with the parameterization in (5), α0 and β0, respectively, represent
the intercept and the slope of the leftmost segment line (i.e., for z ≤ ψ1), αk is the jump of
the regression line at ψk, and βk is the difference-in-slopes parameter between the (k + 1)th
and the kth slopes. Note that αk = 0 when the segmented regression model is continuous at
ψk. Since the log-likelihood function for estimating the piecewise model given by (5) is not
differentiable, with change-points regarded as parameters, estimations for model (5) cannot
be solved analytically but require iterative methods. Referring to [1,4], we approximate the
nonlinear term through a first-order Taylor expansion around ψ

(0)
k :

(z− ψk)+
.
= (z− ψ

(0)
k )

+
+ (ψ− ψ

(0)
k )(−1)I(z > ψ

(0)
k ), for k = 1, · · · , K.

Thus,

E(Y) .
= α0 + β0z + ∑

k
αk I(z > ψ

(0)
k ) + ∑

k
βk(z− ψ

(0)
k )

+
+ ∑

k
βk(ψk − ψ

(0)
k )(−1)I(z > ψ

(0)
k )

= α0 + β0z + ∑
k

βk(z− ψ
(0)
k )

+
+ ∑

k
[βk(ψk − ψ

(0)
k )− αk](−1)I(z > ψ

(0)
k )

= α0 + β0z + ∑
k

βkU(0)
k +∑

k
γkV(0)

k .

(6)

At the (s + 1)th iteration, we define

U(s)
k = (z− ψ

(s)
k )

+
, V(s)

k = −I(z > ψ
(s)
k ), (7)

γ
(s)
k = β

(s)
k (ψk − ψ

(s)
k )− α

(s)
k , k = 1, . . . , K. (8)
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The model given by (6) is suitable for model errors following normal distributions or
heavy tailed distributions, such as t or Laplace distributions. As an illustration, we assume
the model error follows a normal distribution and fit the model by the least square method
as follows: (

α
(s)
0 , β

(s)
0 , β

(s)
1 , γ

(s)
1 , . . . , β

(s)
K , γ

(s)
K

)T
=
(

XTX
)−1

XTY (9)

where the design matrix is

X =


1 z1 U(s)

11 V(s)
11 · · · U(s)

K1 V(s)
K1

...
...

...
...

. . .
...

...
1 zn U(s)

1n V(s)
1n · · · U(s)

Kn V(s)
Kn

,Y =

y1
...

yn

,U(s)
ki = (zi − ψ

(s)
k )

+
,

V(s)
ki = −I(zi > ψ

(s)
k ), for i = 1, . . . , n, k = 1, . . . , K.

After fitting the regression model by (9), we can derive the updated estimates α
(s)
0 ,

β
(s)
0 , β

(s)
k , and γ

(s)
k . To update the estimates of αk and ψk, we can use the Equation (8) only

because these two parameters merely appear in (8). However, a single equation is not
enough for solving two unknowns. This is the difficulty of Muggeo’s segmented regression
model in estimating piecewise models with jumps at unknown places. This may be the
reason why the SEG method requires the restriction of continuity. To solve this difficulty,
we consider updating ψk through Equation (8) as follows:

ψ
(s+1)
k =

γ
(s)
k + α

(s)
k

β
(s)
k

+ ψ
(s)
k . (10)

For updating αk, one possible solution is based on traditional regression methods.
Considering the (k + 1)th sub-model,

E(y) = (α0 + · · ·+ αk − β1ψ1 − · · · − βkψk) + (β0 + · · ·+ βk)z.

Note that, for a simple linear regression model, y = α + βx, the least square estimate
for the intercept is y− βz. Hence, the intercept of the (k + 1)th sub-model can be estimated by

α0 + · · ·+ αk − β1ψ1 − · · · − βkψk = yk − (β0 + · · ·+ βk)zk.

Thus, the updated equations for αks are

α
(s+1)
0 = y0 − β

(s)
0 z0, α

(s+1)
1 = y1 − (β

(s)
0 + β

(s)
1 )z1 −

(
α
(s+1)
0 − β

(s)
1 ψ

(s+1)
1 ),

α
(s+1)
k = yk − (β

(s)
0 + β

(s)
1 )zk −

(
α
(s+1)
0 + · · ·+ α

(s+1)
k−1 − β

(s)
1 ψ

(s)
1 − · · · − β

(s)
k ψ

(s+1)
k ),

(11)

where yk and zk are the means of response and independent variables, respectively, for

data lying in the kth sub-segments. By giving initial values ψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
k )

T
and

α(0) = (α
(0)
1 , . . . , α

(0)
k )

T
, iteratively refit the model to derive new estimates until the

algorithm converges. The estimates for the regression parameters and the change-points
are obtained simultaneously. However, the segmented algorithm is highly dependent on
the initial values and hence it is likely to result in unsatisfactory estimates due to improper
initial values. Thus, we further propose an intuitive jump detection (IJD) method for
selecting suitable initial values of jump points ψ(0).

3.2.2. The Proposed IJD Method

It is a common problem for most iterative approaches that the performance of the
algorithm depends on initial values [4,40]. This problem may be stressed in situations
where the objective function is not always concave, and hence the algorithm may converge
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to local maxima with improper initials used. We illustrate the dependence of DSR on
initialization by using models (12) and (13),

y =

{
2 + 1.2x, x ≤ 5,
13− x, x > 5,

(with a connected change− point x = 5) , (12)

and

y =

{
8− 1.2x, x ≤ 5,
−1 + x, x > 5,

(with a discontinuous jump at x = 5) . (13)

Two samples were generated individually from the above two models with each
having 50 points and regression errors following normal distributions, with µ = 10, σ = 0.2.
From extensive simulation results, we observe that when the initial values of x are far away
from the true change-point 5 such as x ≤ 0.2 or x ≥ 9.8, DSR fails because data points are
too few to obtain estimates of regression parameters. For 0.2 < x < 9.8, the DSR algorithm
can converge, but it may result in inadequate estimates, such as the fitted results shown in
Figure 3a1,a2,b1,b2; on the other hand, if initial values are close enough to the true value,
DSR produces an estimated model of good fit such as the cases depicted in Figure 3a3,b3.
These results illustrate that proper initial values are critical to the success of DSR. Next, we
describe the IJD method for selecting suitable initial values to be used in DSR.
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and IJD works for providing suitable initials.

