
Citation: Alonso, J.M.; Ibáñez, J.;

Defez, E.; Alvarruiz, F. Accurate

Approximation of the Matrix

Hyperbolic Cosine Using Bernoulli

Polynomials. Mathematics 2023, 11,

520. https://doi.org/10.3390/

math11030520

Academic Editor: Sitnik Sergey

Received: 12 December 2022

Revised: 13 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Accurate Approximation of the Matrix Hyperbolic Cosine Using
Bernoulli Polynomials
José M. Alonso 1,* , Javier Ibáñez 2 , Emilio Defez 2 and Fernando Alvarruiz 3

1 Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain

2 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain

3 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain

* Correspondence: jmalonso@dsic.upv.es

Abstract: This paper presents three different alternatives to evaluate the matrix hyperbolic cosine
using Bernoulli matrix polynomials, comparing them from the point of view of accuracy and com-
putational complexity. The first two alternatives are derived from two different Bernoulli series
expansions of the matrix hyperbolic cosine, while the third one is based on the approximation of
the matrix exponential by means of Bernoulli matrix polynomials. We carry out an analysis of
the absolute and relative forward errors incurred in the approximations, deriving corresponding
suitable values for the matrix polynomial degree and the scaling factor to be used. Finally, we use a
comprehensive matrix testbed to perform a thorough comparison of the alternative approximations,
also taking into account other current state-of-the-art approaches. The most accurate and efficient
options are identified as results.

Keywords: Bernoulli matrix polynomials; matrix hyperbolic cosine; matrix functions approximation

MSC: 65F60

1. Introduction

Due to their use in many engineering and scientific applications, the numerical com-
putation of matrix functions has received remarkable and growing attention in recent years.
For instance, the efficient evaluation of matrix functions is part of reduced-order models
[1] and (pp. 275–303 in [2]), image denoising [3] and graph neural networks [4], among
other applications.

The field of approximation theory for matrix functions is quite extensive (see, e.g.,
the corresponding chapters of [5]). The best-known methods are based on rational or
polynomial approximations, or on different matrix decomposition techniques (e.g., Schur).

Among the different matrix functions, the hyperbolic ones must be highlighted. A set
of state-of-the-art algorithms developed by the authors to calculate matrix hyperbolic sine
and cosine functions can be found in [6–10]. Very recent generalizations of these matrix
functions can also be found in references [11,12]. Among many others fields, hyperbolic
sine and cosine functions are applied in the study of communicability analysis in complex
networks [13,14] or to construct the exact series solution of coupled hyperbolic systems
[15,16]. Additionally, algorithms for the matrix inverse hyperbolic cosine and sine are
included in [17], while methods for computing the action of the hyperbolic cosine or sine
of a matrix on a vector are provided in [18,19].

On the other hand, different numerical methods have been recently proposed for the
effective calculation of the matrix hyperbolic tangent function [20]. This matrix function
is used, for example, to give an analytical solution of the radiative transfer equation [21],

Mathematics 2023, 11, 520. https://doi.org/10.3390/math11030520 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030520
https://doi.org/10.3390/math11030520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6812-7364
https://orcid.org/0000-0002-6912-4453
https://orcid.org/0000-0002-3303-6371
https://orcid.org/0000-0001-5957-9561
https://doi.org/10.3390/math11030520
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030520?type=check_update&version=3

Mathematics 2023, 11, 520 2 of 22

in the heat transference field [22,23], in the study of symplectic systems [24,25], in graph
theory [26] and in the development of special types of exponential integrators [27,28].

In addition, the generalizations of some well-known classical special functions into
matrix frameworks are important both from the theoretical and applied points of view.
These new extensions (Laguerre, Hermite, Chebyshev, Jacobi matrix polynomials, etc.)
have proved to be very useful in various fields, such as physics, engineering, statistics and
telecommunications. Recently, Bernoulli polynomials Bn(x), which are defined in [29] as
the coefficients of the generating function

g(x, t) =
tetx

et − 1
= ∑

n≥0

Bn(x)
n!

tn , |t| < 2π, (1)

and which have the explicit expression for Bn(x)

Bn(x) =
n

∑
k=0

(
n
k

)
Bkxn−k, (2)

where the Bernoulli numbers are defined by Bn = Bn(0), satisfying the explicit recurrence

B0 = 1, Bn = −
n−1

∑
k=0

(
n
k

)
Bk

n + 1− k
, n ≥ 1, (3)

were generalized to the matrix framework in [30]. Excluding B1 = −0.5, all Bernoulli
numbers Bn, with n being an odd number, are null (see Appendix A, Remark A1, for the
deduction of formula (3)).

