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Abstract: We present a new penalized method for estimation in sparse logistic regression models
with a group structure. Group sparsity implies that we should consider the Group Lasso penalty. In
contrast to penalized log-likelihood estimation, our method can be viewed as a penalized weighted
score function method. Under some mild conditions, we provide non-asymptotic oracle inequalities
promoting the group sparsity of predictors. A modified block coordinate descent algorithm based on
a weighted score function is also employed. The net advantage of our algorithm over existing Group
Lasso-type procedures is that the tuning parameter can be pre-specified. The simulations show that
this algorithm is considerably faster and more stable than competing methods. Finally, we illustrate
our methodology with two real data sets.

Keywords: high-dimensional data; non-asymptotic inequality; logistic regression; variable selection;
block coordinate descent algorithm
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1. Introduction

Logistic regression models are a powerful and popular technique for modeling the rela-
tionship between the predictors and a categorical response variable. Let (x1, y1), · · · , (xn, yn)
be independent pairs of observed data which are realizations of a random vector (X, Y),
with p-dimensional predictors X ∈ Rp and univariate binary response variable Y ∈ {0, 1}.
(X, Y) is assumed to satisfy

P(Y = 1|X = x) = G(xT β0) =
exp(xT β0)

1 + exp(xT β0)
, (1)

where β0 ∈ Rp is a regression vector to be estimated. We are especially concerned with a
sparse logistic regression problem in which the dimension p is high and the sample size n
might be small, i.e., the so-called “small n, large p” framework, which is a variable selection
problem for high-dimensional data.

When dealing with high-dimensional data, there are usually two important consid-
erations: model sparsity and prediction accuracy. The Lasso [1] was proposed to address
these two objectives, since Lasso can determine submodels with a moderate number of
parameters that still fit the data adequately. There are also other similar methods including
SCAD [2], elastic net [3], Dantzig selector [4], MCP [5] and so on. In high-dimensional
logistic regression models, Lasso study topics range from asymptotic results, including the
consistency and asymptotic distribution of the estimator, e.g., Sur et al. [6], Ma et al. [7],
Bianco et al. [8], to non-asymptotic results, including the non-asymptotic oracle inequalities
of the estimation and prediction errors, e.g., Abramovich et al. [9], Huang et al. [10] and
Yin [11].
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In many applications, predictors can often be thought of as grouped. For example, in
genome-wide association studies (GWASs), genes usually do not act individually, but are
reflected in the covariation of several genes with each other. Additionally, in histologically
normal epithelium (NlEpi) studies, we need to consider the non-linear effects of genes
for microarray data. Similar to the Lasso, considering this grouped information in the
modeling process should improve the interpretability and the accuracy of the model.
Yuan and Lin [12] proposed an extension of the Lasso, called the Group Lasso, which
imposes an L2 penalty to individual groups of variables and then an L1 penalty to the
resulting block norms, rather than only an L1 penalty to individual variables. Suppose
xi and β0 in model (1) are divided into g known groups, where we consider a partition
{G1, · · · , Gg} of {1, · · · , p} into groups and denote the cardinality of a group Gl by |Gl |,
xi = (xT

i(1), xT
i(2), · · · , xT

i(g))
T , β0 = ((β0

(1))
T , (β0

(2))
T , · · · , (β0

(g))
T)T , xi(l) ∈ R|Gl |, β0

(l) ∈
R|Gl |. We wish to achieve sparsity at the level of groups, i.e., to β0 such that β0

(l) = 0
for some of the groups l ∈ {1, · · · , g}. When using high-dimensional logistic regression
models, Group Lasso provides an estimator for β0:

β̂GL := arg min
β∈Rp

1
n

n

∑
i=1

{
log
(

1 + exp(xT
i β)

)
− (xT

i β)yi

}
+ λ

g

∑
l=1

ωl∥β(l)∥2, (2)

where λ ≥ 0 is a tuning parameter which controls the amount of penalization, ωl =
√
|Gl |

is used to normalize across groups of different sizes and ∥ · ∥2 denotes the L2 norm of a
vector. Meier et al. [13] established the asymptotic consistency theory of Group Lasso for
logistic regression, Wang et al. [14] analyzed the rates of convergence, Blazere et al. [15]
stated oracle inequalities and Kwemou [16] and Nowakowski [17] studied non-asymptotic
oracle inequalities. Furthermore, Zhang et al. [18] studied the Lp,q regularization penalty
estimates for logistic regression. In terms of computational algorithms, Meier et al. [13]
applied the block coordinate descent algorithm of Tseng [19] to Group Lasso for logistic
regression, ans Breheny and Huang [20] proposed the Group descent algorithm. While
the aforementioned methods have shown promising performance in practical settings
(Abramovich [21], Chen [22], Tyan [23], Yang [24]), a pressing issue that remains unresolved
is that these approaches are just computing the exact coefficients fast enough at those
selected values of λ.

However, it is well known that for the Lasso (or the Group Lasso) in linear regression
models, the respective optimal values of the tuning parameter λ depend on the unknown
parameter σ2, the homogeneous noise variance, and its accurate estimation is generally
more difficult when p ≫ n. To solve this problem, Belloni et al. [25] proposed square-
root Lasso, which removed this unknown parameter by using a weighted score function
(i.e., the square root of the empirical loss function). Bunea et al. [26] extended the ideas
behind the square-root Lasso for group selection and developed the Group square-root
Lasso. Inspired by Group square-root Lasso, we propose a new penalized weighted score
function method, which alternatively replaces the original score function (i.e., the gradient
of negative loglikelihood function) with a weighted score function (Huang and Wang [27])
to study sparse logistic regression with a Group Lasso penalty. We obtain convergence rates
for the estimation error and provide a direct choice for the tuning parameter. Moreover,
we propose a modified block coordinate descent algorithm based on the weighted score
function, which greatly optimizes the computational complexity.

The framework of this paper is as follows. In Section 2, we apply this idea behind the
Group square-root Lasso to sparse logistic models and develop our method, the penalized
weighted score function method. In Section 3, we propose asymptotic bounds for our
new estimator and a direct selection for the tuning parameter. In Section 4, we provide
the weighted block coordinate descent algorithm. In Section 5, numerical simulations
show the advantages of our algorithm in terms of selection effects and computational
time. In Section 6, we present real data for genes and musk to support the simulations and
theoretical results. Section 7 concludes our work. All proofs are given in Appendix A.
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Notation: Throughout the paper, the non-zero coordinate of β0 is denoted by I = {l :
∥β0

(l)∥2 ̸= 0} and s = card{I} is the number of non-zero elements of β0. For all δ ∈ Rp and

subset I, δI has the same coordinates as δ on I and zero coordinates on the complement IC

of I. For a function f (β) ∈ R, we denote by ∇ f (β) ∈ Rp its gradient and H(β) ∈ Rp×p its
Hessian matrix at β ∈ Rp. The Lq norm of any vector v is defined as ∥v∥q = (∑i |vi|q)1/q

and for any vector β ∈ Rp with group structures, the block norm of β for any 0 ≤ q ≤ ∞
is denoted as ∥β∥2,q = (∑

g
l=1 ∥β(l)∥

q
2)

1/q. In particular, ∥β∥2,0 = ∑
g
l=1 1β(l) ̸=0 indicates the

number of non-zero groups, ∥β∥2,1 = ∑
g
l=1 ∥β(l)∥2 represents the form of Group Lasso,

∥β∥2,2 = ∥β∥2 denotes the L2 norm, and ∥β∥2,∞ = maxl ∥β(l)∥2 means the largest L2 norm
of all groups. Moreover Φ(x) denotes the cumulative distribution function of the standard
normal distribution.