Intuitively, if a regression model exhibits an abrupt jump at some point, the difference
between the regression means before and after the jump point should be much larger than
the differences between data points lying on the same segment. According to Equation (5),
the change-points in a piecewise regression model are defined in terms of the regressor z.
Assume that the sample has been arranged in the increasing order of z, with yi denoting
the response of the ith sample point. Given a positive integer δ, w1 ≥ w2 ≥ · · · ≥ wδ ≥ 0,
and ∑δ

j=1 wj = 1, define Di as

Di =
∣∣Mi −M′i

∣∣, i = δ, · · · , n− δ (14)

where Mi = w1yi+1 + w2yi+2 + · · ·+ wδyi+δ and M′i = w1yi + w2yi−1 + · · ·+ wδyi−δ+1.
Let π ∈ (0, 1) and r = [n× π], i.e., the largest integer that is less than or equal to n× π. Sort
the Dis and select the smallest r of them as

D(1) ≤ D(2) ≤ · · · ≤ D(r), r < n− 2δ + 1.
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Given m > 0, define a critical value ξ for ‘jump’ as

ξ = MDπ + m× SDπ (15)

where MDπ =
r
∑

i=1
D(i)/r and SDπ =

√
r
∑

i=1
(D(i) −MDπ)

2/(r− 1) are the sample mean

and sample standard deviation. If

Di ≥ ξ, i = δ, · · · , n− δ, (16)

a possible jump is considered to be around data point i.
Since neighboring Dis are highly correlated, and it is impractical to have two change-

points close together, deleting nearby jumps is necessary. Assume each of {Di1, . . . , Dik} is
no less than ξ, one way of deleting nearby jumps is as follows:

(i) Select the largest Di on {Di1, . . . , Dik} and delete every Dij in {Di1, . . . , Dik} such that
|i− ij|≤ δ + 1 and i 6= ij.

(ii) Select the second largest Di on the remaining set of {Di1, . . . , Dik} and delete every
nearby Dij in the remaining set of {Di1, . . . , Dik} as (i).

(iii) Continue the process on the next largest Di on the remaining set of {Di1, . . . , Dik} as
(a) and so on until no more nearby jumps in {Di1, . . . , Dik}.
Since it is likely to find more jump points than the assumed change-point number,

deleting overestimated jumps is required. Simply remove the extra number of those
smallest jumps Dis in the remaining {Di1, . . . , Dik}.

Assume
{

Dj1, . . . , Djs
}

is the remaining set; then ψ1, . . . , ψs are the preliminary esti-
mates of change-points with jumps, where

ψi = (zji + zji+1)/2, i = 1, . . . , s. (17)

The steps of the IJD method:

1. Calculate Di =
∣∣Mi −M′i

∣∣, i = δ, · · · , n− δ by (14).
2. Calculate ξ = MDπ + m× SDπ by (15).
3. Test Di ≥ ξ to find possible jumps {Di1, . . . , Dik} by (16).
4. Delete nearby jumps.
5. Remove extra jumps.
6. Calculate and output preliminary estimates of change-points ψis with jumps by (17).

For easy understanding, we illustrate the IJD method via an example with
graphic representation.

The model considered is specified as

y =


2.0000 + 2.4000x + ε1, if x ≤ 2.5,
8.6098− 0.2439x + ε2, if x ≤ 6.6,
−5.7647 + 1.1765x + ε3, x > 6.6,

(18)

where ε1 and ε2 follow the normal distribution, with µ = 0, σ= 0.5, and the model includes
two change-points (one continuous change-point at x = 2.5 and one jump at x = 6.6).
Figure 4a displays the scatter plots of one simulated sample of 100 data points (i.e., n = 100),
the true model, the estimated model, and the detected possible jump at x = 6.6162. To apply
IJD to the simulated sample, we set

δ = 4, wij = 1/δ, j = 1, · · · , δ, π = 0.9, and m = 4.
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We have MD0.9 = 0.438851, SD0.9 = 0.362456, and MD0.9 + 4SD0.9 = 1.888674.
Therefore, those places with Di > 1.888674 will be considered as possible jumps. Figure 4b
shows Di = 4.8443 at x = 6.6162 is the only one larger than the critical value 1.888674;
therefore, there is a possible jump at x = 6.6162, which is very close to the true place 6.6.
The detected potential jump point is pointed out with black coordinates on the right plot
in Figure 4. Except for the extreme large Di at x = 6.6162, we notice a relatively larger
difference in Di for x ∈ (1.91919, 2, 52525), where Di = 1.4363 (at x = 1.91919) decreases to
Di = 0.115346 (at x = 2.52525). Note that the absolute difference in Di is relatively larger
than those at the other places. This evidence indicates the existence of a possible connected
change-point for x ∈ (1.91919, 2, 52525). In fact, there is indeed a continuous change-point
at x = 2.5. Moreover, there are approximately two smaller protuberances in the interval
(7.5, 9.5). Thus, we fitted data with models having K = 1, 2, 3, 4, respectively. It resulted in
the model of 2 change-points fitting the data set best for the smallest mean squared errors
defined by

MRS(K) =
RSS(K)

[n− (K + 1)(p + 1)]
=

∑ (yi − ŷi)
2

[n− (K + 1)(p + 1)]
,

where RSS is the residual sum of squared errors and K is the number of change-points.
Thus, the proposed IJD method is not only helpful for recognizing possible jumps but also
useful for finding potential continuous change-points. Furthermore, the closeness of the
detected possible change-points by IJD to the true ones is beneficial for speeding up the
convergence of the algorithm and increasing the precisions of the estimations. This example
shows the proposed IJD method is useful for finding appropriate initial values to derive
sufficient estimates. Summarize the rule for determining the possible jump points and
connected change-points as follows: consider those points having Di ≥ MDπ + m× SDπ ,
i = δ, · · · , n− δ, with a fixed m (MDπ and SDπ were defined above in this sub-section) as
possible jump points, such as those denoted by black coordinates in Figure 4. Then, find
possible connected change-points in the interval where the variations of Di are relatively
larger than those in other places. As noted by Seber [1], piecewise regression models are
intended for circumstances where the number of change-points is small. Muggeo [4] also
commented that a few change-points (maybe from one to three) are probably enough for
handling realistic situations since the meaning of change-points may become doubtful
as the number of regimes increases. Therefore, the IJD method should be serviceable for
finding potential jump points and connected change-points.

When using IJD, one needs to select the numbers for δ, π, and m, respectively. Usually,
the selections depend on the sample size and the deviations of the data set. From our
numerous experiments with samples of different sizes generated from various types of
models, we found that the setting of δ = 3 or 4, π ∈ (0.6, 0.9), and m = 4 is workable for
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most data of moderate size. For sample sizes larger than 500, a larger δ may be needed,
and it may be even larger than 15. One may try different K (the number of change-points),
using IJD for each individual K to select initial values. For each individual K, the estimates
of change-points and regression parameters can be derived by iteratively fitting the model
given by Equation (6) until the algorithm converges. Accordingly, the best fitted model can
be chosen based on the rules of model selection in regression analyses. The set of δ = 3 or 4,
π = 0.9, and m = 4 had been used with the IJD method in almost all our simulations and
real applications, resulting in adequate estimates for all data sets.