For a matrix A ∈ Cr×r, the n-th Bernoulli matrix polynomial is defined by the expression

Bn(A) =
n

∑
k=0

(
n
k

)
Bk An−k. (4)

For these matrix polynomials, we have the following series expansion of the matrix
exponential function:

eAt =

(
et − 1

t

)
∑
n≥0

Bn(A)tn

n!
, |t| < 2π. (5)

To obtain practical approximations of the matrix exponential function using expression
(5), we use the scaling and squaring technique [31,32]. This method is based on the well-
known property of

eA =
(

eA2−s
)2s

, (6)

where s ≥ 0 is an integer, called the scaling factor, to be determined in order to reduce the
norm of matrix A appropriately. Let us take m as the approximation polynomial degree to
be used. Then, from (5), using t = 1, we have

eA2−s ≈ (e− 1)
m

∑
n=0

Bn(A2−s)

n!
. (7)

Once approximation (7) is computed, s squaring steps must be carried out to reverse
the scaling effect to finally obtain eA. As an objective of this work, an algorithm (described
in Section 2) was developed to determine the most appropriate values of m and s.

The use of expansion (5) to approximate the matrix exponential function with good
results of precision and computational cost can be found in [30]. For a matrix A ∈ Cr×r,
using expression (5), we obtain (see Appendix A, Remark A2)

cosh (A) = sinh (1) ∑
n≥0

B2n(A)

(2n)!
+ (cosh (1)−1)∑

n≥0

B2n+1(A)

(2n + 1)!
. (8)

Mathematics 2023, 11, 520 3 of 22

Notice that unlike what happens when considering hyperbolic cosine series expan-
sions using Taylor or Hermite polynomials, all Bernoulli polynomials are needed in the
development of cosh(A) (and not just the even-numbered). However, this also possible by
operating to obtain an alternative approximation to the matrix hyperbolic cosine where
only polynomials of even degree appear, as follows (see Appendix A, Remark A3):

cosh (A) = sinh (1) ∑
n≥0

22nB2n

(
1
2 (A + I)

)
(2n)!

. (9)

Currently, few methods addressing the effective computation of the matrix hyperbolic
cosine for matrices of non-trivial size are available in the literature, such as those appearing,
e.g., in graph theory [14]. For instance, the work [33] (which presents the available software,
according to the authors, for the computation of matrix functions) indicates only two codes
for the computation of the matrix hyperbolic cosine (MATLAB’s funm function, based on
the Schur–Parlett algorithm for general functions [34], and thfm, included in GNU Octave’s
extra package linear-algebra and based on the computation of the matrix exponential
function by means of expm).

Therefore, the main objective, and the novelty, of this work is to address that need
for methods by designing, implementing and evaluating different algorithms for the
computation of the matrix hyperbolic cosine by means of Bernoulli polynomials. Some of
the methods proposed are based on approximations (8) and (9), and others are based on
the computation of the matrix exponential using Bernoulli polynomials.

Hereafter, we denote, with Cr×r, the set of all complex square matrices of order r, as
mentioned above, and with I, the identity matrix. Additionally, a matrix polynomial of
degree m, for A ∈ Cr×r, is given by the expression Pm(A) = p0 I + p1 A+ · · ·+ pm−1 Am−1 +
pm Am, where coefficients pi, 0 ≤ i ≤ m, are complex numbers. The result of rounding a real
number x to the nearest integer greater than or equal to x is denoted with dxe. Additionally,
the result of rounding x to the nearest integer less than or equal to x is represented by bxc.
Finally, matrix norm ‖·‖ represents any subordinate matrix norm. In particular, ‖·‖2 stands
for the traditional 2-norm.

The paper is organized as follows: In Section 2, three algorithms that compute the
matrix hyperbolic cosine function are described. They are based either on the previous
Bernoulli series expansions or on the theoretical definition of the matrix hyperbolic cosine
in terms of the matrix exponential, which also derives from its series expansion based on
Bernoulli polynomials. After the appropriate implementation of all these algorithms in their
respective MATLAB codes, Section 3 presents an exhaustive comparison among all of them
in order to choose the most appropriate one. For this purpose, numerous experiments were
carried out, where their numerical and computational performance were evaluated against
a widely heterogeneous testbed composed of three types of matrices. Finally, conclusions
are given in Section 4.