2. Penalized Weighted Score Function Method

Recall that model (1), the loss function (i.e., the negative loglikelihood), is given by

ℓ(β) =
1
n

n

∑
i=1

{
log
(

1 + exp(xT
i β)

)
− (xT

i β)yi

}
,

leading to the score function

∇ℓ(β) =
1
n

n

∑
i=1

(G(xT
i β)− yi)xi.

Note that the solution β̂GL of model (2) satisfies KKT conditions defined as follows
1
n

n
∑

i=1
(G(xT

i β̂GL)− yi)xi(l) = −λωl β̂
GL
(l) /∥β̂GL

(l) ∥2, if β̂GL
(l) ̸= 0,

| 1
n

n
∑

i=1
(G(xT

i β̂GL)− yi)xi(l)| ≤ λωl , if β̂GL
(l) = 0,

(3)

for all l = 1, · · · , g. The left side of Equation (3) is the score function for logistic regression
with a group structure, which shows that β̂GL is actually a penalized score function estima-
tor. To obtain a good estimator, we usually require that the inequality λωl ≥ c∥∇ℓ(β0)∥2,∞
for all l = 1, · · · , g and some constant c ≥ 1 holds with high probability (Meier et al. [13]
and Kwemou [16]). However, the random part G(xT

i β0)− yi for ∇ℓ(β0), the score function
valued at β = β0, has variance G(xT

i β0)(1 − G(xT
i β0)), which is also the variance of the

binary random variable Yi|Xi = xi. Obviously, binary noises are not homogeneous like
the noise in linear regression models; a unique tuning parameter for all of the different
coefficients is not a good choice.

We apply the idea from Group square-root Lasso to solve the above problem for
choosing a tuning parameter, and develop our method as follows. Huang and Wang [27]
formed a class of root-consistent estimating functions by a weighted score function for
logistic regression

∇ℓψ(β) =
1
n

n

∑
i=1

ψ(xT
i β)(G(xT

i β)− yi)xi, (4)

where ψ(·) is the weighted function of xT
i β. This requires choosing a suitable weighed

function to ensure that ∇ℓψ(β) is almost integrable for β. Then, replacing the score function
in Equation (3) with the weighted score function, we develop a penalized weighted score
function estimate β̂, which is a solution of the following equation:

1
n

n
∑

i=1
ψ(xT

i β̂)(G(xT
i β̂)− yi)xi(l) = −λωl β̂(l)/∥β̂(l)∥2, if β̂(l) ̸= 0,

| 1
n

n
∑

i=1
ψ(xT

i β̂)(G(xT
i β̂)− yi)xi(l)| ≤ λωl , if β̂(l) = 0.

(5)
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Let ℓψ(β) be the loss function corresponding to the weighted score function (4); the
solution to Equation (5) is equivalent to solving the following optimization problem:

β̂ := arg min
β∈Rp

{
ℓψ(β) + λ

g

∑
l=1

ωl∥β(l)∥2

}
. (6)

Our method is motivated by Bunea et al.’s [26] minimization of the Group square-root
Lasso for the linear model:

β̂GSL := arg min
β∈Rp

{
∥Y−Xβ∥2√

n
+

λ

n

g

∑
l=1

ωl∥β(l)∥2

}
,

where Y ∈ Rn×1 andX ∈ Rn×p. When ∥Y−Xβ̂GSL∥2 is non-zero, the Group square-root
Lasso estimator β̂GSL satisfies the KKT condition

√
n

n
∑

i=1
(∥Y−Xβ̂GSL∥2)

−1(yi − xT
i β̂GSL)xi(l) = λωl β̂

GSL
(l) /∥β̂GSL

(l) ∥2, if β̂GSL
(l) ̸= 0,

|
√

n
n
∑

i=1
(∥Y−Xβ̂GSL∥2)

−1(yi − xT
i β̂GSL)xi(l)| ≤ λωl , if β̂GSL

(l) = 0.
(7)

Compared with the KKT conditions for Group square-root Lasso and Group Lasso, the
Group square-root Lasso adds the weighted function (

√
n∥Y−Xβ̂GSL∥2)

−1 to estimate
the homogeneous noise variance, which allows the tuning parameter λ to be independent
of the homogeneous noise variance. Thus, the Group square-root Lasso is able to estimate
for the grouped variables and influence the choice of the tuning parameter simultaneously.

A drawback of Group square-root Lasso is that it can only directly select the tuning
parameter in linear regression models. However, in logistic regression models, there is no
direct way to select the tuning parameter. The penalized weighted score function method
uses this scheme. We will discuss this in more detail in the next section.

3. Statistical Properties

In this section, we will establish non-asymptotic oracle inequalities for the penalized
weighted score function estimate and present a direct choice for tuning parameter.

Throughout this paper, we consider a fixed design setting (i.e., x1, · · · , xn are consid-
ered as deterministic), and we make the following assumptions:

(A1) There exists a positive constant M < ∞ such that max1≤i≤n max1≤l≤g

√
∑j∈Gl

x2
ij ≤ M.

(A2) n, p satisfy that n ≤ p = o(en1/3
), and p/ϵ > 2 for ϵ ∈ (0, 1).

(A3) There exists N (β0) > 0 such that

N 2(β0) = max
1≤j≤p

{
1
n ∑

1≤i≤n
ψ2(xT

i β0)G(xT
i β0)(1 − G(xT

i β0))x2
ij

}
.

(A4) Let ℓψ(·) : Rp 7→ R be a convex three-times differentiable function such that for all
u, v ∈ RP, the function g(t) = ℓψ(u + tv) satisfies |g′′′

(t)| ≤ τ0 max1≤i≤n |xT
i v|g′′

(t)
for all t ∈ R, where τ0 > 0 is a constant.

Assumption (A1) strictly controls the bounds of predictors, since the real data we
collected were often bounded. Assumption (A2) controls the sparsity of the data and the
lower bound on the probability that the non-asymptotic property holds. Assumption (A3)
makes sure the variance of each component of ∇ℓψ(β0) is bounded by choosing a suitable
weighted function ψ(·). Assumption (A4) is similar to Proposition 1 proposed by Bach [28].
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Under Assumption (A4), we can obtain lower and upper Taylor expansions of the loss
function ℓψ(·), which can be used to derive non-asymptotic results.

Moreover, the restricted eigenvalue condition plays a key role in deriving oracle in-
equalities. For the Group Lasso problem of high-dimensional linear regression models,
the oracle property under the group restricted eigenvalue condition was discussed by
Hu et al. [29] and extended to logistic regression models by Zhang et al. [18]. To estab-
lish the desired group restricted eigenvalue condition, we introduce the following group
restricted set

Θα =:
{

ϑ ∈ Rp : ∥WIC ϑ(IC)∥2,1 ≤ α∥WIϑ(I)∥2,1, α > 0
}

, (8)

which is a grouped version of the restricted set θα =: {ϑ ∈ Rp : ∥ϑIC∥1 ≤ α∥ϑI∥1} men-
tioned in Bickel et al. [30], where WI is a diagonal matrix with the jth diagonal element ωj
if j ∈ I and 0 otherwise. Based on the group restricted set (8), we propose the following
group restricted eigenvalue condition:

(A5) For some integer s such that 1 < s < g and a positive number α, the following
condition holds

µ(s, α)
△
= min

I⊆{1,··· ,g}
|I|≤s

min
δ ̸=0

δ∈Θα

(δTHψ(β0)δ)1/2

∥WIδ(I)∥2,2
> 0, (9)

where Hψ(β0) is the Hessian matrix for ℓψ(β0). In contrast to the restricted eigenvalue
condition mentioned in Bickel et al. [30] for linear regression models, the group restricted
eigenvalue condition for logistic regression is converted from the L2 norm to the block
norm for the denominator part and from the Gram matrix to the Hessian matrix Hψ(β0)
for the numerator part of (9).