Now, we return to Figure 3. The results in Figure 3a4,b4 show that IJD detected a
potential connected change-point and a jump near to 5 for models (a) and (b), respectively.
Figure 3a5,b5 show that, with the use of the initial values obtained by IJD, DSR resulted
in a well-fitted model for both continuous and discontinuous models, respectively. These
results support that IJD is helpful for finding proper initial values for DSR to make adequate
estimations for piecewise regression models.

For the clarity of our method, we denote ψ
(s)
k for k = 1, . . . , K and non-negative

integer s by

ψ
(s)
k =

{
ψ
(s)
kd , for discontiuous change-point,

ψ
(s)
kc , for contiuous change-point.

Based on the estimates of (8), we can updateα(s+1) andψ(s+1) by the following equations:

α
(s+1)
kd =

{
−γ

(s)
k , if s + 1 is odd,

α
(s)
kd , if s + 1 is even.

(19)

ψ
(s+1)
kd =


ψ
(s)
kd , if s + 1 is odd,

γ
(s)
k +α

(s)
k

β
(s)
k

+ ψ
(s)
kd , if s + 1 is even.

(20)

α
(s+1)
kc = 0, ψ

(s+1)
kc =

γ
(s)
k

β
(s)
k

+ ψ
(s)
kc for any non-negative integer s. (21)

We denote the proposed segmentation regression method by DSR and summarize the
DSR algorithm as follows:

0. Given dataset (z1, y1), . . . , (zn, yn), with z1 ≤ · · · ≤ zn, integer δ, w1 ≥ w2 ≥ · · · ≥ wδ

≥ 0, ∑δ
j=1 wj = 1, π ∈ (0, 1), m > 0, and CP number K:

1. Employ the IJD method to select initial values ψ(0)
d with a jump.

2. If the number of ψ(0)
d , k, is less than K, randomly assign K − k continuous change-

points ψ(0)
c .

at the (s + 1)th iteration.
3. Calculate U(s) and V(s) by (7).

4. Fit the model given by (9) for obtaining α
(s)
0 , β

(s)
0 , β(s), and γ(s).

5. (i) Alternatively update α(s+1)
d and ψ(s+1)

d by (19), (20) for discontinuous change-

points. (ii) Update α(s+1)
c and ψ(s+1)

c by (21) for continuous change–points.
6. Update s by s + 1 and repeat steps 3–5 until

∥∥∥ψ(s+1) −ψ(s)
∥∥∥+ ∥∥∥α(s+1) −α(s)

∥∥∥ < ε, ε

is fix to be a stop criterion.

3.3. The Determination of the Number of Segments

The decision on the number of subdivisions has been recognized as an important but
challenging issue because the commonly used likelihood test statistic does not have an
asymptotic chi-squared distribution, due to the failure of Cramér regularity conditions. As
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noted by Hawkins [41], determining the number of segments is technically difficult because
little is known about the asymptotic distribution of the likelihood tests.

Even for the easiest case where regression errors are normally distributed, N(0, σ2)
with unknown σ, the generalized likelihood test statistic for testing the existence of a
change-point is far from having an asymptotic distribution; even worse, these statistics may
increase without limit. Although several researchers have studied “testing for the existence
of change-points” [4,6,42], they confirmed that the statistic test is rather complicated,
and it also depends on the alternative hypotheses. Thus, information criterion-based
methods have been adopted often in the literature for determining the number of change-
points [8,43,44]. Moreover, in practice, several techniques may be useful, such as the
smoothed scatter plot suggested by [4] and the intuitive approaches introduced by [41,45].

In this paper, we consider incorporating the proposed IJD with the idea of Venter and
Steel [45] and Hawkins [41] to decide the number of segmentations. The rationale of these
authors is that, when the real segment borders are fitted, the residual sum of squared errors
(RSS) should decrease significantly, but once all real segment borders have been detected,
the reduction will be more or less. In fact, it is likely that an overfitted model (using the
number of change-points, K, larger than the true one, K0) results in larger RSS(K) than or
just close to that of the data fitted with the model of the true K0. In particular, for K much
larger than K0, RSS(K) is usually larger than RSS(K0), to some extent. (This fact can be seen
from Table 1).

Table 1. Determine the number of segments for the models shown in Figure 5.

Try M1, K = 0 M2, K = 1 M3, K = 2 M4, K = 2 M5, K = 3
K RSS MRSch 1 BIC RSS MRSch BIC RSS MRSch BIC RSS MRSch BIC RSS MRSch BIC

0 4.56 * 2 −120 3 5.62 * −109 274 * 97 194 * 71 151 * 41
1 4.10 0.010 −109 2.65 0.065 −131 71.4 4.407 14 15 3.883 −104 55 2.088 −41
2 4.03 0.002 −79 2.80 −0.003 −97 3.98 1.467 −168 2.75 0.265 −196 47.9 0.161 −18
3 7.41 −0.073 −2 2.65 0.003 −53 3.83 0.003 −119 2.71 0.001 −145 2.37 0.990 −264
4 7.28 0.003 60 7.98 −0.116 65 3.78 0.001 −51 8.18 −0.119 6 2.37 0.000 −190

1 MRSch denotes the changes in MRS(K). 2 There is no value of MRSch when K = 0. 3 The numbers written in bold
indicate the estimated K based on the criterion.
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Figure 5. Models used for illustrating the determination of the number of segments by the
suggested indices.

Here, we assess the fit of the segmented regression model based on the changes in RSS
and the mean of RSS (MRS). Recall:

MRS(K) =
RSS(K)

[n− (K + 1)(p + 1)]
=

∑ (yi − ŷi)
2

[n− (K + 1)(p + 1)]
,
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where K is the number of segments of the model fitted to data. As commented by
Hawkins [41], although this heuristic method does not rely on a substantial foundation, it
can serve as a rough and practical tool. In this paper, we propose to use IJD first to find
potential change-points and a possible number of change-points, say K∗. Then, fit the data
with several values K around K∗ (including those possible K larger or smaller than K∗,
as many as possible) and choose the most likely number of change-points based on the
changes in MRS(K) through the idea of [41,45]. The incorporation of IJD with the changes
in MRS makes the estimation for the number of segments easier and more precise. For
illustrations, we employ the compounded method to five models shown in Figure 5. The
generalized Bayesian information criterion (BIC) by [44] is also considered, in which the
smallest BIC indicates the best fitted model. Table 1 presents the results in which those
values corresponding to the optimum K are depicted with fluorescent yellow. It can be
seen from Table 1 that, for the detection of jump points in the models M3 and M4, the IJD
method produces one and two possible jumps for M3 and M4, respectively, which match
with the true values, and the detected possible jump points are very close the true ones.
On the other hand, as illustrated previously, the absolute difference in the regression mean
Di (recall:

Di =
∣∣Mi −M′i

∣∣,Mi = w1yi+1 + w2yi+2 + · · ·+ wδyi+δ, M′i = w1yi + w2yi−1 + · · ·+ wδyi−δ+1
w1 ≥ w2 ≥ · · · ≥ wδ ≥ 0, and ∑δ

j=1 wj = 1)

shows relatively larger changes around the connected change-points compared with those
Dis associated with the points where no change occurs, for instance, the areas around those
points with blue coordinates in Figure 5. For example, model M2 actually has a connected
change-point at x = 6.5. The plots of Di resulted from IJD show relatively large changes in
Di from almost Di = 0 around x = 5 to the highest Di = 0.64791 at x = 6.73469, which indicates
a possible continuous change-point in the interval (5, 7) approximately. Similar results
can be seen from Figure 5 for models M3 and M5. IJD produces quite large changes in Di
around those points with blue coordinates, which are possible continuous change-points
and are really close to the true ones. Accordingly, a possible number of change-points can
be speculated from the results of IJD. Then, the idea from [41,45] can be utilized by using
several different values around the speculated K. For instance, the plots of Di associated
with Model M2 indicate a possible connected change-point, i.e., the speculated K equal to
1. Table 1 shows that the largest change in MRS (MRSch) is at K = 1, and MRSch becomes
more or less for K greater than 1. Similar conclusions can be derived from the results of the
other models in Figure 5. Moreover, if data are fitted with some K larger than the true K0,
Table 1 shows the resulted RSS(K) is larger or just close to RSS(K0), (e.g., the comparison of
RSS(5) with RSS(K0) for all models in Table 1). This evidence implies the fit of overfitted
models with K > K0 is not so good as that of the model with the true K0. These results
corroborate the rationale of our proposed method to select the change-point number. Thus,
the incorporation of IJD with the idea of [41,45] can be a practical tool for deciding the
number of segmentations.

4. Experiments and Real Applications
4.1. Simulation Study

We demonstrate the efficacy and superiority of the proposed method through a sim-
ulation study. We consider both continuous and dis-continuous models with single and
multiple change-points, respectively. The scheme for generating data is as follows. First,
n uniformly distributed values over the interval [0,10] were chosen as the values of the
partition variable x. Then, the values of the response y were computed according to the
settings of the model, where the regression noises follow a normal distribution N(0, σ2).
In following simulations, we set δ = 4, π = 0.9, m = 4, and let ε = 0.000005 be the
stop criterion.

The performance of DSR is first examined based on continuous and discontinuous
frames with five different types of models described in Table 2. For all models in Table 2,
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ε1,ε2, and ε3 are independent and normally distributed εi ∼ N(0, σ2). For illustrative
purposes, plots of one simulated sample with the estimated model associated with each
individual model in Table 2 are shown in Figure 6.

Table 2. Descriptions of four models used in the simulation study.

Model M1: ψ = 6.5, εi ∼ N(0, σ2),σ = 0.2

y =

{
2 + 0.23077x + ε1, if x ≤ 6.5,
−1.14286 + 0.71429x + ε2, if 6.5 < x ≤ 10.

Model M2: ψ = 6.5, εi ∼ N(0, σ2),σ = 0.2

y =

{
2 + 0.5x + ε1, if x ≤ 6.5,
8.25 + ε2, if 6.5 < x ≤ 10.

Model M3: ψ = (3.3, 7.5)T , εi ∼ N(0, σ2),σ = 0.3

y =


2 + 0.45455x + ε1, x ≤ 3.3,
−0.19286 + 1.11905x + ε2, 3.3 < x ≤ 7.5,
17.8− 1.28x + ε3, 7.5 < x ≤ 10.

Model M4: ψ = (2.5, 6.6)T ; εi ∼ N(0, σ2),σ = 0.3

y =


2 + 2.4x + ε1, x ≤ 2.5,
−0.19286 + 1.11905x + ε2, 2.5 < x ≤ 6.6,
17.8− 1.28x + ε3, 6.6 < x ≤ 10.

Model M5: ψ = (2.5, 6.6)T ,εi ∼ N(0, σ2),σ = 0.2

y =


2 + 1.2x + ε1, x ≤ 2.5,
7.6098− 0.2439x + ε2, 2.5 < x ≤ 6.6,
17.8− 1.28x + ε3, 6.6 < x ≤ 10.
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We first evaluate the performance of DSR using Model 4 with simulations carried out
under different scenarios: different sample sizes (n), different change-point locations (ψ),
different standard deviations (σ). The behavior of change-point estimators is observed on
the basis of 1000 replicates through the mean (CPhat) and the standard deviation (stdCP).
The IJD was used with the values of δ (see Section 3.2.1) chosen as 4, 8, and 15 for the sample
sizes n = 150, 300, and 600, respectively. The performance of the parameter estimator was
accessed by means of 1000 replicates for each model through several measures, defined
as follows:

(1) CPhat =ψ̂ = 1
R

R
∑

r=1
ψ̂r, ψ̂r is the estimator of ψr, in the rth replication;

(2) stdCP = SD(ψ̂) =

[
1

R−1

R
∑

r=1

(
ψ̂r − ψ̂

)2
]1/2

;

(3) SSEC =∑
i,j

MSE
(

βij
)
, MSE

(
βij
)
= 1

R

R
∑

r=1

(
β̂ij(r) − βij

)2
, β̂ij(r) is the estimator of βij(r) in

the rth replication;
(4) RSS and the time (in seconds) consumed by DSR over 1000 replications.

Moreover, the goodness of fit of the fitted model is accessed through a criterion
using the concept of statistical tests. Since the considered models are assumed to be
normally distributed, the estimator of regression coefficients β̂i follows a multivariate

normal distribution N(βi, σ2(XT
i Xi)

−1
) (c.f. [46]), where Xi is a matrix in <ni×(p+1), with

XT
j = (1, xT

j ) = (1, xj1, . . . , xjp) as its jth row, j = ψi−1 + 1, . . . , ψi given ψ0 = 0, ψK+1 = 0,
i = 1, · · · , (K + 1) (K is the number of change-points), and ni is the number of data in the
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ith segment. Thus, based on the properties of multivariate normal distributions, the ran-
dom variable Wi = (β̂i −βi)

TXT
i Xi(β̂i −βi)/σ2

i follows a χ2(p + 1) distribution (c.f. [46]).
Utilizing the concept of statistical tests, we think β̂i is acceptable if Wi ≤ χ2

0.05(p + 1).
Let W = max(W1, · · · , WK+1). Then, a fitted model can be viewed as acceptable only if
W ≤ χ2

0.05(p + 1), which is quite strict. Table 3 reports the simulation results.

Table 3. Simulation results of DSR employed to Model M4 in Figure 6 for estimating change-points
and regression coefficients (1000 replicates) under different scenarios.