2. The Proposed Algorithms
2.1. Algorithms Based on the Bernoulli Series of the Matrix Hyperbolic Cosine

By truncating series (8), one obtains the m−th order Bernoulli approximation to the
matrix hyperbolic cosine (we assume that m is even for simplicity of exposition)

cosh(A) ≈ Pm(A) = sinh(1)
m/2

∑
n=0

B2n(A)

(2n)!
+ (cosh(1)− 1)

m/2−1

∑
n=0

B2n+1(A)

(2n + 1)!
, (10)

where polynomial Pm can be expressed as

Pm(A) =
m

∑
k=0

p(m)
k Ak.

Mathematics 2023, 11, 520 4 of 22

Similarly, by truncating series (9), the second alternative m−th order Bernoulli approx-
imation to our target matrix function is obtained as

cosh(A) ≈ sinh(1)
m/2

∑
n=0

22nB2n

(
1
2 (A + I)

)
(2n)!

, (11)

which is a polynomial of order m with all odd-order terms being equal to zero. Thus, by
defining Ā := A2, we obtain a polynomial P̄m̄ of order m̄ = m/2.

cosh(A) ≈ P̄m̄(Ā) =
m̄

∑
k=0

p̄(m̄)
k Āk, (12)

where p(m)
k and p̄(m̄)

k are coefficients dependent on order m and on the truncated series
considered, respectively. These Bernoulli polynomial coefficients become more and more
similar to those of the Taylor series as degree m of the polynomial increases. In the case
of the polynomial from (12), the coefficients converge to the even-order coefficients of the
Taylor series (with the odd-order coefficients being zero).

Algorithms 1 and 2 are related to the hyperbolic cosine computation of a matrix A
using formulation (10) or (11), where the scaling and squaring technique is considered. In
Line 1 of Algorithm 1 (Line 2 of Algorithm 2), the most appropriate values corresponding
to order m = mk of the approximation polynomial and scaling parameter s are found out,
attempting to reduce the norm of matrix A and calculate cosh(A) as accurately as possible.
That will be discussed in Section 2.3.

Next, in Line 2 of Algorithm 1 (Line 3 of Algorithm 2), matrix A is properly scaled,
and in the following line, polynomial Pmk (A) or P̄mk (A) must be efficiently computed
using methods such as those described in [35,36]. In our implementations, the Paterson–
Stockmeyer method [35] was employed. In this procedure, assuming that polynomial order
mk is chosen from the set

M = {m1, m2, . . . } = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, . . . },

powers Ai, 2 ≤ i ≤ q, must be calculated, where q =
⌈√

mk
⌉

or q = b√mkc is an integer
divisor of mk. With these matrix powers Ai, we can efficiently compute Pmk (A) as

Pmk (A) = (13)

(((pmk Aq + pmk−1 Aq−1 + pmk−2 Aq−2 + · · ·+ pmk−q+1 A + pmk−q I)Aq

+ pmk−q−1 Aq−1 + pmk−q−2 Aq−2 + · · ·+ pmk−2q+1 A + pmk−2q I)Aq

+ pmk−2q−1 Aq−1 + pmk−2q−2 Aq−2 + · · ·+ pmk−3q+1 A + pmk−3q I)Aq

. . .

+ pq−1 Aq−1 + pq−2 Aq−2 + · · ·+ p1 A + p0 I,

where k matrix products are involved.
Finally, in Lines 4–6 of Algorithm 1 (Lines 5–7 of Algorithm 2), cosh(A) is appropriately

recovered by repeatedly using the double-angle formula cosh(2A) = 2cosh2(A)− I.

Mathematics 2023, 11, 520 5 of 22

Algorithm 1: Given a matrix A ∈ Cr×r, a minimum order mlower ∈ M and a
maximum order mupper ∈ M, this algorithm computes C = cosh(A) with the
Bernoulli series (10)

1 Select suitable values of mk ∈M, mlower ≤ mk ≤ mupper, and s ∈ N∪ {0} for the
Bernoulli approximation (10) of cosh(2−s A) (see Section 2.3)

2 A = 2−s A
3 C = Pmk (A) /* Compute Pmk (A) in (10) by (13) */
4 for i = 1 to s do /* Recover cosh(A) */
5 C = 2C2 − I
6 end

Algorithm 2: Given a matrix A ∈ Cr×r, a minimum order mlower ∈ M and a
maximum order mupper ∈ M, this algorithm computes C = cosh(A) with the
Bernoulli series (11)

1 Ā = A2

2 Select suitable values of mk ∈M, mlower ≤ mk ≤ mupper, and s ∈ N∪ {0}, to
approximate cosh(2−s A) using P̄m(4−s Ā) (see Section 2.3)

3 A = 4−s Ā
4 C = P̄mk (A) /* Compute P̄mk (A) in (12) by (13) */
5 for i = 1 to s do /* Recover cosh(A) */
6 C = 2C2 − I
7 end

2.2. Algorithm Based on the Bernoulli Series of the Matrix Exponential

Another way to approximate the matrix hyperbolic cosine is by means of Algorithm 3,
which uses the formula

cosh(A) =
eA + e−A

2
, (14)

and computes the matrix exponential by means of ([30] Algorithm 1), although in this
paper, we use forward error analysis, as in the previous section, instead of the backward
error used in [30].