Remark 1. The Hessian matrix of ℓψ(β) is given by

Hψ(β) =
1
n

n

∑
i=1

{
∇ψ(xT

i β)

[
exp(xT

i β)

1 + exp(xT
i β)

− yi

]
+ ψ(xT

i β)
exp(xT

i β)

(1 + exp(xT
i β))2

}
xixT

i

=
1
n

n

∑
i=1

{
∇ψ(xT

i β)
[

G(xT
i β)− yi

]
+ ψ(xT

i β)G(xT
i β)(1 − G(xT

i β))
}

xixT
i .

Bach [28] has already shown the Hessian matrix of ℓ(β) is positive definite on some
restricted sets. If the chosen weighted function ψ(xT

i β) makes the loss function ℓψ(β) satisfy
the assumption (A3), Hψ(β) is also positive definite on the group restricted set (8). Such
weighted functions in fact exist and will be described later. In addition, the group restricted
eigenvalue condition can effectively control the estimation error, enabling estimations with
good statistical properties and reliable results.

Theorem 1. Assume that (A1)–(A4) are satisfied. Let λ < k(1−z)µ(s,α)
4τ0Ms , z ∈ (0, 1) and k <

min1≤l≤g ωl . Let λ be a tuning parameter chosen such that

λωl =
N (β0)

z

√
|Gl |

n
Φ−1(1 − ϵ

2p
). (10)

Then, with probability of at least 1 − ϵ(1 + o(1)), we have the following:
1. A group restricted set β̂ − β0 ∈ Θα with α = 1+z

1−z .
2. Under the group restricted eigenvalue condition (A5), the block norm estimation errors are

∥β̂ − β0∥2,1 ≤ 2kλs
( min

1≤l≤g
ωl − k)(1 − z)µ(s, α)

, (11)
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∥β̂ − β0∥q
2,q ≤

 2kλs
( min

1≤l≤g
ωl − k)(1 − z)µ(s, α)

q

, for all 1 < q < 2, (12)

respectively, and the error of the loss function ℓψ is

|ℓψ(β̂)− ℓψ(β0)| ≤
2 min

1≤l≤g
ωlλ

2s

( min
1≤l≤g

ωl − k)(1 − z)µ(s, α)
. (13)

The non-asymptotic oracle inequalities for the true coefficient β0 are provided in (11)
and (12). Unfortunately, the parameter N (β0) is influenced by the true coefficient β0, so
that the choice of λ also depends on β0. Therefore, we will choose a suitable ψ(xT

i β0) to
solve this problem in the next theorem.

Theorem 2. Choose the weight function in the following form

ψ(xT
i β0) =

1
2

(
exp(

xT
i β0

2
) + exp(−

xT
i β0

2
)

)
. (14)

Under Assumptions (A2) and (A3), we choose the tuning parameter as

λωl =

√
|Gl | max

1≤j≤p
(

n
∑

i=1
x2

ij)

2nz
Φ−1(1 − ϵ

2p
). (15)

Then, under the assumptions of Theorem 1 with the probability at least 1 − ϵ(1 + o(1)), we
have inequalities (11)–(13).

In Theorem 2, Yin [11] presents a discussion about the order of Φ−1(1 − ϵ
2p ) in (15),

proving that Φ−1(1 − ϵ
2p ) ∼ O(

√
log(2p/ϵ)). When |Gl | = 1 for l = 1, 2, · · · , g, our

estimate β̂ is a Lasso estimate and its theoretical properties have been well studied by
Yin [11].

Remark 2. If ψ(xT
i β0) is given as in Theorem 2, the loss function, weighted score function and the

Hessian matrix, respectively, are given by

ℓψ(β0) = 1
n

n
∑

i=1

{
(1 − yi) exp( xT

i β0

2 ) + yi exp(− xT
i β0

2 )

}
,

∇ℓψ(β0) = 1
2n

n
∑

i=1

{
(1 − yi) exp( xT

i β0

2 )− yi exp(− xT
i β0

2 )

}
xi,

Hψ(β0) = 1
4n

n
∑

i=1

{
(1 − yi) exp( xT

i β0

2 ) + yi exp(− xT
i β0

2 )

}
xixT

i .

Clearly, the Hessian matrix given as a weighting function in the form in Theorem 2 is positive
definite.

4. Weighted Block Coordinate Descent Algorithm

We apply the techniques of the block coordinate descent algorithm to the penalized
weighted score function. Choose the weighted function with the form of (14) and set
β = β̂ + ζ; then, a second-order Taylor expansion of the loss function ℓψ(β) in Equation (6)
gives

D(β̂ + ζ) =

{(
ℓψ(β̂) + ζT∇ℓψ(β̂) +

1
2

ζTHψ(β̂)ζ

)
+ λ∥W(β̂ + ζ)∥2,1

}
, (16)
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Now, we consider minimization D(β̂ + ζ) with respect to the lth group of penalized
parameters. This means that

∇ℓψ(β̂)(l) +Hψ(β̂)(l)ζ(l) + λωl
β̂(l) + ζ(l)

∥β̂(l) + ζ(l)∥2
= 0. (17)

Inspired by Meier et al.’s [13] assumptions, we set the sub-matrix Hψ(β̂)(l) in the form
of Hψ(β̂)(l) = hψ(β̂)(l) I(l), which means that hψ(β̂)(l) = −max{diag(−Hψ(β̂)(l)), r0},
where r0 is a lower bound to ensure convergence. Then, simplifying Equation (17) gives(

λωl

∥β̂(l) + ζ(l)∥2
+ hψ(β̂)(l)

)
(β̂(l) + ζ(l)) = hψ(β̂)(l) β̂(l) −∇ℓψ(β̂)(l).

This leads to the following equivalence equation

β̂(l) + ζ(l)

∥β̂(l) + ζ(l)∥2
=

hψ(β̂)(l) β̂(l) −∇ℓψ(β̂)(l)

∥hψ(β̂)(l) β̂(l) −∇ℓψ(β̂)(l)∥2
. (18)

According to Equation (15) and Remark 2, it is obtained that:
If ∥hψ(β̂)(l) β̂(l) −∇ℓψ(β̂)(l)∥2 ≤ λωl , the value of ζ at the k-th iteration is given by

ζ
(k)
(l) = −β̂

(k)
(l) ,

otherwise

ζ
(k)
(l) = − 1

hψ(β̂(k))(l)

∇ℓψ(β̂(k))(l) + λωl

hψ(β̂(k))(l) β̂
(k)
(l) −∇ℓψ(β̂(k))(l)

∥hψ(β̂(k))(l) β̂
(k)
(l) −∇ℓψ(β̂(k))(l)∥2

.

where λωl =
√
|Gl |max1≤j≤p(∑n

i=1 x2
ij)Φ

−1(1 − ϵ
2p )/2nz. If ζ

(k)
(l) ̸= 0, we use the Armijo

rule of Tseng and Yun [31] to select the step factor σ(k) as follows:
Armijo rule

Choose σ0 > 0 and let σ(k) be the largest value of {σ0θ j}j≥0 satisfying

D(β̂
(k)
(l) + σ(k)ζ

(k)
(l) )−D(β̂

(k)
(l) ) ≤ σ(k)ϱ△(k)

l ,

where 0 < θ < 1, 0 < ϱ < 1, and

△(k)
l = −ζ

(k)
(l)

T
∇ℓψ(β̂(k))(l) + λωl∥β̂

(k)
(l) + ζ

(k)
(l) ∥2 − λωl∥β̂

(k)
(l) ∥2.