Chang-Point Estimates Goodness of Model Fit
ψ n σ ψ̂1 ψ̂2 stdCP1 stdCP2 RSS SSEC Accept Time a

(3.3, 6.7) 150 0.3 3.337 6.674 0.115 0.248 21.279 4.828 0.765 1.813
300 0.3 3.335 6.690 0.043 0.078 33.823 1.365 0.755 2.141
600 0.8 3.264 6.690 0.385 0.049 416.616 4.380 0.750 3.563

(2, 7) 150 0.3 2.000 7.000 0.000 0.000 12.952 0.221 0.857 3.016
300 0.3 2.000 7.000 0.000 0.000 26.468 0.109 0.850 3.188
600 0.8 2.000 7.000 0.009 0.003 378.874 0.422 0.890 4.000

a The time consumed over 1000 replications is measured in seconds.

As expected, the estimations generally get better when n increases. For instance, under
the case ψ = (3.3, 6.7)T , σ = 0.3, the change point estimators with n = 300 are much less
varied than those with n = 150, for less stdCP1 (0.043 < 0.115) and stdCP2 (0.078 < 0.248),
resulting in a much better fitted model with n = 300, for less SSEC (1.365 < 4.828). Moreover,
as σ increases to 0.8, the impact of large deviation on the estimators can be alleviated by
a larger sample size. For instance, the estimations with n = 600 and σ = 0.8 are almost
as good as those with n = 150 and σ = 0.3 in the case of ψ = (3.3, 6 .7). The locations of
change-points also affect the estimations. Based on many simulations, we found that, if the
true change-points were at ψ = (3.3, 6 .7), the estimates of change-points and regression
coefficients were inferior to those with the true change-points different fromψ = (3.3, 6 .7).
For example, the estimations with the true change-points at ψ = (2, 7) are better than
those with ψ = (3.3, 6 .7) in all considered cases (see Table 3). Furthermore, in all cases
with ψ = (2, 7), the acceptable proportions of the estimates for regression coefficients are
above 85%, which is much higher than those in cases of ψ = (3.3, 6 .7) (see Table 3). Note
that the case ψ = (3.3, 6 .7) means two change-points evenly divide the whole range of
independent variable x, x ∈ [0, 10], i.e., the lengths of three sub-segments are equal. It seems
reasonable that change-point detection is harder when the length of each sub-segment is
the same than when the length of each sub-segment is different. Additionally, the time
taken by DSR over 1000 replications with the sample size equal to 600 is very short, and the
time increases mildly as n increases (the computational complexity will be discussed later).
Therefore, DSR could be applicable to most real data sets effortlessly. Specifically, Seber [1]
commented that piecewise regression models are intended for circumstances where the
number of regimes is small and there are fairly sharp changes between sub-segments.
Muggeo [4] also mentioned that a few change-points might be enough for dealing with
practical situations, and the significance of change-points may become disputable as the
number of change-points gets large. Thus, DSR could be a very practical technique for
solving change-point regression problems.

Next, we compare the proposed DSR with the following four methods: the segmented
method (SEG) [4], the EM-BP algorithm [12], the FCP algorithm [47], and the FCM-BP
method (FCM) [12]. The estimations for change-points and regression coefficients are
observed on the basis of 1000 and 200 replicates with the sample of size equal to 50 and
100 for models of one and multiple change-points, respectively. Note that the sample sizes
utilized in the comparisons are small because the existing methods are very time-consuming
due to their high computational cost. The measures used for making comparisons are the
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same as those used earlier for evaluating DSR. Tables 4 and 5 report the estimations for the
five models given in Table 2 by using the five methods, respectively.

Table 4. Comparisons of DSR with existing methods using 1 CP Models (M1 and M2) in Figure 6.

(a) M1. n = 50 ψ = 6.5 stdCP RSS SSEC Accept Time a

DSR 6.480 0.582 2.659 0.812 0.759 0.594
SEG 6.341 0.315 1.850 0.208 0.837 0.297

EM-BP 6.597 0.524 1.870 0.395 0.803 1.938
FCP 6.474 0.579 3.259 1.803 0.815 1.125
FCM 6.488 0.590 1.787 0.274 0.821 0.828

(b) M2, n = 50 ψ = 7.5 stdCP RSS SSEC Accept Time

DSR 7.449 0.000 1.839 0.417 0.900 1.250
SEG 5.606 0.244 12.923 83.094 0.000 0.828

EM-BP 7.347 0.000 1.839 0.417 0.900 0.563
FCP 7.347 0.000 1.842 0.437 0.898 0.484
FCM 7.345 0.065 1.848 0.486 0.899 0.484

a The time consumed over 1000 replications is measured in seconds.

Table 5. Comparisons of DSR with existing methods using 2 CP Models (M3-M5) in Figure 6.

M3, n = 100 ψ1 = 3.3 stdCP1 ψ2 = 7.5 stdCP2 RSS SSEC Accept Time a

DSR 3.299 0.069 7.498 0.022 0.944 0.068 0.850 0.250
SEG 3.299 0.069 7.498 0.022 0.944 0.068 0.850 0.250

EM-BP 3.272 0.245 7.500 0.000 0.917 0.053 0.920 765.750
FCP 3.301 0.217 7.500 0.000 0.924 0.059 0.730 17.578
FCM 3.304 0.223 7.500 0.000 0.915 0.048 0.840 16.047

M4, n = 100 ψ1 = 2.5 stdCP1 ψ2 = 6.6 stdCP2 RSS SSEC Accept Time

DSR 2.500 0.067 6.611 0.039 10.656 0.244 0.81 0.516
SEG 2.502 0.064 6.115 0.053 11.935 2.212 0.01 0.188

EM-BP 2.480 0.231 6.600 0.014 8.187 0.267 0.79 303.938
FCP 2.508 0.183 6.589 0.092 8.245 0.348 0.75 20.188
FCM 2.499 0.178 6.589 0.091 8.156 0.258 0.83 19.625

M5, n = 100 ψ1 = 2.5 std1 ψ2 = 6.6 std2 RSS SSEC Accept Time

DSR 2.510 0.083 6.485 0.305 4.134 0.362 0.725 0.453
SEG 3.141 0.053 5.791 0.123 13.265 2.509 0 0.250

EM-BP 2.495 0.036 3.741 0.475 11.381 5.836 0.04 206.234
FCP 2.500 0.000 6.596 0.045 3.891 0.348 0.47 24.109
FCM 2.500 0.000 6.600 0.000 3.700 0.110 0.84 13.938

a The time consumed over 1000 replications is measured in seconds.

Table 4 shows that SEG performs best in the estimations for model M1 because
SEG produced a change-point estimator with very small biases and variations (note that
the stdCP obtained by SEG equal to 0.315 is the least small among the five methods).
Furthermore, SEG results in the best fitted model with the least SSEC (0.208) and the
highest acceptance rate (0.837). However, SEG is totally unworkable for the discontinuous
model M2. On the other hand, the other four methods also perform well in all cases
reported in Table 4. They are competitive in the estimations for models M1 and M2
regarding the precision and variation of the change-point estimators and the adequacy of
the estimated model.