Algorithm 3: Given a matrix A ∈ Cr×r, a minimum order mlower ∈ M and a
maximum order mupper ∈ M, this algorithm computes C = cosh(A) with the

Bernoulli series of the matrix exponential using the formula cosh(A) = eA+e−A

2

1 Select suitable values of mk ∈M, mlower ≤ mk ≤ mupper, and s ∈ N∪ {0} for the
Bernoulli approximation of e2−s A (see Section 2.3)

2 A = 2−s A
3 E1 = P̃mk (A) and E2 = P̃mk (−A) by using (8) from [30] and (13)
4 for i = 1 to s do /* Recover eA and e−A */
5 E1 = E2

1
6 E2 = E2

2
7 end
8 C = E1+E2

2

In Line 1, Algorithm 3 selects the suitable values of mk ∈M and s ∈ N∪ {0}, according
to Section 2.3, for computing the Bernoulli approximation to the matrix exponential using
the scaling and squaring procedure. Once the norm of matrix A is reduced in Line 2 of
Algorithm 3, then E1 = P̃mk (2

−s A) and E2 = P̃mk (−2−s A) are calculated in Line 3, where
P̃mk is a polynomial approximation to the matrix exponential function by means of Bernoulli
matrix polynomials, according to (8) from [30]. The evaluation of P̃mk is performed using

Mathematics 2023, 11, 520 6 of 22

the Paterson–Stockmeyer method (13). Next, in Lines 4–7 of Algorithm 3, eA and e−A are
recovered. Finally, cosh(A) is computed in Line 8.

2.3. Selecting the Order of Polynomials and the Scaling Factor

The computation of scaling factor s and order m of the Bernoulli approximation in the
previous three algorithms is based on the absolute or relative forward error, presented next.
We first consider approximation polynomial Pm derived from (10). Let m be a large enough
value such that coefficients p(m)

i of Bernoulli approximation Pm(A) from (10) to cosh(A)
are practically identical to those of the Taylor approximation. Then, the absolute forward
error when computing Pm(A) can be calculated and bounded as follows:

Ea f (Pm(A)) = ‖cosh(A)− Pm(A)‖ ≈
∥∥∥∥∥∑

i>m
ai Ai

∥∥∥∥∥, (15)

where ∑
i>m

ai Ai is the absolute forward error series of the Taylor approximation of order m.

Let hm(x) = ∑
i>m

aixi and h̃m(x) = ∑
i>m
|ai|xi. If Theorem 1.1 from [37] is applied, then

Ea f (Pm(A)) ≈ ‖hm(A)‖ ≤ h̃m(αm),

where

αm = max
{∥∥∥Ai

∥∥∥1/i
: i = m + 1, m + 2, · · · , 2m + 1

}
.

Let

Θm = max

{
θ ≥ 0 : ∑

i>m
|ai|θi ≤ u

}
, (16)

where u = 2−53 is the unit roundoff in IEEE double-precision arithmetic.
If

αm < Θm, (17)

then we have
Ea f (Pm(A)) ≈ ‖hm(A)‖ 6 h̃m(αm) 6 h̃m(Θm) 6 u. (18)

and scaling parameter s is 0.
However, if (17) is not fulfilled, then the smallest value of s, such that 2−sαm < Θm,

must be determined. In this case, we obtain

Ea f (Pm(2−s A)) ≈
∥∥hm(2−s A)

∥∥ 6 h̃m(2−sαm) 6 h̃m(Θm) 6 u. (19)

On the other hand, if cosh(A) is also invertible and, once again, m is a sufficiently large
value such that terms p(m)

i of Bernoulli approximation Pm(A) to our goal matrix function
are equivalent to those of the Taylor one, then the relative forward error corresponding to
this approximation can be computed and bounded in the following way:

Er f (Pm(A)) =
∥∥∥cosh (A)−1(cosh(A)− Pm(A))

∥∥∥ =

=
∥∥∥I − cosh (A)−1Pm(A)

∥∥∥ ≈ ∥∥∥∥ ∑
i>m

bi Ai
∥∥∥∥,

where ∑
i>m

bi Ai is the relative forward error series of the Taylor approximation of order

m.
Similarly to the case of the absolute forward error, let gm(x) = ∑

i>m
bixi and g̃m(x) =

∑
i>m
|bi|xi. Then, from ([37] Theorem 1.1), we have

Er f (Pm(A)) ≈ ‖gm(A)‖ ≤ g̃m(αm).

