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Abstract: Shared bicycles provide a green, environmentally friendly, and healthy mode of trans-
portation that effectively addresses the “final mile” problem in urban travel. However, the uneven
distribution of bicycles and the imbalance of user demand can significantly impact user experience
and bicycle usage efficiency, which makes it necessary to predict bicycle demand. In this paper, we
propose a novel shared-bicycle demand prediction method based on station clustering. First, to
address the challenge of capturing patterns in station-level bicycle demand, which exhibits significant
fluctuations, we employ a clustering method that combines graph information from the bicycle
transfer graph and potential energy. This method aggregates closely related stations into correspond-
ing prediction regions. Second, we use the GCN-CRU-AM (Graph Convolutional Network-Gated
Recurrent Unit-Attention Mechanism) model to predict bicycle demand in each region. This model
extracts the spatial information and correlation between regions, integrates time feature data and
local weather data, and assigns weights to the input features. Finally, experimental results based on
the data from Citi Bike System in New York City demonstrate that the proposed model achieves a
more accurate demand prediction.

Keywords: shared bicycles; station clustering; demand prediction; graph convolutional network

MSC: 68T07; 90B20

1. Introduction

With the accelerated process of urbanization and the escalating problem of traffic
congestion, shared bicycles have experienced rapid growth as a green, low-carbon, and
convenient mode of transportation. According to statistical data, as of 2021, the global
market size of shared bicycles has exceeded 15 billion USD and is expected to reach
30 billion USD by 2025 [1]. However, in many cities, there are significant spatial and
temporal variations in the distribution and demand for shared bicycles [2]. Without
predicting the occurrence of bicycle shortages and surpluses in advance, these variations
can result in underutilized shared-bicycle resources and inadequate supply in certain areas.
Therefore, predicting the user demand in shared-bicycle systems plays a crucial role in
promoting the intelligent and sustainable development of urban transportation.

Shared-bicycle demand prediction refers to the process of forecasting the demand for
shared bicycles during a specific future time period through the analysis and modeling
of historical data. Currently, shared-bicycle demand prediction methods can be broadly
categorized into two types.

The first type is station-level methods, in which each individual shared-bicycle sta-
tion is considered as the basic prediction unit, and the demand for bicycles within each
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station is predicted separately. Huang et al. [3] proposed a Bimodal Gaussian Inhomo-
geneous Poisson (BGIP) algorithm for predicting the number of bicycles at each station.
Chen et al. [4] developed a model based on recurrent neural networks (RNN) to predict the
real-time rental and return demand at each bicycle station, which can be used to formulate
load-balancing strategies between stations. Zi et al. [5] introduced the TAGCN (Temporal
Attention Graph Convolution Network) model, which combines graph convolutional neu-
ral networks with attention mechanisms to address the problem of the bike check-out/in
number prediction of each station.

The other method category is based on cluster-level analysis. Due to the fact that
the usage patterns of bicycles at each station are susceptible to factors such as time and
weather, it is challenging to predict the demand for shared bicycles at individual stations.
Algorithms of this type group similar stations into the same cluster and predict the demand
for bicycles within each cluster.

Feng et al. [6] proposed a hierarchical traffic prediction model that utilizes iterative
spectral clustering to cluster stations and employs a gradient boosting regression tree
to predict the rental count for the entire shared-bicycle system. Jia et al. [7] proposed a
two-stage Gaussian mixture model (GMM) clustering algorithm for shared bicycle stations,
which considers bicycle migration trends and geographic location information between
stations. Hua et al. [8] divided the virtual stations of dockless bike-sharing through K-
means clustering and used random forest to predict the demand. Chen et al. [9] introduced
a cluster-based dynamic prediction algorithm that constructed a weighted relationship
network based on the current environment to simulate the relationships between bicycle
stations. Stations with similar usage patterns are dynamically grouped into clusters.

Table 1 summarizes the differences between these two types of methods for predict-
ing shared-bicycles demand and demonstrates whether the features are considered in
each study.

Table 1. Two types of shared-bicycle demand prediction methods considering different features.

Type Authors Prediction Method Spatial Features Time Feature Weather Feature

Station-level

Huang et al. [3] BGIP (a Bimodal Gaussian
Inhomogeneous Poisson) 4 4 5

Chen et al. [4] RNN (Recurrent Neural Networks) 4 4 4

Zi et al. [5]
TAGCN (a graph convolutional
network model with temporal

attention)
4 5 4

Clustering-
level

Feng et al. [6] Iterative spectral clustering;
Gradient boosting regression tree 4 5 4

Jia et al. [7]
TL-GMM (A two-level Gaussian

Mixture Model); Gradient boosting
regression tree

4 5 4

Hua et al. [8] K-means clustering; Random forest 4 4 5

Through the analysis of Table 1 and the current research status, its limitations are
as follows:

1. Most studies do not consider the connection between shared-bicycle stations. Simply
studying the demand of a single station is not enough to improve the service quality
of the entire city’s shared bicycle system.