For the estimations of multiple change-point models M3-M5 shown in Table 5, DSR
generally outperforms the other four methods for producing highly accurate estimates
of change-points and regression coefficients in a very short time. In particular, DSR is
much more economical in terms of time-consumption than the EM-BP, FCP, and FCM. In
particular, the time consumed by EM-BP is extremely high. Even worse, EM-BP could not
produce adequate estimates for model M5 due to a very large bias with the estimate of
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ψ2 (bias = 6.6 − 3.741 = 2.859) and the poor fit of the estimated model with a large SSEC
(5.836) and a very low acceptance rate (0.04). Although the estimations made by FCP and
FCM for M3-M5 are satisfactory, they are also much more computationally expensive than
DSR. Notice that the time taken by FCP and FCM looks tolerable because of the small
sample size, n, and the small number of change-points, K. In fact, their computational
complexity increases drastically with n and k, and the computational time would increase
drastically even if n or K increased slightly. This evidence can be understood through the
computational complexity analysis below.

We noted from the above comparisons that the superiority of DSR over EM-BP, FCP,
and FCM is particularly significant in view of time consumption. This fact can be attributed
to the incorporation of IJD with DSR and the much less complexity of DSR. IJD helps DSR
converge faster by producing suitable initial values to be used (see the illustrations of IJD
in Section 3.2). But the computational complexity may account for the preference of DSR
mostly. The computational complexity of DSR is O(n(K + 1)di), where n is the data size, K
is the number of regimes, d is the data dimension, and i is the number of iterations. For
EM-BP, FCP, and FCM, the computations for estimated parameters must be performed
for each possible collection of change-points which include Cn

K combinations. Thus, the
computational complexity of EM-BP, FCP, and FCM is O

(
nK(K + 1)di

)
. That may be the

reason why the time consumed by DSR is much less than that of the other three methods
as the number of change-points increases. Table 6 summaries the time consumed by DSR,
EM-BP, FCP, and FCM in the cases used for comparisons previously. Note the simulation
results shown in Tables 4 and 5 are based on 1000 and 200 replications for one and multiple
change-points in the models, respectively. The results in Table 6 indicate that the time taken
by DSR increases slowly with the number of change-points, K. But the time taken by the
other three methods increases sharply as K increases, especially for EM-BP. Notice that the
time consumed by DSR in case M2 is much higher due to the detection of jumps.

Table 6. Comparisons between DSR and EM-BP in the time (in seconds) consumed over 1000 replicates
or fewer.

Model, K, i M1, K = 1, 1000 M2, K = 1, 1000 M3, K = 2, 200 M4, K = 2, 200 M5, K = 2, 200

DSR O(n(K + 1)di) a 0.594 1.250 0.250 0.516 0.453
EM-BP O

(
nK(K + 1)di

)
1.938 0.563 765.750 303.938 206.234

FCP O
(
nK(K + 1)di

)
1.125 0.484 17.578 20.188 24.109

FCM O
(
nK(K + 1)di

)
0.828 0.484 16.047 19.625 13.938

a n: the sample size, K: the number of change-points, d: the data dimension, i: the number of iterations.

To sum up, the comparison results obtained with the models in Table 2 reveal that DSR
can work well in all cases of continuous and discontinuous models. More importantly, DSR
produces better estimates for change-points and regression coefficients in virtue of smaller
biases and variations of change-point estimators, as well as the small mean squared errors
of estimated regression coefficients in almost all cases of continuous and discontinuous
models. Moreover, DSR is much more economic in terms of the time consumed than EM-BP,
FCP, and FCM, especially in cases involving multiple change-points. By contrast, SEG
performs well for continuous models but is totally unworkable for discontinuous models.
Simulation results show that the time consumed by DSR over 1000 replications increases
slowly with K. This fact indicates that the computational effort of DSR increases mildly
with the complexity of the model. As remarked by Muggeo [4] and Seber [1], piecewise
regression models with a few change-points are sufficient for handling many practical
situations because the meaning of change-points may become questionable as the number
of regimes increases. Thus, the proposed DSR is feasible for most practical problems.

4.2. Real Applications

We demonstrate the practicability of the proposed DSR through five real examples
from different areas.
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Example 1. We employed the proposed DSR to a data set previously analyzed by [8,12,47]. The
data set includes the measurements of three variables, miles per gallon (MPG), weight (WT), and
horsepower (HP) on 38 automobiles of different models made in 1978–1979. The three papers
concluded that the following segmented representation given by (22) is the best model based on the
modified Schwarz’ Criterion (c.f. [8]) and the mean of the residual sum of squares (MRS) defined in
(23) respectively.

E(MPG) = β10 + β11WT + β12HP, if WT ≤ τ,
E(MPG) = β20 + β21WT + β22HP, if WT > τ.

(22)

The mean of the residual sum of squares (MRS) is

MRS = RSS(K)/[n− (K + 1)(p + 1)] = ∑ (yi − ŷi)
2/[n− (K + 1)(p + 1)], (23)

where K is the number of change-points. They also concluded that the dependence of MPG on WT
and HP shows an abrupt change after WT becomes larger than 2.7 (in 1000 lbs). The graphical
display of data in Figure 7b,c also discloses a jump in the relationship between MPG and WT
whenWT ∈ (2.5, 3). As suggested by these three previous papers, we applied DSR to the car data
using model (22). A possible discontinuous jump at (2.7475, 6.2333) is detected (see Figure 7a) by
using IJD and DSR and the resulted model is

E(MPG) =

{
48.82− 5.23WT − 0.08HP, WT ≤ 2.7475,
30.76− 1.84WT − 0.05HP, WT > 2.7475.

.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

horsepower (HP) on 38 automobiles of different models made in 1978–1979. The three papers con-
cluded that the following segmented representation given by (22) is the best model based on the 
modified Schwarz’ Criterion (c.f. [8]) and the mean of the residual sum of squares (MRS) defined 
in (23) respectively. 

10 11 12

20 21 22

( ) , if ,  
( ) , if .

E MPG WT HP WT
E MPG WT HP WT

β β β τ
β β β τ

= + + ≤
= + + >

 (22)

The mean of the residual sum of squares (MRS) is 
2ˆMRS ( ) [ ( 1)( 1)] ( ) [ ( 1)( 1)],i iRSS K n K p y y n K p= − + + = − − + +  (23)

where K is the number of change-points. They also concluded that the dependence of MPG on WT 
and HP shows an abrupt change after WT becomes larger than 2.7 (in 1000 lbs). The graphical 
display of data in Figure 7b,c also discloses a jump in the relationship between MPG and WT when 

(2.5,  3)WT ∈ . As suggested by these three previous papers, we applied DSR to the car data using 
model (22). A possible discontinuous jump at (2.7475, 6.2333) is detected (see Figure 7a) by using 
IJD and DSR and the resulted model is  

48.82 5.23 0.08 , 2.7475,
( )

30.76 1.84 0.05 , 2.7475.
WT HP WT

E MPG
WT HP WT

− − ≤
=  − − >

. 