Mathematics 2023, 11, 520 7 of 22

Let Θ̂m be

Θ̂m = max

{
θ ≥ 0 : ∑

i>m
|bi|θi ≤ u

}
. (20)

If the condition
αm < Θ̂m, (21)

holds, then we have

Er f (Pm(A)) ≈ ‖gm(A)‖ 6 g̃m(αm) 6 g̃m(Θ̂m) 6 u. (22)

Conversely, if (21) is not verified, then the smallest value of s, such that 2−sαm < Θ̂m,
is established. In this case, we obtain

Er f (Pm(2−s A)) ≈
∥∥gm(2−s A)

∥∥ 6 g̃m(2−sαm) 6 g̃m(Θ̂m) 6 u. (23)

The values of Θmk and Θ̂mk , mk ∈M, for Ea f (Pmk (A)) and Er f (Pmk (A)), respectively,
were computed using MATLAB Symbolic Math Toolbox. All of them appear in Table 1.

An analogous study was carried out for Bernoulli approximation cosh(A) ≈ P̄m̄(Ā)

from (12). In this case, we assume that m̄ is a large enough value such that coefficients p̄(m̄)
k

of polynomial P̄m̄ are practically identical to the corresponding even-order coefficients of
the Taylor approximation to cosh(A), while the odd-order coefficients are zero. Then, the
absolute forward error is

Ea f (P̄m̄(Ā)) =
∥∥cosh(A)− P̄m̄(Ā)

∥∥ ≈ ∥∥∥∥∥ ∑
i>2m̄

ai Ai

∥∥∥∥∥ =

∥∥∥∥∥∑
i>m̄

āi Āi

∥∥∥∥∥,

where Ā = A2, coefficients ai are from (15) and āi = a2i. Similarly, the relative forward
error is

Er f (P̄m̄(Ā)) =
∥∥∥cosh (A)−1(cosh(A)− P̄m̄(Ā))

∥∥∥ ≈ ∥∥∥∥∥∑
i>m̄

b2i Āi

∥∥∥∥∥ ≈
∥∥∥∥∥∑

i>m̄
b̄i Āi

∥∥∥∥∥,

where b̄i = b2i.
Let ΘPm and Θ̂Pm be the values of Θm and Θ̂m for polynomial Pm as defined in (16) and

(20), respectively. We can analogously define the corresponding values for polynomial P̄m̄,
ΘP̄m̄

and Θ̂P̄m̄
, and it is easy to see that ΘP̄m̄

= Θ2
P2m̄

, Θ̂P̄m̄
= Θ̂2

P2m̄
.

Table 1. Values of Θmk and Θ̂mk , mk ∈M, for Ea f (Pmk (A)) and Er f (Pmk (A)), respectively.

mk Θmk Θ̂mk

1 1.4901161193847656× 10−8 1.4901161193847656× 10−8

2 2.2719845183149197× 10−4 2.2719845056098161× 10−4

4 6.5633223103254337× 10−3 6.5633004324626544× 10−3

6 3.8138663224761025× 10−2 3.8135350033771671× 10−2

9 1.1495105955344324× 10−1 1.1487736634745561× 10−1

12 4.3834831618193604× 10−1 4.3534267124176623× 10−1

16 9.8107632446570958× 10−1 9.5208962937681607× 10−1

20 1.7042776030289366× 100 1.5057818246088250× 100

25 2.5674905431377995× 100 1.6432017599233490× 100

30 4.0560126128455938× 100 1.7809320553510379× 100

36 5.7109000664700984× 100 1.9262789521867196× 100

42 7.4825284953464246× 100 2.0820807241460830× 100

49 9.3385619211370852× 100 2.2421030188466875× 100

56 1.19081054947739435× 101 2.4876517018759325× 100

64 1.45559420698812616× 101 2.7461075372183124× 100

Mathematics 2023, 11, 520 8 of 22

If the inequation αm̄ < ΘP̄m̄
or αm̄ < Θ̂P̄m̄

is not satisfied, then the smallest value of s is
calculated such that 4−sαm̄ < ΘP̄m̄

or 4−sαm̄ < Θ̂P̄m̄
, respectively, for absolute or relative

forward error, where

αm̄ = max
{∥∥∥Āi

∥∥∥1/i
: i = m̄ + 1, m̄ + 2, · · · , 2m̄ + 1

}
.