2. Previous studies primarily utilized the bipartite clustering model (BC) [10], the unified
geographic grid clustering (GC) algorithm, and K-means [9] to cluster bike stations.
These methods have disadvantages such as not considering the migration trend of
shared bikes between stations and relying heavily on randomly initialized parame-
ters [11].
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3. Some existing demand prediction models use traditional machine learning methods,
such as random forest [9,12], support vector machine [13], linear regression [14],
gradient boosting regression tree [6,8], etc. These models have shortcomings such
as difficulty in handing complex relationships, limitations in feature interactions,
and limited ability to model time series in the prediction of shared-bicycle demand.
Additionally, some deep learning methods [5,15] used for demand prediction have
limitations in terms of incomplete consideration and insufficient prediction. Specifi-
cally, these methods only take into account two aspects of spatial, temporal, or weather
features, neglecting the holistic nature of the problem.

In order to overcome the deficiencies of existing bicycle demand prediction methods,
this paper provides a novel shared-bicycle demand prediction method based on GIPE
(Graph Information and Potential Energy) clustering and the GCN–GRU–AM (Graph
Convolutional Network–Gated Recurrent Unit–Attention Mechanism) deep neural network.
Its main contributions include the following:

1. We construct a bicycle transfer graph that considers the migration trend of shared
bicycles between stations and extract graph information by calculating the importance
degree of each station. Making full use of the graph information can effectively
improve the clustering accuracy of shared-bicycle stations.

2. We apply the idea of potential energy to the correlation between stations, so that
stations with more similar bicycle usage patterns and more frequent circulation can
be reasonably clustered into the same regions.

3. In addition to historical bicycle demand features, we also consider the impact of
weather features and time features on shared-bicycle demand prediction and evaluate
different features through experiments.

4. Based on the deep neural network, we construct a GCN–GRU–AM model to predict
the demand for shared bicycles, which can capture the spatial correlation between
regions and the long-term and short-term dependencies in time series data and
assign weights to different features. The experimental results show that the model’s
prediction accuracy is better than that of other models.

The rest of the paper is organized as follows: In Section 2, we provide a comprehensive
description of our station clustering method and the shared-bicycle demand prediction
model, offering detailed insights into their methodologies and techniques. In Section 3,
we present the experimental process, including a comparative analysis of our approach
with other models, as well as an exploration of the different feature inputs and various
clustering methods. In Section 4, we outline the findings and conclusions of this study,
providing a comprehensive summary and highlighting the implications of our research.

2. Materials and Methods

In this section, we present the methods proposed in this paper, which contain the
station clustering method and the demand prediction model.

2.1. Station Clustering Method

The usage of bicycles in a shared-bicycle system is influenced by multiple factors such
as the bicycle’s time of use, weather conditions, and the unique relationships between
stations [16]. This implies that the demand for bicycles varies significantly depending on
these conditions, which makes it difficult to capture its regularity and predictability. By
aggregating stations with similar characteristics, the accuracy of demand prediction can
be improved, especially when compared to analyzing individual stations. Additionally,
the users’ riding habits are not limited to one station, so when users cannot find bicycles
at their current station, they will go to nearby stations to search for bicycles. When users
want to return their bicycles but find that the parking spots are full, they may also go to
nearby stations to park their bicycles. Therefore, the proximity between stations has some
correlation from the users’ perspective [6].
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In this section, we propose a clustering method based on graph information and
potential energy to solve the problem of inter-station correlations.

2.1.1. Graph Information

1. Bicycle Transfer Graph; The bicycle transfer between shared-bicycle stations is es-
sentially similar to the strong and weak associations between nodes in a graph. The
correlation between different bicycle stations can also be represented by a graph.
We define a bicycle transfer graph as a weighted directed network G = (S, F), in
which the nodes represent the set of single stations S = {Σsi| i = 1, 2, . . . , n}, the
lines with arrows represent the set of edges F =

{
Σ fij

∣∣i, j = 1, 2, . . . , n
}

, and the fij
means represents the transfer quantity from station si to station sj. The bicycle transfer
relationship between nodes is shown in Figure 1, which is a schematic diagram.
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2. Station Importance Degree Matrix; The initial importance degree matrix P for each
station is defined as the proportion of bicycle usage at each station to the bicycle usage
at all stations in a certain time period. Assuming there are n nodes in the bicycle
transfer graph and that the total bicycle usage in this period is sum, the bicycle usage
of station si is pi; the calculation formula for the initial importance matrix P is shown
as follows:

P =

p1 · · · 0
...