(a) IJD results (b) MPG vs. WT (c) Fitted results by DSR (d) Fitted results by SEG 

    
Figure 7. The fitted results of the car data produced by DSR. 

The model produced by DSR is very close to those obtained by [8,12,47]. Moreover, we also 
utilized Muggeo’s SEG to the car data with model (22), resulting in a fitted model graphically 
shown in Figure 7d, with a change-point at WT = 3.1375. Apparently, the estimated change-point 
by SEG (see Figure 7b,c) is irrational. This further illustrates the failure of SEG in detecting dis-
continuous jumps. 

Example 2. The climate trend research is important for understanding the development of global 
warming, which has been a world-wide issue and received great attention. Regression analysis has 
been adopted by several researchers [48,49] to analyze the changes in climate tendency. Many stud-
ies pointed out that the most remarkable change in the time series of global temperature occurred 
during the 1970s. We implemented DSR to the global temperature data, HadCRUT3, collected by 
the Met Office Hadley Center, also studied by [12,49]. The irregularities of the global temperature 
were re-computed, with the mean of temperatures over the period 1961–1990 regarded as the base-
line. Figure 8 exhibits the estimated results obtained by DSR. Figure 8a indicates that there is no 
significant jump in the temperature series, but relatively large deviations appear at several places; 
for example, around the years 1901, 1945, and 1978, connected change-points may exist. Referring 
to the comments made by [4,6], piecewise models are intended for situations where the number of 
segments is small. Muggeo [4] suggested that a few change-points (e.g., one to three) for a sample 
of moderate size may be sufficient for dealing with several practical circumstances, since the impli-
cation of change-points might become questionable as the number of change-points increases. Thus, 
we fitted the data using piecewise regression models with the number of change-points K = 1, 2, 
and 3, respectively. According to the illustrations on the use of IJD in Section 3.2.2, the plots in 
Figure 8a indicate that no discontinuous jump was detected, but Di shows three relatively large 

Figure 7. The fitted results of the car data produced by DSR.

The model produced by DSR is very close to those obtained by [8,12,47]. Moreover, we also
utilized Muggeo’s SEG to the car data with model (22), resulting in a fitted model graphically
shown in Figure 7d, with a change-point at WT = 3.1375. Apparently, the estimated change-point
by SEG (see Figure 7b,c) is irrational. This further illustrates the failure of SEG in detecting
discontinuous jumps.

Example 2. The climate trend research is important for understanding the development of global
warming, which has been a world-wide issue and received great attention. Regression analysis
has been adopted by several researchers [48,49] to analyze the changes in climate tendency. Many
studies pointed out that the most remarkable change in the time series of global temperature occurred
during the 1970s. We implemented DSR to the global temperature data, HadCRUT3, collected by
the Met Office Hadley Center, also studied by [12,49]. The irregularities of the global temperature
were re-computed, with the mean of temperatures over the period 1961–1990 regarded as the
baseline. Figure 8 exhibits the estimated results obtained by DSR. Figure 8a indicates that there
is no significant jump in the temperature series, but relatively large deviations appear at several
places; for example, around the years 1901, 1945, and 1978, connected change-points may exist.
Referring to the comments made by [4,6], piecewise models are intended for situations where the
number of segments is small. Muggeo [4] suggested that a few change-points (e.g., one to three) for a
sample of moderate size may be sufficient for dealing with several practical circumstances, since the
implication of change-points might become questionable as the number of change-points increases.
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Thus, we fitted the data using piecewise regression models with the number of change-points K = 1,
2, and 3, respectively. According to the illustrations on the use of IJD in Section 3.2.2, the plots
in Figure 8a indicate that no discontinuous jump was detected, but Di shows three relatively large
variations around the years 1901, 1945, and 1978, suggesting the existence of three connected
change-points. Table 7 reports the estimations for models with different K values. With K = 1,
DSR produced a noteworthy change in 1971, which is in accordance with the finding of previous
research [49]. However, when comparing the MRS resulted from models with different K values,
the three-segment model in Figure 8c is preferable because it presents the smallest MRS among the
three models considered in Table 7. Furthermore, the development of temperature changes can be
seen more clearly and completely through the three-segment model. The fitted lines in Figure 8c
and the estimations in Table 7 indicate there is no significant relation between global temperature
and time before 1905. After 1905, the temperature started increasing with time gradually and the
increasing speed became much faster after 1975. These discoveries illustrate the much faster rate of
global warming effect in recent years.
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Table 7. The estimates of HadCRUT3 data derived via DSR with K = 1, 2, and 3, respectively.

K, CP K = 1, CP: 1971 K = 2, CPs: 1905, 1975 K = 3

coefficients β̂11 = 0.00356, β̂21 = 0.01656 β̂11 = −0.00444, β̂21 = 0.00536, β̂31 = 0.01535, x
RSS 1.683 1.219 1.228
MRS 0.013 0.009 0.010

MRS = RSS(K)/[n− (K + 1)(p + 1)] = ∑ (yi − ŷi)
2/[n− (K + 1)(p + 1)], where K is the number of change-points.

Example 3. We employ DSR to the data set including measurements of the annual volume (in
108 m3) of discharge from the Nile River at Aswan, from year 1871 to 1970. The researchers [50,51]
wanted to know whether abrupt changes in the mean of the annual discharge occur at some time
points during this period. The plot of the data shown in Figure 9b reveals that the mean discharges
decreased with time from the beginning (year 1871), followed a markedly large decrease around
point 40 (year 1940), and then remains constant after the time of extremely low discharge. Figure 9a
shows two possible jumps at time points 40.5 and 45.5. Thus, we fitted the data with models of two
and three segments, respectively. Figure 9c indicates that the annual mean discharge decreased with
time significantly (β̂11 = −6.687) before point 40, i.e., year 1910. Note that the jump detected at
40.5 is because of the occurrence of an exceptionally low discharge around point 40. As commented
by Cobb [50], the abnormally low change is real and can be found in the records of tropical weather
stations. Both models (b) and (c) in Figure 9 demonstrate that the mean annual discharge remains
constant around 861 (in 108 m3) after point 45 (year 1915). As remarked by Zeileis et al. [51], the
unchanged mean discharge from the Nile River after 1915 may be partly attributed to the operation
of the Aswan dam, starting from 1902.
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Figure 9. The fitted results of the Nile River data by DSR.