The values of Θm̄k ≡ ΘP̄m̄k
and Θ̂m̄k ≡ Θ̂P̄m̄k

are listed in Table 2.

Table 2. Values of Θm̄k and Θ̂m̄k , m̄k ∈ M, for Ea f (P̄m̄k (Ā)) and Er f (P̄m̄k (Ā)), respectively, for
Series (12).

m̄k Θm̄k Θ̂m̄k

1 5.1619136514626776× 10−8 5.1619135937310811× 10−8

2 4.3077199749215582× 10−5 4.3076912566764470× 10−5

4 1.3213746092459254× 10−2 1.3196809298927527× 10−2

6 1.9214924629953856× 10−1 1.8952324140391652× 10−1

9 1.7498015129635465× 100 1.5605489459377038× 100

12 6.5920076891020321× 100 2.7025357197364501× 100

16 2.10870186062700462× 101 3.3425537406235706× 100

20 4.73520019672591133× 101 4.1166704209376803× 100

25 9.94413296329754246× 101 5.3203288339799650× 100

30 1.74869078212905435× 102 6.8352932849387500× 100

36 2.979204830753341753× 102 9.1455271414679480× 100

42 4.576519665452191248× 102 1.20985467228657093× 101

49 6.913637319746218282× 102 1.65236965866542853× 101

56 9.767604294039372235× 102 2.22163895347595428× 101

64 1.3667813478651733021× 103 3.05920634266714515× 101

Finally, absolute and relative forward error series were also taken into account for
the approximation of the matrix exponential in Algorithm 3 using matrix polynomial P̃m.
Table 3 collects the corresponding values of Θmk and Θ̂mk for Ea f (P̃mk (A)) and Er f (P̃mk (A)).

Table 3. Values of Θmk and Θ̂mk , mk ∈M, for the forward absolute and relative errors, Ea f (Pmk (A))

and Er f (Pmk (A)), of the exponential matrix.

mk Θmk Θ̂mk

1 1.4901161156840223× 10−8 1.4901161119832789× 10−8

2 8.7334702258487179× 10−6 8.7334575136353609× 10−6

4 1.6783942982781048× 10−3 1.6780188443217515× 10−3

6 1.7764527083684662× 10−2 1.7730821996540237× 10−2

9 1.1483174747739708× 10−1 1.1376892457878242× 10−1

12 3.3521368782861483× 10−1 3.2805420180372574× 10−1

16 8.2460319163860885× 10−1 7.9127401766002403× 10−1

20 1.5041473223951629× 100 1.4150704475615321× 100

25 2.5585766884181380× 100 2.3536427669894273× 100

30 3.7810696269831392× 100 3.4118771725567707× 100

36 5.4064650937902918× 100 4.7855459552778310× 100

42 7.1556200904384877× 100 6.2345518738859917× 100

49 9.3073843996022152× 100 7.9882499230847923× 100

56 1.1545348315212191× 101 9.7882040407606592× 100

64 1.4179107337111319× 101 1.1884024795730356× 101

Taking into account the precomputed values of Θmk and Θ̂mk of Tables 1–3, Algorithm 4
computes the most appropriate values of polynomial order m and scaling parameter s.
In fact, Algorithm 4 is an improvement on [38]’s Algorithm 4, where it is explained in
further detail. The main difference with respect to [38] is that the new code can be used

Mathematics 2023, 11, 520 9 of 22

to determine the values of m and s independently of the nature of the error, covering
relative, absolute, forward and backward errors. This is accommodated by means of Line
8 in Algorithm 4, which takes into account that the first non-zero term occupies position
mi, for the relative backward error series, or mi + 1, for the absolute/relative forward or
absolute backward error ones. Moreover, the new code is valid for matrix functions such as
exponential, cosine and hyperbolic cosine by simply varying the corresponding values of
Θm, always according to the type of error considered. For simplicity, in Algorithm 4, we
use Θ to refer to Θ or Θ̂ of the corresponding polynomial, depending on the type of error
considered, and we also use the following notation:

αi ≡ αmi , Θi ≡ Θmi .

Additionally, αm is approximated as αm ≈ ‖Am‖1/m, as justified in [38]. In line 18, pmi

is the highest-order coefficient of the approximating polynomial.