. . .
...

0 · · · pn

/sum (1)

3. Adjacency Matrix; The adjacency matrix S represents the bicycle flow between each
station. We calculate the number of bicycles that can be transferred from one station to
another and the total number of bicycles that can be reached from other stations to the
current station to construct the bicycle transfer matrix O and the station bicycle arrival
volume matrix A. The calculation method for the adjacency matrix S is as follows:

S =
O
A

=

o11 · · · o1n
...

. . .
...

on1 · · · onn

 ∗
1/

a1 · · · a1
...

. . .
...

an · · · an


 (2)

oij represents the number of bicycle transfer from station si to station sj in a certain
period, and ai represents the total number of bicycles arriving at station si within a
certain period.
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The importance degree of each station is calculated from the above adjacency matrix
and the initial station importance degree matrix P. The specific calculation process is as
follows:

P = λP + (1− λ)S ∗ P (3)

P =

p11 · · · p1n
...

. . .
...

pn1 · · · pnn

 (4)

In the above equations, λ is a parameter between 0 and 1 that determines the relative
importance of the station’s borrowing behavior and the bicycle flow behavior between
stations. In the final station importance degree matrix, pii represents the station importance
degree obtained by the user’s bicycle usage behavior at station si, and pii represents the
circulation importance degree feedback from station sj’s user bicycle usage importance
degree to site si due to the bicycle flow between station si and station sj. Similar to graph
nodes, the importance degree of each node in the graph is not only related to itself but also
affected by the nodes with which it is connected.

By extracting the graph information from the bicycle transfer graph through the
above calculation process, the final station importance degree V = [c1, c2, . . . , cn ]T is
obtained from the node importance degree matrix, in which ci = ∑1≤j≤n pij, indicating the
importance degree of station i in the bicycle transfer graph.

2.1.2. Potential Energy between Stations

The correlation between bicycle stations is determined by the distance between stations
and the overall importance of each station in the bicycle network. The mutual influence
between stations can be compared to the attraction between different planets, where
stations with higher importance have a larger range and capability of influence. Comparing
the complex bicycle network to a large galaxy, the clustering process is equivalent to
distinguishing small galaxies with strong correlations, such as the solar system in which
the Earth is located. Referring to the universal gravitational formula between planets, the
potential energy Eij between station si and station sj is calculated as follows:

Eij = ci ∗ cj ∗ e−(
‖di−dj‖

ε )
2

(5)

ci and cj represent the importance of stations si and sj, ‖di− dj‖ represents the distance
between two stations, and ε represents the corresponding distance influence factor, which
is a customizable parameter used to adjust the degree of influence caused by distance
between stations.

2.1.3. Station Clustering Method

The main idea of the clustering method in this paper is based on the importance
degree and correlation between the stations in the bicycle station network. The goal of
the clustering method is to select the most important and closely related stations from the
bicycle transfer graph and then classify them into clusters based on their distance from
the cluster center. In addition, each cluster only contains stations that have a maximum
potential energy with the current cluster center.

The main process of the clustering method is as follows:

1. Extract station information from the bicycle order data and construct the bicycle
transfer graph;

2. Extract graph information by calculating the importance degree and nearest-neighbor
distance with high-importance degrees for all stations by using the bicycle transfer
graph;
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3. Construct a decision diagram based on station importance degrees and nearest neigh-
bor distance with high-importance degrees. Based on this diagram, nodes with
higher importance degrees and high-importance degree nearest-neighbor distances
are selected as cluster centers; and

4. Classify the remaining nodes according to their potential energy with the cluster
center based on the principle of maximizing potential energy.

Figure 2 illustrates the clustering process of the proposed method.
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The core steps of the GIPE clustering method include calculating the importance of
stations in the bicycle transfer graph and allocating the remaining stations based on their
potential energy. The specific allocation process of the remaining stations after selecting the
cluster centers is shown in Figure 3.
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In the station allocation diagram, there are three cluster centers with importance
degrees of 0.1, 0.05, and 0.03, respectively. These three green circles represent the stations
to be allocated. The values on the arrows represent the potential energy between the
current station to be allocated and the cluster center, and the orange line indicates the
final allocation result of the station. Through the station allocation process, it can be seen
that the degree of association between stations not only depends on their importance but
also relates to the distance between different stations. The cluster centers with higher
importance and closer distance to the current station are more attractive, and the mutual
circulation of bicycles between them is also more frequent.