Finally, the update direction is calculated for the gradient of the parameters and the
parameters are updated according to a certain step size

β̂
(k+1)
(l) = β̂

(k)
(l) + σ(k)ζ

(k)
(l) .

The weighted block coordinate gradient descent algorithm is given by Algorithm 1.
An initial parameter setting of σ0 = 1, θ = 0.5 and ϱ = 0.1 was given by Tseng and Yun [31].
In the next simulations, we set the convergence criterion of step 3 in Algorithm 1 to be
σ(k) ≤ 10−10. In general, selecting the tuning parameter λ using the cross-validation
method is complicated. As we know from Algorithm 1, the algorithm eliminates the
selection process for the tuning parameter λωl . Given an initial value β̂(0), we can then
iterate directly over β̂(0) until it converges to the range which we expect.
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Algorithm 1 Weighted block coordinate gradient descent algorithm

Step 1: Let β̂(0) ∈ Rp be an initial parameter vector
Step 2: For l = 1, · · · , g

Hψ(β̂(k))(l) = hψ(β̂(k))(l) I(l),
ζ(k) = arg minζ∈Rp{D(β̂(k) + ζ)},
if ζ(k) = 0

β̂(k+1) = β̂(k),
else

Search σ(k) using Armijo rule,
β̂(k+1) = β̂(k) + σ(k)ζ(k),

end
Step 3: Repeat step 2 until some convergence criterion is met

It is worth noting that we have given a direct choice (15) for λ under a specific
weight function ψ(xT

i β0) given by (14), so the weighted block coordinate gradient descent
algorithm will be computationally faster than working iteratively on a fixed grid of tuning
parameters λ (see Meier et al. [13]). If choosing other weight functions, the weighted
block coordinate gradient descent algorithm can still be used to solve (6). However, then
the tuning parameter λ depends on β0 (unknown); some cross-validation can be used for
choosing the parameter λ.

5. Simulations

In this section, we use simulated datasets to evaluate the performance of the penalized
weighted score function estimator. Meier [13] describes the block coordinate gradient
descent algorithm using the R package R 4.3.1 grplasso (https://cran.r-project.org/web/
packages/grplasso/grplasso.pdf, accessed on 6 July 2023). While the grplasso algorithm
offers 20 predefined values of the tuning parameter λ, it lacks an optimal design for λ.
We improved grplasso by providing a scheme for directly selecting the tuning parameters,
named wgrplasso, and we use it to describe the weighted block coordinate gradient descent
algorithm. We compare the performance of the wgrplasso algorithm, the R package grpreg
(https://cran.r-project.org/web/packages/grpreg/grpreg.pdf, accessed on 6 July 2023)
developed by Breheny [20] and the R package gglasso (https://cran.r-project.org/web/
packages/gglasso/gglasso.pdf, accessed on 6 July 2023) developed by Yang and Zou [32].
Three main aspects of model performance are considered: the correctness of variable selection,
the accuracy of coefficient estimation and the running time of the algorithm. The evaluation
indicators for the model include the following:

• TP: the number of predicted non-zero values in the non-zero coefficient set when
determining the model.

• TN: the number of predicted zero values in the zero coefficient set when determining
the model.

• FP: the number of predicted non-zero values in the zero coefficient set when determin-
ing the model.

• FN: the number of predicted zero values in the non-zero coefficient set when deter-
mining the model.

• TPR: the ratio of predicted non-zero values in the non-zero coefficient set when
determining the model, which is calculated by the following formula:

TPR =
TP

TP + FN
.

https://cran.r-project.org/web/packages/grplasso/grplasso.pdf
https://cran.r-project.org/web/packages/grplasso/grplasso.pdf
https://cran.r-project.org/web/packages/grpreg/grpreg.pdf
https://cran.r-project.org/web/packages/gglasso/gglasso.pdf
https://cran.r-project.org/web/packages/gglasso/gglasso.pdf
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• Accur: the ratio of accurate predictions when determining the model, which is calcu-
lated by the following formula:

Accur =
TP + TN

TP + TN + FP + FN
.

• Time: the running time of the algorithm.
• BNE: the block norm of the estimation error, which is calculated by the following

formula:
BNE = ∥β̂ − β∥2,1.

The sample size was 200. We set values of p = 300, 600 and 900, and generated 500
random datasets to repeat the simulation. We set ϵ to 0.01 and 0.05 and uniformly specified
the true non-zero coefficient parameters of the logistic regression models as

β = (1, 1, · · · , 1︸ ︷︷ ︸
3

, · · · , 1, · · · , 1︸ ︷︷ ︸
3︸ ︷︷ ︸

30

, 0, · · · , 0︸ ︷︷ ︸
p−30

).

For the log odd η setting, we considered the following four different models.
(a) In Model I, the observed data X are assumed to be sampled from a multivariate nor-

mal distribution and the log odd η is considered to be the linear case, where the data between
groups are independent but the data within groups are correlated. We set the size of each group
to 3 and assume that the data within the groups obey Xi ∼ N(0, Σi,jk), where Σi = 0.5|j−k|.
Thus, the observed data can then be defined as X ∼ N(0, Σ), where Σ = diag(Σ1, · · · , Σ p

3
).

(b) In Model II, the observed data X are assumed to be the sum of two uniform
distributions and the log odd η is considered to be the linear case. Assume that the p-
dimensional vectors Z1, · · · , Zp and W are generated independently and through a uniform
distribution of [−1, 1]. Thus, the observed data can be defined as Xi = Zi + W.

The log odds η for Models I and II are then defined as follows

η = β0 + X1β1 + · · ·+ Xpβp.

(c) In Model III, the observed data X are assumed to follow a standard multivariate
normal distribution and the log ogg η is considered to be additive case. Assuming that X
obeys the p

3 -dimensional standard normal distribution, the observed data can therefore be
defined as X ∼ N(0, I p

3
).

(d) In Model IV, the observed data X are assumed to be the sum of two uniform
distributions and the log odd η is considered to be the additive case. This means that the
p
3 -dimensional vectors Z1, · · · , Z p

3
and W are assumed to be generated independently by a

uniform distribution of [−1, 1]. Thus, the observed data can be defined as Xi = Zi + W.
The log odds η for Models III and IV are then defined as follows

η = β0 + X1β1 + X2
1 β2 + X3

1 β3 + · · ·+ X p
3

βp−2 + X2
p
3

βp−1 + X3
p
3

βp.

Then, the dataset for the response variable Y was generated by the logistic regression models

P(Y = 1|η) = 1
1 + exp(η−1)

.

Table 1 shows the average simulation results of the three algorithms for the linear case, and
Figure 1 shows the point–line plots of Model I and Model II for TPR, Accur, Time and MSE.
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Figure 1. Average TPR, Accur, Time and BNE plots for 500 repetitions of the three algorithms in
Model I and Model II.

First, from the TPR perspective, all three algorithms show excellent selection results
when the normal distribution assumption is adopted. However, when the uniform distri-
bution assumption is used, the wgrplasso algorithm shows higher correct selection in the
nonzero set than the other algorithms, and the wgrplasso algorithm is also more stable in
terms of variance.

Second, from the Accur perspective, compared to the gepreg algorithm, the wgrplasso
and gglasso algorithms maintain a high selection effect under the assumption of a normal
distribution. However, Accur is also affected by FP, and the gepreg algorithm and gglasso
algorithm are not stable enough to control FP from the perspective of variance. In addition,
under the assumption of a uniform distribution, both in terms of the effect of selection and
the stability of variance, the wgrplasso algorithm has lower control over the FP aspect,
which makes the wgrplasso algorithm perform better than the other algorithms in terms
of Accur.