Algorithm 4: Given a matrix A ∈ Cr×r, a minimum order mlower ∈ M and a
maximum order mupper ∈M, this algorithm provides an order m ∈M, mlower ≤
m ≤ mupper, a scaling factor s and the necessary powers of A to compute cosh(A)
or exp(A)

1 A1 = A; i = lower; f = 0
2 for j = 2 to d√mie do
3 Aj = Aj−1 A
4 end
5 while f = 0 and i ≤ upper do
6 v =

√
mi; j = dve

7 if j > v then Aj = Aj−1 A

8 Compute ai ≈
∥∥∥Ak

∥∥∥ from Aj, and maybe from A /* k = mi (relative
backward error) or k = mi + 1 (absolute / relative forward error
or absolute backward error) */

9 αi = k
√

ai
10 if αi < Θi then f = 1
11 else i = i + 1
12 end
13 if f = 1 then s = 0
14 else
15 i = upper
16 s = max(0, d fslog2(αi/Θi)e) /* fs = 1 for Algorithms 1 and 3, fs = 0.5

for Algorithm 2 */
17 while f = 0 do
18 if s > 0 and |pmi |air(1−s)mi < u then s = s− 1 /* r = 2 (Algorithms 1

or 3) or r = 4 (Algorithm 2) */
19 else f = 1
20 end
21 end
22 m = mi

3. Computational Experiments

In this section, a whole set of experiments carried out in order to compare the numerical
and computational performance of the proposed algorithms are presented. For this purpose,
the following codes, implemented in MATLAB programming language, were evaluated:

• coshmber_ataf and coshmber_atrf: They correspond to the coding of Algorithm 1,
using the absolute or relative forward error, respectively. Polynomial degree m takes
values from the set {25, 30, 36, 42, 49}.

Mathematics 2023, 11, 520 10 of 22

• coshmber_etaf and coshmber_etrf: They are implementations of Algorithm 2, after
considering the absolute or relative forward error. The values of m ∈ {16, 20, 25, 30}.

• coshm_expmber_af and coshm_expmber_rf: These functions include the implementa-
tion of Algorithm 3, where the absolute or relative forward error is correspondingly
taken into account. Again, the values of m ∈ {25, 30, 36, 42, 49}.

• coshm_expm: This code also employs formula (14), but alternatively to the above ones
(coshm_expmber_af and coshm_expmber_rf), the matrix exponential is computed by
means of the code of MATLAB built-in function expm. Recall that function expm works
out the matrix exponential combining the scaling and squaring technique with the
Padé approximation [32,39].

• funmcosh: It consists of a short function that invokes the MATLAB built-in function
funm to compute the matrix hyperbolic cosine. Function funm employs a Schur de-
composition with reordering and blocking, and a block recurrence of Parlett [34]. It
supports the matrix cosine, sine, hyperbolic cosine and hyperbolic sine. The deriva-
tives of the matrix function to be approximated are also needed and computed.

• funmcosh_nd_inf: As in the previous case, it is just a simple code that calls function
funm_nd_inf, implemented in [40], to calculate the hyperbolic cosine. More specif-
ically, function funm_nd_inf is based on a multi-precision Schur–Parlett algorithm
([40] Algorithm 5.1) that does not require the matrix function derivatives. As blocking
parameter δ is set to ∞ (no blocking), the whole Schur factor T is computed by [40]’s
Algorithm 4.1.
It is worth noting that, although function funm_nd, which is also implemented in [40]
and which employs a value of δ = 0.1, could have been used instead of function
funm_nd_inf, the latter was finally chosen because it provided more accurate results
in the different numerical experiments performed.

In the subsequent computational experiments, the following three sets of matrices
were selected in an attempt to provide a test battery as numerically heterogeneous as
possible. The “exact" value of the matrix hyperbolic cosine function was computed by
means of MATLAB Symbolic Math Toolbox and the vpa (variable-precision floating-point
arithmetic) function with 256 significant digits:

• Set 1: A total of 100 diagonalizable square complex matrices of order 128, generated
as A = V · D ·V−1. V is an orthogonal matrix such that V = H/

√
n, with H being a

Hadamard matrix and n its number of rows or columns, while D is a random diagonal
matrix with complex eigenvalues. The 2-norm of the matrices varied from 0.1 to 350.
The “exact" matrix hyperbolic cosine was computed as cosh (A) = V · cosh (D) ·VT

using the vpa function.
• Set 2: A total of 100 non-diagonalizable square complex matrices of size 128 and

generated as A = V · J ·V−1. V is a matrix determined in exactly the same way as in
the case of the previous set. However, J is a Jordan matrix with complex eigenvalues
whose modules are less than five and with random algebraic multiplicity from 1 to 3.
The 2-norm varied from 3.76 to 339.11. The matrix hyperbolic cosine was also “exactly"
computed by means of the vpa function as cosh (A) = V · cosh (J) ·V−1.