2.2. Demand Prediction Model

This paper proposes a deep learning model for bicycle demand prediction. The input
features include historical bicycle demand data in various regions, time-related feature data,
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and corresponding weather feature data at the same time. Firstly, the GCN is employed to
capture spatial correlations, and then a multi-layer GRU is designed to learn the associations
between time series. Additionally, an attention mechanism is adopted to extract historical
time step data information and inter-regional features with different weights, enabling
the final model to have a good ability to predict demand. Finally, the dense layer outputs
the bicycle demand in each time period for the 26 clustered regions. The model includes
the input layer, the GCN layer, the GRU layer, the attention layer, and the output layer, as
shown in Figure 4 [17].
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1. Input Layer:
This layer is used to receive bicycle demand, time features, and weather features.
The data form can be expressed as X = [x1, x2, . . . , xt−1, xt]

T , in which X ∈ Rt×d, t
represents the time length of the input sequence, d represents the feature dimension
of the input data, and xi represents the feature vector at time i. In this paper, the value
of d is 32, including bicycle demand in 26 areas, three-dimensional time features and
three-dimensional weather features.

2. GCN Layer [18]:
This layer used to capture the spatial correlation between regions. First, we construct
a region adjacency matrix A to represent the connection relationship between regions.
Assuming that there are n bicycle station regions, the amount of bicycle transfers from
region i to region j in a certain period is fij, and the total number of bicycles arriving
in region j during this period is tj, then the adjacency matrix A between regions can
be expressed as follows:

A =

A11 · · · A1n
...

. . .
...

An1 · · · Ann

 (6)

The adjacency matrix is a 26× 26 matrix, where Aij represents the connection strength
between region i to region j, which can be expressed as Aij = fij/tj. The original
adjacency matrix is normalized to obtain the matrix Ã:

Ã =

a11 + 1 · · · a1n
...

. . .
...

an1 · · · ann + 1

 (7)

The basic operation of the GCN can be expressed as:

H(l+1) = σ
(

ÃH(l)W(l)
)

(8)
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Here, Ã is the normalized adjacency matrix, H(l) is the feature representation of the
l-th layer, W(l) is the weight matrix of the l-th layer, and σ is the activation function
(such as ReLU). We applied multiple GCN layers to extract spatial features. The
GCN operation of each layer will update the node features in order to capture the
higher-order spatial correlations [19].

3. GRU Layer [20]:
This layer is used to capture long -short-term dependencies in time series data. This
module receives feature sequences from the GCN module and processes them in
sequence over time, capturing temporal features in the input sequence, such as
trends and periodicity. The GRU utilizes gate structures to control the generation
and forgetting of information. Meanwhile, it also uses the state of the previous
moment to calculate the state of the current moment, thereby achieving the modeling
of sequence historical data and long-term memory [21]. We used a fully connected
layer to fuse the spatial features extracted by the GCN layer with other input features
(weather features and time features). Next, we employed multiple GRU units to model
the fused features, with each GRU layer containing 128 hidden neurons and using
sigmoid activation functions to learn the time series relationships between data. The
hidden layer output {h1, h2, . . . , ht} serves as the input for the subsequent attention
mechanism layer. The gated structure of the GRU can effectively handle dependencies
at different time scales, thereby capturing the temporal dynamics of bicycle demand.
In Figure 4, Xt−k represents the output of the GCN layer when the input data at time
t− k is provided to it, and ht−k denotes the hidden layer output of the GRU layer
after memorizing and forgetting the current input Xt−k and the historical information.
Ultimately, these are passed to the attention mechanism layer to assign weights from
different inputs.

4. Attention Layer:
This layer is used to address the issues of information loss and the vanishing gradient
encountered by the GRU layer when handling long sequences. This mechanism
computes the feature weights for the hidden layer in the GRU, which can preserve
important features and reduce the impact of interference information. In this paper,
we adopt the additive attention mechanism and the specific calculation process is
as follows:

eij = a
(
hi, hj

)
= LeakyReLU

(
Wa
[
hi ‖ hj

]
+ ba

)
(9)

αij =
exp
(
eij
)

∑26
k=1 exp(eik)

(10)

Attention(hi) =
26

∑
j=1

αijhj (11)

a
(
hi, hj

)
is used to calculate the similarity score between hi and hj, where ‖ represents

vector splicing and LeakyReLU is an activation function. Additionally αij is the
normalized attention weight.

5. Output Layer
This fully connected layer is used to map the attention-weighted GRU output to the
predicted bicycle demand, that is, the future bicycle demand in 26 regions. Assuming
that the output is yi, the calculation process of the output layer is:

yi = σ(Wo Attention(hi) + bo) (12)

Wo and bo are the weight matrix and bias of the output layer, respectively.
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3. Results and Discussion
3.1. Experimental Datasets
3.1.1. Shared Bicycle Data

This study utilizes a publicly available dataset from Citi Bike in New York City for
research purposes [22]. The dataset consists of 6.14 million bicycle ride order records from
July to August 2021, obtained from the official Citi Bike website. Table 2 presents a partial
overview of the raw data fields collected for Citi Bike orders in this study.