Third, from a Time perspective, using the wgrplasso algorithm saves a lot of time,
both for the normal distribution assumption and the uniform distribution assumption.

Furthermore, lastly, from a BNE perspective, under the assumption of normal distri-
bution, the BNE values obtained by the wgrplasso and gglasso algorithms are similar and
smaller than that obtained by the grpreg algorithm. However, under the assumption of
a uniform distribution, compared with the gglasso algorithm and the grpreg algorithm,
the BNE obtained by the wgrplasso algorithm is smaller, which means that the wgrplasso
algorithm performs better.

Table 2 presents the simulation results of the three algorithms for the additive case,
and Figure 2 shows the point–line plots of Models III and IV for TPR, Accur, Time and BNE.
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Table 1. Average results for 500 repetitions of the three algorithms in Models I and II.

Model I

TP TPR FP Accur Time BNE

p = 300

grpreg(λ = min) 30.00
(0.00)

1.000 91.28
(19.46)

0.696 300.63 18.32
(1.96)

gglasso(λ = min) 30.00
(0.00)

1.000 41.64
(29.92)

0.861 390.56 17.96
(3.11)

gglasso(λ = lse) 29.68
(1.10)

0.990 13.44
(14.73)

0.954 389.27 21.81
(2.29)

wgrplasso(ϵ = 0.01) 29.61
(1.06)

0.987 26.15
(7.92)

0.912 23.53 18.51
(0.65)

wgrplasso(ϵ = 0.05) 29.77
(0.85)

0.993 36.14
(9.80)

0.879 29.24 17.88
(0.70)

p = 600

grpreg(λ = min) 29.90
(0.55)

0.997 116.36
(26.51)

0.806 444.31 20.35
(1.73)

gglasso(λ = min) 29.80
(0.91)

0.994 45.85
(34.78)

0.923 508.35 19.95
(2.41)

gglasso(λ = lse) 29.32
(2.00)

0.978 17.37
(16.92)

0.970 506.27 22.77
(1.81)

wgrplasso(ϵ = 0.01) 29.25
(1.40)

0.975 41.84
(11.33)

0.929 38.97 19.17
(0.71)

wgrplasso(ϵ = 0.05) 29.50
(1.19)

0.984 55.81
(12.78)

0.906 45.16 18.73
(0.76)

p = 900

grpreg(λ = min) 29.66
(1.13)

0.989 130.12
(32.66)

0.855 590.55 21.56
(1.82)

gglasso(λ = min) 29.88
(0.59)

0.996 64.84
(39.83)

0.928 614.64 20.07
(2.24)

gglasso(λ = lse) 29.30
(1.53)

0.977 24.07
(21.79)

0.972 612.24 23.13
(1.80)

wgrplasso(ϵ = 0.01) 29.19
(1.43)

0.973 54.10
(15.45)

0.939 52.63 19.58
(0.73)

wgrplasso(ϵ = 0.05) 29.44
(1.21)

0.982 70.01
(15.98)

0.922 62.81 19.20
(0.78)

Model II

TP TPR FP Accur Time BNE

p = 300

grpreg(λ = min) 17.82
(4.36)

0.594 65.31
(10.55)

0.742 641.23 27.77
(1.32)

gglasso(λ = min) 14.30
(4.92)

0.476 36.25
(10.33)

0.827 391.28 27.69
(1.43)

gglasso(λ = lse) 11.36
(4.80)

0.378 27.70
(11.50)

0.846 389.83 28.73
(0.96)

wgrplasso(ϵ = 0.01) 25.07
(2.67)

0.836 6.52
(4.83)

0.962 39.71 15.92
(1.09)

wgrplasso(ϵ = 0.05) 25.02
(2.68)

0.834 6.28
(4.70)

0.962 40.24 15.85
(1.09)

p = 600

grpreg(λ = min) 12.61
(4.32)

0.420 85.84
(11.35)

0.828 894.47 29.13
(1.17)

gglasso(λ = min) 10.95
(4.99)

0.365 47.08
(13.41)

0.890 584.32 28.73
(1.04)

gglasso(λ = lse) 8.23
(4.76)

0.274 36.33
(13.85)

0.903 581.74 29.26
(0.72)

wgrplasso(ϵ = 0.01) 24.57
(2.81)

0.819 9.43
(6.08)

0.975 69.48 15.96
(0.96)

wgrplasso(ϵ = 0.05) 24.69
(2.80)

0.823 9.23
(6.26)

0.976 72.05 15.89
(0.99)

p = 900

grpreg(λ = min) 10.53
(4.60)

0.351 96.88
(12.79)

0.871 1115.73 29.64
(1.07)

gglasso(λ = min) 8.43
(4.49)

0.281 53.67
(13.97)

0.916 746.62 29.14
(0.93)

gglasso(λ = lse) 6.09
(4.20)

0.203 40.74
(15.09)

0.928 742.62 29.49
(0.58)

wgrplasso(ϵ = 0.01) 24.86
(2.66)

0.829 10.80
(6.39)

0.982 106.940 15.85
(1.01)

wgrplasso(ϵ = 0.05) 24.99
(2.71)

0.833 11.05
(6.23)

0.982 111.95 15.80
(1.00)

Reported numbers are the averages and standard errors (show in parentheses).
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Table 2. Average results for 500 repetitions of the three algorithms in Models III and IV.

Model III

TP TPR FP Accur Time BNE

p = 300

grpreg(λ = min) 29.39
(1.79)

0.980 73.59
(21.16)

0.753 447.46 27.52
(1.96)

gglasso(λ = min) 29.91
(0.59)

0.997 74.11
(25.60)

0.753 812.03 24.06
(2.05)

gglasso(λ = lse) 29.57
(2.32)

0.986 40.58
(21.48)

0.863 807.65 25.27
(1.69)

wgrplasso(ϵ = 0.01) 27.69
(2.51)

0.923 24.02
(7.69)

0.912 35.92 28.99
(1.27)

wgrplasso(ϵ = 0.05) 28.55
(2.06)

0.952 32.00
(8.15)

0.888 39.13 28.84
(1.38)

p = 600

grpreg(λ = min) 28.05
(2.96)

0.935 86.76
(28.04)

0.852 598.05 28.65
(1.70)

gglasso(λ = min) 29.40
(2.37)

0.980 97.53
(36.13)

0.836 974.70 25.44
(1.92)

gglasso(λ = lse) 27.62
(5.90)

0.920 45.84
(27.29)

0.920 968.57 26.65
(1.87)

wgrplasso(ϵ = 0.01) 27.15
(2.69)

0.905 40.41
(10.68)

0.928 56.35 29.40
(1.22)

wgrplasso(ϵ = 0.05) 28.18
(2.21)

0.940 51.31
(11.66)

0.911 63.67 29.34
(1.33)

p = 900

grpreg(λ = min) 25.66
(5.66)

0.856 82.92
(36.76)

0.903 745.82 29.33
(1.51)

gglasso(λ = min) 28.77
(3.79)

0.959 105.48
(45.77)

0.881 1121.19 26.32
(1.87)

gglasso(λ = lse) 24.33
(9.47)

0.811 42.12
(35.83)

0.947 1113.45 27.76
(2.14)

wgrplasso(ϵ = 0.01) 26.85
(2.87)

0.895 50.99
(10.80)

0.940 68.74 29.70
(1.18)

wgrplasso(ϵ = 0.05) 27.80
(2.38)

0.926 63.14
(12.27)

0.927 81.32 29.67
(1.27)