Example 4. Change-point detection is important in the context of quality control. This example
considers a dataset from manufacturing. The data analyzed by Lombard [52], Lu and Chang [11,13]
contain 100 radii of consecutive circular indentations made by a milling machine, which were
obtained for comparing the effects of two service routines on the productions of the machine. The
estimated results by DSR are shown in Figure 10. IJD produced two potential jumps at time
point 52.5 and 82.5 respectively. Therefore, we fitted the data with models including two and
three pieces, respectively. Both models in Figure 10b,c present a precipitous change at point 82,
after which the radii significantly increase with time for the estimated slopeβ̂ = 0.0112, which is
significantly different from 0. Moreover, the estimated slope of the second line inFigure 10c is very
small (β̂21 = −0.0003), and the mean of the residual sum of squared errors for the two models is
the same, i.e., MRS(2) equals MRS((1). Thus, in view of the parsimony in model selections, the
two-segment model in Figure 10b is an adequate model to the milling machine data. The resulted
model by DSR indicates a sharp jump in the radii data at time point 82. After the change-point at
82, the radii data significantly increase with time.
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Figure 10. The fitted results of milling machine data by DSR.

Example 5. In this example, we employ DSR to the well-log data (c.f. [53]), which include
4050 measurements of nuclear magnetic response obtained when digging a well. Sharp shifts in
the mean of the process measurements often occur at the transitions of rock strata. Thus, locating
change-points is crucial for oil drilling (c.f. [13,53]). We applied DSR to a subset of indexed
measurements from 2000 to 2650. DSR resulted in five potential discontinuous change-points at
2046.5, 2409.5, 2469.5, 2531.5, and 2591.5, respectively, which are close to the apparent five jumps
shown in Figure 11b. The final estimated model with five abrupt jumps at 2046, 2409, 2469, 2531,
2591 is reasonable. Thus, the proposed DSR identified the five jump points properly.
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5. Conclusions and Discussion

In this paper, we have introduced an advanced piecewise regression model for dealing
with regression relationships with abrupt changes. The main advantage of the proposed
piecewise model is its availability for problems with discontinuous and/or continuous
change-points. Fong et al. [54] emphasized that it is really challenging to recognize whether
any jump occurs somewhere, making it difficult to choose proper methods to analyze
data. This indicates the difficulty of jump point detection. It may be the reason why
many existing methods are restricted to continuous models, e.g., [4,7,28,30,32]. However,
continuity cannot be simply assumed in a real problem, unless it is known theoretically. In
practice, continuity may be highly probable in medical or biological problems, but it may
not be appropriate for problems in economics, finance, or geological prospecting (c.f. [36]).
Thus, the flexibility of the proposed piecewise model in dealing with both continuous and
discontinuous change-point locations is very useful in practice.

A new algorithm, called DSR, has been proposed for estimating piecewise regression
models. A linear Taylor expansion has been adopted to circumvent the non-smoothness
of the likelihood function. Accordingly, the estimation for piecewise models is simplified
to the iterative fitting of linear regression models. The estimates of change-points and
regression parameters can be obtained. The new approach has the advantages of being
simple, fast, and highly efficient, regardless of whether the piecewise regression model
is continuous or not. Furthermore, the proposed model is feasible for fitting generalized
linear models, whereas the IJD method is less sensitive in the cases of generalized linear
models. The regression errors can follow other distributions such as t, Laplace, or a mixture
of normal distributions. The least squared error estimations can be replaced by the least
absolute deviation criterion for obtaining more robust estimators. With the utilization of
first-order Taylor approximations, the DSR algorithm is like a Gauss-Newton-based method.
Thus, DSR is convergent provided that suitable initial values are used (c.f. [1], pp. 25–26).
Muggeo [4] also noted that the segmented approach using linear approximations can
be shown to be exact, ensuring so that it will always converge in a deterministic model
provided that the change-point exists. Simulation results have demonstrated that for
Gaussian data with moderate variance, DSR, with appropriate starting points, always
attains the correct solutions with negligible biases. Therefore, if the DSR algorithm fails in
some cases, it may be due to improper initial values or a particular configuration of data
(for instance, too few data points contained in a regime to estimate parameters, or when
the relationship is unstable).

Since the performance of DSR depends on initialization, the IJD method has been
created for detecting possible jump points. The IJD method is helpful for accelerating the
convergence of DSR because of the proper starting values chosen. The IJD method may be
also informative in finding potential connected change-points. The incorporation of IJD
with the idea of [41,45] is a practical tool for determining the number of change-points.
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Several examples with numerical datasets demonstrated the effectiveness and superi-
ority of the proposed DSR. The preference of DSR was particularly significant in the aspect
of computational efficiency, especially in cases of multiple change-points. The applications
to several real datasets from diverse areas indicate the wide applicability of DSR.

Multicollinearity is an issue often considered in regression analysis. Specifically, for
fitting piecewise regression models, there is a chance to have multicollinearity on the design
matrix of X variables, which leads to the problem that the matrix XX’ in the normal equation
is singular or close to singular. There are three causes of the multicollinearity problem in
piecewise regressions:

1. A poor dataset;
2. Overfitting due to the number of change-points used for estimations larger than the

true one;
3. Too few data points contained in one (or more than one) regime to estimate regression

coefficients during the iteration process.

Possible strategies for handling multicollinearity problems include:

1. Re-assign new initial values (change points), especially for those problems resulting
from cause 3;

2. Apply the Ridge regression estimators (c.f. [55]).

An important merit of the Ridge regression strategy is that it always works for a
singular or close to singular matrix only if a proper nonnegative biasing constant c is
chosen. Since the biasing constant c reflects the amount of bias in the estimations, we apply
Ridge regressions with a very small c (say, less than 1.0 × 10−10) for cases having a singular
matrix, with c = 0 for cases without having a singular matrix. It is possible that a singular
matrix occurs in one fitting iteration, and it turns out to be the occurrence of a non-singular
matric in the following fitting iteration after the application of the Ridge method.

For our future work, we consider relaxing the linearity assumption. For some real data,
linear regression lines cannot work well, but higher orders of polynomial may perform
better. For example, the results in Figure 12 show that simple linear regression lines cannot
produce adequate estimates for change-points and regression parameters, but third-degree
models fit the data well and provide reasonable estimates for change-points. Moreover,
the variance is assumed to be constant over all subdivisions, but the heterogeneity of
variances occurs often in change-point problems. We consider relaxing these assumptions
in the future work. The weighted least squares estimations may be helpful for handling
the problem of heterogeneity. As to the approximation by higher order polynomials, it is
much more complicated than first-order approximation. Just as stated in [56], higher order
polynomials are much more difficult to deal with. More effort and deeper thinking are
needed to find a feasible approach.
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Moreover, the problems of outliers and missing data are often encountered in regres-
sion analysis. Possible feasible methods for alleviating the influence of outliers include
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using the absolute least deviation method instead of the least squares estimations or assum-
ing model errors having t or Laplace distributions to increase the resistance of estimators
against outliers. As to the problem of missing data, several techniques of dealing with
missing data may be useful, but they need further research. These are important and
difficult problems in regression analysis. Further studies on these issues are required in
the future.
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