Table 2. Citi Bike order data.

Rideable_Type Started_At Ended_At Start_Lat Start_Lng User_Type

electric_bike 02/07/2021 16:57 02/07/2021 17:09 40.790179 −73.97288 casual
electric_bike 10/07/2021 07:40 10/07/2021 07:58 40.749156 −73.9916 casual
electric_bike 09/07/2021 13:25 09/07/2021 13:30 40.842842 −73.94212 member
classic_bike 09/07/2021 12:45 09/07/2021 12:59 40.717571 −74.00554 member
classic_bike 29/07/2021 19:28 29/07/2021 19:52 40.710762 −73.99400 casual

3.1.2. Weather Data

This study collected hourly weather report data for New York City from July to August
2021 to complement the analyzed Citi Bike dataset [23,24]. The weather report data from
Weather Underground includes hourly reports for various weather parameters in New York
City during this period. The report format consists of timestamps, wet bulb temperatures,
dry bulb temperatures, humidity, pressure, and wind speeds. It should be noted that the
original data may contain missing values for wind speed and humidity. To ensure the
continuity of the meteorological data, this study employs a method for filling in the missing
values using the previous hour’s weather report data.

3.2. Result of Clustering

From the original bicycle order data, this study extracted 1451 station records. To
ensure the reasonability of the research, a rectangular division approach was adopted.
Stations within the longitude range of 40.68◦ N to 40.77◦ N and the latitude range of
−74.02◦ W to −73.95◦ W were selected. A total of 487 stations were filtered for subsequent
experimental research. For extracting station graph information and calculating inter-
station potential energy, data from five consecutive working days were selected. Figure 5
illustrates the selected research stations and the clustering results of the stations using the
graph information and potential energy clustering method.

The clustering results from Figure 5 reveal that the centers of each clustered region are
reasonably spaced, with no closely located cluster centers. Furthermore, the number and
distribution of stations within each cluster region are relatively even. These observations
indicate that the clustering algorithm effectively selected appropriate cluster centers and
achieved a satisfactory division of stations. The clustering results align well with the actual
distribution of the stations.

From the comparison of the clustering results in Figure 6, it is evident that the K-means
algorithm [25] can relatively evenly aggregate stations in different regions. However, it
tends to overlook the influence of actual geographical factors and local residents’ travel
habits. The clustering results do not align with the actual distribution of user demand,
which may result in the aggregation of unrelated stations. As a result, the demand for
station clusters fluctuates significantly, impacting the model’s ability to predict the demand
for different cluster groups.

DBSCAN [26], on the other hand, performs station clustering by setting the minimum
number of points in each cluster and the corresponding search radius. However, the
stations in this study were extracted from the bicycle order data, and the actual stations
are fixed stations with their locations determined by the bike-sharing operator. The station
distribution is relatively uniform, and density clustering does not effectively capture the



Mathematics 2023, 11, 4994 10 of 18

actual correlations between stations. Additionally, determining the number of clusters is
challenging, and the sizes of the clusters vary significantly, deviating from the actual rules
for dividing stations into regions.
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DPC clustering [27], as a density peak-based algorithm, has similar reference metrics
to DBSCAN but has different rules for assigning the remaining points. DPC clustering is
better able to specify the number of cluster regions, select high-density stations as cluster
centers, and divide the remaining stations based on density and distance correlations.
However, similar to DBSCAN, DPC clustering also exhibits significant differences in cluster
sizes. Some clusters become excessively large, which hinders accurate bicycle predictions
between regions.

The GIPE clustering method proposed in this study, which combines graph informa-
tion and potential energy, not only evaluates the importance degree of each station in the
bicycle transfer graph from the perspective of actual demand but also selects distant stations
with high-importance degrees as cluster centers. Additionally, it utilizes potential theory to
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calculate the attractiveness of each cluster center to the remaining stations, representing
the degree of correlation between stations. This approach enables the final clustering of
stations. The clustering results align well with reality, and the distribution of the stations
within each cluster is relatively even, meeting the basic requirements of regional prediction
and bicycle scheduling research.

3.3. Result of Demand Prediction
3.3.1. Baseline Method

The problem of demand prediction in the different regions and time periods of shared
bicycles, can essentially be formulated as a time series forecasting task. Various deep models
are commonly used to address such problems. In this study, the GCN–GRU–AM model
is employed, and its performance is evaluated by comparing it with several benchmark
methods from existing research or state-of-the-art approaches.