Model IV

TP TPR FP Accur Time BNE

p = 300

grpreg(λ = min) 21.94
(4.03)

0.732 63.80
(9.64)

0.760 466.73 35.16
(1.78)

gglasso(λ = min) 19.88
(4.43)

0.662 52.83
(11.36)

0.790 409.92 28.30
(1.13)

gglasso(λ = lse) 17.30
(4.74)

0.577 47.80
(11.44)

0.798 408.22 28.93
(0.74)

wgrplasso(ϵ = 0.01) 28.75
(1.65)

0.959 25.96
(8.12)

0.909 218.10 26.09
(2.55)

wgrplasso(ϵ = 0.05) 28.78
(1.65)

0.960 26.32
(8.14)

0.908 221.08 26.13
(2.57)

p = 600

grpreg(λ = min) 18.32
(4.40)

0.611 83.08
(12.48)

0.842 689.27 35.02
(1.79)

gglasso(λ = min) 16.48
(5.10)

0.549 70.00
(14.34)

0.861 571.90 29.08
(1.01)

gglasso(λ = lse) 14.05
(5.17)

0.468 62.39
(14.65)

0.869 567.98 29.37
(0.62)

wgrplasso(ϵ = 0.01) 28.58
(1.80)

0.953 34.33
(10.12)

0.940 384.79 26.59
(2.69)

wgrplasso(ϵ = 0.05) 28.58
(1.83)

0.953 34.76
(10.11)

0.940 380.57 26.63
(2.70)

p = 900

grpreg(λ = min) 15.66
(4.25)

0.522 94.71
(12.41)

0.879 356.36 34.90
(1.50)

gglasso(λ = min) 13.80
(4.61)

0.460 80.03
(13.92)

0.893 289.06 29.45
(0.92)

gglasso(λ = lse) 11.61
(4.49)

0.387 70.52
(15.85)

0.901 287.73 29.64
(0.54)

wgrplasso(ϵ = 0.01) 28.55
(1.83)

0.952 39.33
(12.57)

0.955 184.13 26.53
(2.34)

wgrplasso(ϵ = 0.05) 28.56
(1.80)

0.952 39.24
(12.45)

0.955 186.89 26.56
(2.36)

Reported numbers are the averages and standard errors (show in parentheses).
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Figure 2. Average TPR, Accur, Time and BNE plots for 500 repetitions of the three algorithms in
Model III and Model IV.

The simulation results show that the grpreg algorithm and the gglasso algorithm in
the additive case are poorer both in terms of TPR and Accur, and also show through the
variance that the grpreg algorithm and the gglasso algorithm also do not have a stable
selection, as well as increasing computational time overheads and BNE values. However,
wgrplasso obtains similar results in the additive case as in the linear case, and still maintains
a better selection. Regardless of TPR, Accur and BNE, the wgrplasso algorithm performs
better than the other algorithms, and the advantage in Time is even more obvious.

6. Real Data

In this section, we apply our proposed estimates to analyze two real data sets. The
first data set comes from the molecular shape and conformation of musk. The second
data set comes from histologically normal epithelial cells from breast cancer patients and
cancer-free prophylactic mastectomy patients. As in the previous section, we set ϵ to
0.01 and 0.05, respectively. In Section 6.1, we compare the number of variables selected and
the computation time of the three algorithms in the above simulation, and in Section 6.2,
we compare the prediction accuracy and the computation time.

6.1. Studies on the Molecular Structure of Muscadine

The R package of kernlab (https://cran.r-project.org/web/packages/kernlab/kernlab.
pdf, accessed on 12 July 2023) contains the molecular shape and conformation of musk in
the native dataset musk. The data set contains a data frame of 476 observations for the
following 167 variables. The first 162 of these variables are the distance characteristics of
the rays, measured relative to the origin along which each ray was placed. Any experiment
with the data should treat these features as being on any continuous scale. Variable 163
is the distance of the oxygen atom to a specified point in 3D space. Variable 164 is the
x-displacement from the specified point. Variable 165 is the Y-displacement from the speci-
fied point. Variable 166 is the Z displacement from the specified point. Variable 167 has a
value of 0 for no musk or 1 for musk.

https://cran.r-project.org/web/packages/kernlab/kernlab.pdf
https://cran.r-project.org/web/packages/kernlab/kernlab.pdf
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We used 3/4 of the data for training and performed a third-order B-spline basis
function expansion on the training data, and then we used the wgrplasso, grpreg, gglasso,
and glmnet (https://cran.r-project.org/web/packages/glmnet/glmnet.pdf, accessed on
12 July 2023) algorithms for estimations using the expanded training data, respectively. The
remaining 1/4 of the data were used as a test, and the estimated coefficients were used to
predict the test data, comparing the prediction accuracy, model size and time for each of
the four algorithms. Table 3 presents the experimental results of 100 repetitions.

Table 3. Average prediction accuracy, model size and time taken for 100 repetitions of the four
algorithms in the musk dataset.

wgrplasso
(ϵ = 0.05)

grpreg
(λ = min)

gglasso
(λ = min)

glmnet
(λ = min)

Prediction
accuracy 0.820 0.813 0.771 0.758

Model size 66.53 31.29 30.14 53.53
Time 0.69 3.04 2.70 2.12

The experimental results show that wgrplasso has the highest prediction accuracy
among the four algorithms, indicating that the algorithm is able to identify the target class
more accurately in the task of categorizing musk data, and wgrplasso also exhibits a shorter
computation time without sacrificing accuracy. This makes the wgrplasso algorithm the
preferred algorithm for dealing with the problem of categorizing musk datasets.

6.2. Gene Expression Studies in Epithelial Cells of Breast Cancer Patients

We obtained microarray data from the NCBI Gene Expression Omnibus for patient
histological epithelial cells (https://www.ncbi.nlm.nih.gov/geo/, accessed on 31 August
2023) under accession GSE20437. The dataset consists of 42 samples with 22,283 variables.
It consists of microarray gene expression data collected from the histologically normal
epithelium (NlEpi) from 18 breast cancer patients (HN), 18 patients undergoing breast
reduction (RM) and 6 cancer-free prophylactic mastectomy (PM) patients in high-risk
women. Graham et al. [33] have shown that genes are differentially expressed between
HM and RM samples. This is more fully discussed in Yang and Zou [32]. Here, we consider
the effect of genes on HM and RM. Similar to Yang and Zou’s [32] approach to the data,
we fit the sparse additive logistic regression model using the Group Lasso penalty while
selecting the significant additive components.

As with the setup in Section 6.1, we continue to train with 3/4 of the data and expand
the training data using a third-order B-spline basis function and treated them as a group
to reflect the role in the additive models, leading to a grouped regression problem with
n = 36 and p = 66849. All data were then standardized so that the mean of each original
variable was zero and the sample variance was in units. This experiment was repeated 100
times to obtain the prediction error. We built a complete observational model for one of
experiments, and report the selected genes in wgrplasso, grpreg and gglasso algorithms.
These results are listed in Table 4. We observe that the wgrplasso and gglasso algorithms
select more variables than the grpreg algorithm, and wgrplasso has lower prediction errors.
Summarizing the above results, our proposed penalized weighted score function method
can pick much more meaningful variables for explanation and prediction.

https://cran.r-project.org/web/packages/glmnet/glmnet.pdf
https://www.ncbi.nlm.nih.gov/geo/
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Table 4. Average prediction error and model size for selected genes for 100 repetitions of three
algorithms in microarray gene expression data from histological epithelial cells.

wgrplasso
(ϵ= 0.05)

grpreg
(λ = min)

gglasso
(λ = min)

Prediction
Accuracy 0.73 0.63 0.71

Model Size 14 9 14

Selected genes

117_at

1255_g_at

200000_s_at

200002_at

200030_s_at

200040_at

200041_s_at

200655_s_at

200661_at

200729_s_at

201040_at

201465_s_at

202707_at

211997_x_at

201464_x_at

201465_s_at

201778_s_at

202707_at

204620_s_at

205544_s_at

211997_x_at

213280_at

217921_at

200047_s_at

200729_s_at

200801_x_at

201465_s_at

202046_s_at

202707_at

205544_s_at

208443_x_at

211374_x_at

211997_x_at

212234_at

213280_at

217921_at

220811_at

7. Conclusions

In our work, we propose the penalized weighted score function method for Group
Lasso for logistic regression models. We determine an upper bound of the error of parameter
estimation with a high probability and the direct choice of the tuning parameter under a
specific weighted function. Under the direct choice of the tuning parameter, we improve
the block coordinate descent algorithm to reduce the computational time and complexity.
Simulation results show that our method not only exhibits better statistical accuracy, but
also calculates faster than competing methods. Experimental results with real data also
show that our method is effective in other fields such as biology and chemistry. Indeed, our
approach can be extended to other generalized linear models with a sparse group structure,
which will be future research.
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Appendix A

Lemma A1 (Bach [28]). Consider a three-times differentiable convex function g : R → R such
that for all t ∈ R, |g′′′

(t)| ≤ Sg
′′
(t), for some S ≥ 0. Then, for all t ≥ 0 :

g
′′
(0)

S2 (exp(−St) + St − 1) ≤ g(t)− g(0)− g
′
(0)t ≤ g

′′
(0)

S2 (exp(St)− St − 1).

Lemma A2 (Hu et al. [29]). If the inequality ∑n
i=1 ai ≤ b0 holds for all ai > 0, we have

∑n
i=1 aq

i ≤ bq
0 for 1 < q < 2.
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Proof of Lemma A2. We first introduce the Holder inequality:
Set m, n > 1 and 1

m + 1
n = 1. Let ai and bi be non-negative real numbers, then

n

∑
i=1

aibi ≤
(

n

∑
i=1

am
i

) 1
m
(

n

∑
i=1

bn
i

) 1
n

.

According to the Holder inequality and setting m = 1
2−q and n = 1

q−1 , we have

n

∑
i=1

aq
i =

n

∑
i=1

(
a2−q

i a2q−2
i

)

≤
(

n

∑
i=1

ai

)2−q( n

∑
i=1

a2
i

)q−1

,

because ∑n
i=1 a2

i ≤ (∑n
i=1 ai)

2 ≤ b2
0. Then,

n

∑
i=1

aq
i ≤ b2−q

0

(
b2

0

)q−1
= bq

0,

where m, n > 1, which means q ∈ (1, 2).

Lemma A3 (Sakhanenko [34]). Let F1, · · · ,Fn be independent random variables with E(Fi) =

0 and |Fi| < 1 for all 1 ≤ i ≤ n. Denote B2
n =

n
∑

i=1
E(F 2

i ) and Ln =
n
∑

i=1
E(|Fi|3)/B3

n. Then,

there exists a positive constant R such that for all x ∈ [1, 1
R min{Bn, L−1/3

n }]

P
(

n

∑
i=1

Fi > Bnx

)
= (1 + O(1)x3Ln)(1 − Φ(x)).

Proof of Theorem 1. Define the event

A =

max
1≤l≤g

√
∑

j∈Gl

∇ℓ2
ψ(β0

j ) ≤ zλωl

.

We state the theorem result on the event A and find an lower bound of P(A).
Define I =

{
k : ∥β0

(k)∥2 ̸= 0
}

, and since β̂ is the minimizer of ℓψ(β) + λ∥Wβ∥2,1, we
get

ℓψ(β̂) + λ∥W β̂∥2,1 ≤ ℓψ(β0) + λ∥Wβ0∥2,1. (A1)

Adding λ∥W(β̂ − β0)∥2,1 to both sides of (A1) and rearranging the inequality, we
obtain

ℓψ(β̂)− ℓψ(β0) + λ∥W(β̂ − β0)∥2,1 ≤ λ∥Wβ0∥2,1 − λ∥W β̂∥2,1 + λ∥W(β̂ − β0)∥2,1

≤ 2λ∥WI(β̂ − β0)(I)∥2,1. (A2)

According to the fact that ℓψ(β0) is a convex function, by applying the Cauchy–
Schwarz inequality, its Taylor expansion is as follows
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ℓψ(β̂)− ℓψ(β0) ≥ (β̂ − β0)T∇ℓψ(β0)

≥ −
g

∑
l=1

√
∑

j∈Gl

∇ℓ2
ψ(β0

j )/ωl · ωl∥(β̂ − β0)(l)∥2

≥ − max
1≤l≤g

√
∑

j∈Gl

∇ℓ2
ψ(β0

j )/ωl ·
g

∑
l=1

ωl∥(β̂ − β0)(l)∥2

≥ −zλ∥W(β̂ − β0)∥2,1. (A3)

Combining (A2) and (A3) and defining δ(l) = β̂(l) − β0
(l), we obtain the weighted

restricted group
∥WIC δ(Ic)∥2,1 ≤ α∥WIδ(I)∥2,1.

Therefore, in the event A, we have µ(s, α) > 0 for α = 1+z
1−z .

Then, due to ℓψ(β0) satisfying the condition of being three-times differentiable, define
the function g(t) = ℓψ(β0 + tδ). By applying the Cauchy–Schwarz inequality, we have

|g′′′
(t)| ≤ τ0 max

1≤i≤n
|xT

i δ|g′′
(t)

≤ τ0 max
1≤i≤n

g

∑
l=1

√∑
j∈Gl

x2
ij/ωl

ωl∥δ(l)∥2g
′′
(t)

≤ τ0 max
1≤i≤n

max
1≤l≤g

√∑
j∈Gl

x2
ij/ωl

∥Wδ∥2,1g
′′
(t)

≤ τ0

(
M/ min

1≤l≤g
ωl

)
(α + 1)

√
s∥WIδ(I)∥2,2g

′′
(t).

Make M = τ0(α + 1)
√

sM/ min
1≤l≤g

ωl , where ωl is a real-valued constant; thus, M is

bounded, and this means that |g′′′
(t)| ≤ M∥WIδ(I)∥2,2g

′′
(t). By Lemma A1, we have

ℓψ(β̂)− ℓψ(β0) ≥ δT∇ℓψ(β0) +
δTHψ(β0)δ

M2∥WIδ(I)∥2
2,2

(
e−M∥WI δ(I)∥2,2 +M∥WIδ(I)∥2,2 − 1

)
. (A4)

Combining (A3) and (A4), we have the following result

−zλ∥Wδ∥2,1 +
δTHψ(β0)δ

M2∥WIδ(I)∥2
2,2

(
e−M∥WI δ(I)∥2,2 +M∥WIδ(I)∥2,2 − 1

)
≤ λ∥WIδ(I)∥2,1 − λ∥WIC δ(Ic)∥2,1.

Furthermore, using the group restricted eigenvalue condition, we obtain

µ(s, α)

M2

(
e−M∥WI δ(I)∥2,2 +M∥WIδ(I)∥2,2 − 1

)
+ (1 − z)λ∥Wδ∥2,1 ≤ 2λ

√
s∥WIδ(I)∥2,2. (A5)

This implies that

e−M∥WI δ(I)∥2,2 +M∥WIδ(I)∥2,2 − 1 ≤ 2λ
√

s
µ(s, α)

M2∥WIδ(I)∥2,2. (A6)
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In fact, we can reach the conclusion as follows under all t ∈ [0, 1)

exp(
−2t
1 − t

) + 2t − 1 ≥ 0.