• CNN [28]: The convolutional neural network (CNN) model is a typical model for
extracting spatial information from data. It can also be applied to bicycle demand
prediction tasks by extracting useful information from the raw bicycle demand data
and weather data, enabling effective prediction of future bicycle demand.

• LSTM [29]: As a variant of the recurrent neural network (RNN), the long short-term
memory (LSTM) is one of the most commonly used deep models for handling time
series forecasting problems and has been widely applied in various research studies.

• GRU [21]: GRU is similar to LSTM but has a simpler internal structure. It discards
the complex cell state and uses only the memory gate and the forget gate to achieve a
similar functionality to LSTM. GRU has fewer parameters and is simpler to train.

• XGBoost [30]: XGBoost is a model that employs decision trees for prediction or classi-
fication tasks. Compared to traditional random forest models, XGBoost demonstrates
superior performance, wider applicability, and a significantly improved training speed.

• GCN [31]: The GCN combines graph theory with CNN by constructing a reasonable
graph relationship (adjacency matrix) for node-type data. It effectively captures spatial
information between nodes and achieves significant performance improvement by
integrating with the CNN module.

• GRU-AM [32]: GRU–AM is a hybrid model, in which the GRU structure is first used
to preserve historical information, and then the temporal attention mechanism (AM)
is used to give different weights to the features.

• CNN-GRU [33]: The CNN–GRU model is a fusion deep-learning approach that com-
bines a convolution neural network (CNN) and gated recurrent units (GRUs).

• CNN–GRU–AM [34]: The CNN–GRU–AM model is a combination of three different
techniques. First, CNN is used to extract local features from the data. Second, GRU is
employed to capture the time-series relationships of the output data of CNN. Finally,
the AM is introduced to mine the potential relationships of the series features.

• T-GCN [19]: The temporal graph convolutional network (T–GCN) model is combined
with the GCN and GRU to capture the spatial and temporal dependences simultaneously.

3.3.2. Evaluation Indicators

• Mean Absolute Error (MAE):

MAE =
∑n

i=1|yi − ŷi|
n

(13)

• Root Mean Square Error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)
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• Root Mean Squared Logarithmic Error (RMSLE) is a metric commonly used to evaluate
the performances of different models on the same research problem across different
datasets. It measures the relative error and is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(log(ŷi + 1)− log(ŷi + 1))2 (15)

In this equation, yi represents the actual value, and ŷi represents the model pre-
dicted value.

MAE and RMSE are used to evaluate the deviation between model prediction results
and actual demand, that is, the absolute error, while RMSLE is used to evaluate the
deviation between model prediction results and actual demand, reflecting the model’s
ability to predict the overall change trend.

3.3.3. Experimental Setup

When considering the demand prediction problem, it is necessary to identify the data
characteristics of the main objective and subjective factors related to bicycle demand and
assess the importance of different features. In this study, demand-related features, time
features, peak-hour features, and weather features, which are closely related to bicycle
demand prediction, were selected. XGBoost was used to evaluate the different features.

According to the feature analysis results in Figure 7, it is evident that the original
demand sequence is crucial for model training. Hourly information, morning and evening
peak indicators (represented by 1 and 2, respectively), and the weekday attribute (ranging
from 1 to 7) also exhibit significant effects. On the other hand, weather features have a
relatively smaller impact as compared to other features. However, they still contribute to
improving the model’s demand prediction performance. In this study, selected weather
features include temperature, humidity, and wind speed.
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The impact of the time step on the prediction performance of the basic GRU model
was investigated. The most appropriate time step was selected and used as the “time_step”
parameter for all of the deep models. The input features for the GRU model consist of the
combination of bicycle demand, time features, and weather features. Experimental results
for the different regions’ bicycle demand predictions using the GRU model under different
time steps are presented in Table 3.
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Table 3. Performance of the GRU model at different time steps.

Time_Step RMSE RMSLE MAE

1 19.162 0.398 12.359
2 18.001 0.379 11.992
3 17.659 0.376 11.834
4 17.516 0.372 11.708
5 18.257 0.378 12.396
6 18.758 0.381 12.325
8 19.018 0.388 11.957
16 19.831 0.407 12.974
32 19.976 0.412 13.335

From the experiment results in Table 3, it can be observed that the demand prediction
performance of the GRU model shows an overall trend of first increasing and then weaken-
ing with the time steps. Normally, considering that the station status in the previous time
period affects the station status in the current time period, the accuracy of the prediction is
higher with the larger time step. However, when the time step reaches a certain value, due
to the addition of noise features that are irrelevant to time series prediction, the prediction
performance does not increase but rather decreases, and the training time is increased.
Therefore, the time step is selected to be four through the experiments. At this time, the
RMSE, MAE, and RMSLE of the GRU model are all minimum values.