Therefore, we adopt t = M∥WIδ(I)∥2,2/(2 +M∥WIδ(I)∥2,2), which meets the above
conditions, and then we obtain

e−M∥WI δ(I)∥2,2 +M∥WIδ(I)∥2,2 − 1 ≥
M2∥WIδ(I)∥2

2,2

2 +M∥WIδ(I)∥2,2
. (A7)

Combining (A6) and (A7), we have

∥WIδ(I)∥2,2

2 +M∥WIδ(I)∥2,2
≤ 2λ

√
s

µ(s, α)
.

Based on the group restricted eigenvalue condition, choose λ ≤ k(1−z)µ(s,α)
8τ0sM , for a

positive constant k < min
1≤l≤g

ωl and substitute it into the above equation

M∥WIδ(I)∥2,2 ≤ 2k
min

1≤l≤g
ωl − k

.

Then, substituting this equation into (A7), we have

e−M∥Wδ∥2,2 +M∥Wδ∥2,2 − 1 ≥
min

1≤l≤g
ωl − k

2 min
1≤l≤g

ωl
M2∥WIδ(I)∥2

2.2. (A8)

Combining (A5) and (A8) and because of the Cauchy–Schwarz inequality, we have that

min
1≤l≤g

ωl − k

2 min
1≤l≤g

ωl
µ(s, α)∥WIδ(I)∥2

2,2 + (1 − z)λ∥Wδ∥2,1 ≤ 2λ∥WIδ(I)∥2,1

≤ 2λ
√

s∥WIδ(I)∥2,2

≤ aλ2s +
1
a
∥WIδ(I)∥2

2,2.

Let a =
2 min

1≤l≤g
ωl

( min
1≤l≤g

ωl−k)µ(s,α) ; then, we have the following conclusion under the event A

∥Wδ∥2,1 ≤
2 min

1≤l≤g
ωlλs

( min
1≤l≤g

ωl − k)(1 − z)µ(s, α)
,

which means that
∥δ∥2,1 ≤ 2λs

( min
1≤l≤g

ωl − k)(1 − z)µ(s, α)
.

Furthermore, Equation (12) follows from (11) by applying Lemma A2.
Furthermore, by (A2) and (A3), we obtain

|ℓψ(β̂)− ℓψ(β0)| ≤ λ∥Wδ∥2,1 ≤
2 min

1≤l≤g
ωlλ

2s

( min
1≤l≤g

ωl − k)(1 − z)µ(s, α)
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Now, we prove the probability of event A

P(Ac) = P

max
1≤l≤g

√
∑

j∈Gl

∇ℓ2
ψ(β0

j )/ωl > zλ


≤ P

{
max

1≤l≤g
max
j∈Gl

|Gl |
∇ℓ2

ψ(β0
j )

ω2
l

> (zλ)2

}

≤ P
{

max
1≤j≤p

|∇ℓψ(β0
j )| >

zλωl√
|Gl |

}
,

Take η = Φ−1(1 − ϵ
2p ) and λωl =

N (β0)
z

√
Gl
n η, then it follows that

P(Ac) ≤ p max
1≤j≤p

P
{
|∇ℓψ(β0

j )| >
zλωl√
|Gl |

}

≤ p max
1≤j≤p

P
{
| 1
n

n

∑
i=1

{
ψ(xT

i β0)[G(xT
i β0)− Yi]xij

}
| > zλωl√

|Gl |

}

= p max
1≤j≤p

P
{
|

n

∑
i=1

κij| >
√

nN (β0)η

}
,

where κij = ψ(xT
i β0)[G(xT

i β0)− Yi]xij. Furthermore, with assumptions, we obtain that

E(κij) = ψ(xT
i β0)[G(xT

i β0)−E(Yi)]xij = 0,

E(κ2
ij) = Var(κij) = ψ2(xT

i β0)G(xT
i β0)(1 − G(xT

i β0))x2
ij = N 2(β0),

because of
|κij| ≤ ψ(xT

i β0)[G(xT
i β0)− Yi](max

i,j
|xij|) ≤ MR,

with a positive constant R = max
1≤i≤n

ψ(xT
i β0) , 0 ≤ G(xT

i β0) ≤ 1. Fij = κij/(MR), where

|Fij| ≤ 1, E(Fij) = 0.

B2
nj =

n

∑
j=1

E(F 2
ij) =

n

∑
j=1

E(κ2
ij)/(MR)2 ≤ nN 2(β0)/(MR)2,

Lnj =
n

∑
j=1

E(|Fij|3)/B3
nj ≤

n

∑
j=1

E(|Fij|2)/B3
nj =

1
Bnj

.

Then, Bnj = O(
√

n) and Lnj = O(1/
√

n). By Lemma A3, we have

P
{
|

n

∑
i=1

κij| >
√

nN (β0)η

}
= P

{
|

n

∑
i=1

Fij| >
√

nN (β0)

MR η

}

≤ P
{
|

n

∑
i=1

Fij| > Bnjη

}
= 2(1 + O(1)η3Lnj)(1 − Φ(η))

=
ϵ

p

(
1 + O(η3/

√
n)
)

.
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Note that for any η > 0, we have 1 − Φ(η) ≤ Φ(η)/η; then,

ϵ

2p
= 1 − Φ(η) ≤ Φ(η)

η
=

exp(−η2/2)√
2πη

.

Our default p > 2 has p/ϵ > 2, which means that η > Φ−1(3/4) > 1/
√

2π, and so

ϵ

2p
≤ exp(−η2/2)√

2πη
< exp(−η2

2
).

Here, we get

η <

√
2 log

2p
ϵ

.

As n, p → ∞ with n ≤ p = o(en1/3
), we have

P(Ac) ≤ ϵ(1 + o(1)).

which completes the proof of Theorem 1.

Proof of Theorem 2. We only need to show that the action of the weight function in the
form of (15) under logistic loss satisfies the Assumption (A3).

Denote g(t) = ℓψ(u + tv; X, Y) for u, v ∈ Rp, and then we have

g′(t) =
1

2n

n

∑
i=1

{
(1 − Yi) exp(

xT
i u + xT

i tv
2

)− Yi exp(−
xT

i u + xT
i tv

2
)

}
vTxi,

g′′(t) =
1

4n

n

∑
i=1

{
(1 − Yi) exp(

xT
i u + xT

i tv
2

) + Yi exp(−
xT

i u + xT
i tv

2
)

}
(vTxi)

2,

g′′′(t) =
1

8n

n

∑
i=1

{
(1 − Yi) exp(

xT
i u + xT

i tv
2

)− Yi exp(−
xT

i u + xT
i tv

2
)

}
(vTxi)

3.

It is not difficult to find that |g′′(t)| = g′′(t), and then

|g′′′(t)| = 1
8n

∣∣∣∣∣ n

∑
i=1

{
(1 − Yi) exp(

xT
i u + xT

i tv
2

)− Yi exp(−
xT

i u + xT
i tv

2
)

}
(vTxi)

3

∣∣∣∣∣
≤ 1

2
max

1≤i≤n
|xT

i v| 1
4n

{
n

∑
i=1

∣∣∣∣∣(1 − Yi) exp(
xT

i u + xT
i tv

2
)

∣∣∣∣∣+
∣∣∣∣∣Yi exp(−

xT
i u + xT

i tv
2

)

∣∣∣∣∣
}
(vTxi)

2

=
1
2
( max

1≤i≤n
|xT

i v|)|g′′(t)|.

which completes the proof of Theorem 2.
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