3.3.4. Performance Analysis

1. Performance Analysis of the GCN–CRU–AM model

Based on the station-clustering results, we compared the performance of different
deep learning models in predicting the actual bicycle demand under the same input data
features. The input features include historical demand, time, and weather characteristics.
We used the data of 34 consecutive working days as the training and validation set, and the
subsequent nine working days as the test set. Each model is trained for 100 epochs, and the
demand prediction results are calculated by subtracting the actual demand. The multiple
error values are obtained and statistically analyzed, as shown in Table 4.

Table 4. Comparison of the demand prediction performances of different deep learning models.

Model
Check-Out Demand Check-In Demand

RMSE RMSLE MAE RMSE RMSLE MAE

LSTM 18.320 0.377 12.003 18.706 0.386 11.978
GRU 17.516 0.372 11.708 17.396 0.378 11.657

XGBoost 16.879 0.369 11.441 16.951 0.368 11.472
GRU-AM 16.582 0.361 11.561 16.566 0.368 11.383

CNN-GRU 17.182 0.363 11.431 17.378 0.367 11.816
CNN-GRU-AM 16.238 0.355 11.226 16.476 0.358 11.277

GCN 17.390 0.375 12.281 17.479 0.376 12.032
T-GCN 15.935 0.347 10.687 16.052 0.346 10.804

GCN-GRU-AM 15.291 0.335 10.325 14.905 0.331 10.133

From the experimental data presented in Table 4, it can be observed that among the
various deep learning models, the GCN–GRU–AM model adopted in this study exhibits
a good demand prediction performance. The RMSLE of predicting check-out demand in
various regions reaches 0.335, and the RMSE is 15.291. For check-in demand, the RMSLE
and RMSE are 0.331 and 14.905, respectively. These figures are significantly lower than
those of other models, indicating that the GCN–GRU–AM model has a strong capability
for predicting the future demands for shared bicycles in each region.

Among the remaining models, the basic LSTM performs worst, and the GRU shows
a certain degree of performance improvement over LSTM. Compared to the LSTM and
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GRU models, XGBoost has smaller demand prediction error values, indicating that its
basic performance is superior to the LSTM and GRU in the context of this study. After
incorporating the Attention Mechanism into the GRU model, its RMSE, MAE, and RMSLE
errors decrease, suggesting that the combination of the attention mechanism and the GRU
module enhances the model’s predicting performance.

The performance of the original GCN model is better than that of LSTM and GRU
models but is somewhat inferior to XGBoost. Although the GCN extracts information
from different regional demand and other features, it lacks a time-series learning module,
which may cause the temporal information to be overlooked and hinder the learning of
associativity between time series. By incorporating the GRU module to effectively extract
input information, the model performance improves significantly, with the RMSLE, RMSE,
and MAE slightly better than those of the CNN–GRU–AM model, which exhibits the best
performance among the remaining models.

To intuitively demonstrate the effectiveness of the GRU module and the attention
mechanism module in the GCN model, the check-out demand prediction results of the 2nd
clustering region from the GCN, GCN–GRU, and GCN–GRU–AM models are compared
with the actual check-out demand. This comparison aims to investigate the influence of the
different modules on the final model performance.

By comparing the demand prediction results of the GCN, GCN–GRU, and GCN–GRU–
AM models with the actual demand prediction results in Figure 8, it can be observed that the
prediction results of the GCN model have the lowest fitting degree with the actual demand.
The demand prediction results during the morning and evening rush hours are relatively
accurate, while the prediction deviation of bicycle demand during lunchtime is relatively
large. With the addition of the GRU model, the prediction performance of bicycle demand
during the day improves. On this basis, the GCN–GRU–AM model, which incorporates the
attention mechanism, enhances the prediction accuracy during the morning and evening
rush hours and lunchtime, thereby improving the overall performance of the model.

In order to present the demand prediction performance of different models more
intuitively, Figure 9 shows the check-in demand prediction results of the different models
compared with the actual demand data in Region 22 for four consecutive working days,
from 22 to 25 August 2021. We compared the GCN–GRU–AM model with the XGBoost
model, which preforms better in the basic models, and the CNN–GRU–AM model, which
has a better performance among the hybrid models.

It can be seen from Figure 9 that each model has a certain deviation from the original
demand when making actual predictions of working-day demand. Among them, the
model with a larger error index has a larger performance deviation in actual prediction.
The GCN–GRU–AM model used in this article hac the best performance and has a high
degree of fit with the original demand curve.
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prediction result with actual demand in Region 2.
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2. The Impact of Input Features on Model Performance

For deep learning models, their performance not only depends on their structure but
also on the quality of the input data and the feature dimension, which greatly affect the final
performance of the model. Using the GCN–GRU–AM model, we conducted experiments
by combining the different input data features to test the impact of the various features on
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the model’s demand prediction performance. The specific experimental data is presented
in Table 5.

Table 5. Analysis of model demand prediction performances with different feature combinations.

Feature Combination
Check-Out Demand Check-In Demand

RMSE RMSLE MAE RMSE RMSLE MAE

Demand 16.219 0.367 10.961 16.213 0.361 10.715
Demand + Time 15.604 0.343 10.557 15.784 0.341 10.405

Demand + Weather 16.102 0.362 10.844 16.049 0.358 10.672
Demand + Time + Weather 15.291 0.335 10.325 14.905 0.331 10.133

In the comparison of model performance under different features, the GCN–GRU–AM
model trained with the input data of the demand in different regions and time periods
performs worst. By adding time-based and weather features for model training, the
demand prediction performance improves. Among them, the model trained with time-
based features performed better than the model trained with weather features, indicating
that time-based feature data contributes more to the improvement of the model performance
than the weather features. This is consistent with the results of the analysis using the
XGBoost model to assess the different features in Section 3.3.3. By combining time-based
and weather features, the demand prediction error rate of the model further decreases. The
input feature data used in the final demand forecasting model of this paper includes the
combination of demand data, time-based feature data, and weather feature data.

3. Effectiveness Analysis of Clustering Method

To validate the effectiveness of the proposed GIPE clustering method, we perform
clustering on the initial 577 stations using other clustering methods. Combining the
clustering results with the calculated demand for each clustering region and time period,
we obtained the demand data under different clustering methods. Then, we trained
the GCN–CRU–AM model using the demand data estimated by the different clustering
methods and predicted the future demand in each region. This enabled us to assess the
model’s performance under various clustering methods. In addition, K-means and DPC
clustering methods generate 26 clusters, the same as the GIPE clustering method. Because
the DBSCAN clustering algorithm has an uncertain number of clusters, it is not included in
the comparison among the different clustering methods.

After re-constructing the adjacent matrix and re-statistically calculating the historical
demand for each region, the GCN–GRU–AM model is trained for the future demand
prediction of each region based on the clustering results from different clustering methods.
Table 6 summarizes the experimental performance data of the GCN–GRU–AM model
trained using the clustering results of different clustering methods.

Table 6. Performance analysis of demand forecasting models with different clustering methods.

Clustering Method
Check-Out Demand Check-In Demand

RMSE RMSLE MAE RMSE RMSLE MAE

K-means 16.637 0.356 10.924 16.432 0.354 10.831
DPC 17.427 0.371 11.518 17.641 0.375 11.665
GIPE 15.291 0.335 10.325 14.905 0.331 10.133

Compared with the K-means clustering method that only considers node distance and
the DPC clustering method that only considers node density and distance, the clustering
method in this paper considers the actual bicycle usage and distance factors. In this case, the
bicycle demand forecast error value is smaller thanks to the use of the same GCN-GRU-AM
model for training.



Mathematics 2023, 11, 4994 17 of 18

4. Conclusions

Shared bicycle systems are an important part of urban public transportation, and
demand prediction can improve resource allocation, optimize bicycles management, and
enhance user experience. Furthermore, our research on this subject can support policy-
makers in making informed decisions and formulating effective strategies, such as optimiz-
ing the distribution of shared bicycles across different regions, planning for infrastructure
development, and designing targeted promotional campaigns to encourage bicycle usage.

In this paper, we propose a novel shared-bicycle demand prediction model based on
station clustering. Taking into consideration the user’s riding habits and the correlation
between the different stations in the actual shared-bicycle system, we constructed a bicycle
transfer graph based on bicycle trip data and cluster stations by calculating each station’s
importance degree and the inter-station potential energy. In the demand prediction prob-
lem, we consider time features and weather features that affect the demand for shared
bicycles and incorporate them as key features into the GCN-GRU-AM model constructed
in this paper for analyzing the shared-bicycle demand within clusters during different time
periods. The experimental results demonstrate that the proposed demand prediction model
has a high degree of alignment with the actual bicycle demand data and can effectively
predict the bicycle demand in different regions and time periods, thereby outperforming
other models in terms of performance.

In future works, we will utilize annual data for research and incorporate seasonal
features into the deep-model training to enhance the model’s versatility. Moreover, because
the current method to solve the imbalance of bicycle demand within stations is manual
dispatch, future research will seek optimal inter-station paths in order to reduce the cost of
manual dispatch.
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