• Set 3: A total of 72 square matrices of dimension 128, 52 of which are from Matrix
Computation Toolbox (MCT) [41] and 20 from Eigtool MATLAB Package (EMP) [42].
Unfortunately, only 44 of these matrices (36 of MCT and 8 of EMP) could be success-
fully employed. The remaining matrices had to be excluded owing to the following
reasons:

– Their “exact" solution could not be computed: matrices 4, 5, 10, 16, 17, 18, 21, 25,
26, 35, 40, 42, 43, 44 and 49 from MCT and matrices 1, 5, 6, 7, 9 and 15 from EMP.

– The relative error made by all the codes was too high due to their ill conditioning:
matrix 2 from MCT and matrices 3 and 10 from EMP.

– They were repetitive (already present in MCT): matrices 8, 11, 13 and 16 from EMP.

Mathematics 2023, 11, 520 11 of 22

The “exact" calculation of the hyperbolic cosine of these matrices was performed in
the following way:

– First, from initial matrix A and by means of the eig MATLAB function, a diagonal
matrix D of eigenvalues and a matrix V whose columns were the corresponding
eigenvectors were provided, such that A = V · D · V−1. Thus, matrix C1 =
V · cosh(D) ·V−1 was worked out.

– Second, matrix C2 = cosh(A) was computed as the approximation to the hyper-
bolic cosine of matrix A through the scaling and squaring algorithm and Taylor
polynomials using the vpa function.

– Finally, matrix C1 was accepted as the “exact" solution in the calculation of the
hyperbolic cosine of A if it was satisfied that

‖C1 − C2‖2
‖C1‖2

≤ u.

Otherwise, matrix A was not part of the matrices of set 3.

All the executions were carried out on a Microsoft Windows 11 x64 PC equipped with an
Intel Core i7-12700H processor and 32 GB of RAM, using MATLAB R2021b.

Henceforth, the normwise relative error made by each of the methods in the hyperbolic
cosine computation for each test matrix was one of the key aspects to consider when
comparing their goodness. This normwise relative error was obtained as follows:

Er(A) =
‖ cosh(A)− c̃osh(A)‖2

‖cosh(A)‖2
,

where cosh(A) corresponds to the exact solution and c̃osh(A) corresponds to the calculated one.

Experiment 1. In this experiment, we compared the codes corresponding to Algorithms 1 and 2
(coshmber_ataf, coshmber_atrf, coshmber_etaf and coshmber_etrf) using the three ma-
trix sets.

Figure 1a,c,e show the normwise relative errors of the matrix hyperbolic cosine com-
puted with those codes, with the solid line representing the value of kcoshu, where kcosh is
the estimated condition number of the matrix hyperbolic cosine function, obtained using
function funm_condest1 from Higham’s Matrix Function Toolbox [5,43], and u = 2−53 is the
unit roundoff error. Thus, the solid line is an indication of the expected relative error. The
results show the stability of the methods, especially when applied to the matrices of sets 1
and 2, for which the relative error remained below the solid line. Although the results were
more irregular for the third matrix set, the error values were small in all cases. We can also
see in Figure 1e that coshmber_etaf produced the highest error for a considerable number
of matrices of set 3.

It should be noted that nine matrices of the third set are excluded from Figure 1e
because their estimated condition number kcosh was too high. The same is also performed
in Figure 4e, which is referenced later. These matrices were number 6, 7, 12, 15, 23, 36, 39,
50 and 51 from MCT.

Figure 1b,d,f present performance profiles comparing the accuracy of the codes on the
different matrix sets. For a given value α on the x-axis, the value of p on the y-axis is the
proportion of matrices for which the considered code had a relative error lower than or
equal to α times the smallest relative error of all the codes for the matrix. Performance plots
are explained in detail in [5] (section 10.5) and are quite accepted. The different accuracy
of the methods on matrices of the third set was very apparent, as can be seen in Figure 1f,
where code coshmber_etrf clearly outperformed the other methods, while as anticipated
above, coshmber_etaf was the least accurate alternative. The remaining two codes were
very similar in terms of accuracy. For sets 1 and 2, the differences were less important,
although we can see that coshmber_etrf was also on top for lower values of α for the

Mathematics 2023, 11, 520 12 of 22

second set and for higher values of α for the first set, confirming it as the most accurate
option. It can also be seen that coshmber_etaf was the least accurate option for the first set
and was also below the other codes for high values of α for the second set.

0 20 40 60 80 100

Matrix

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

R
e
la

ti
v
e
 e

rr
o
r

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

k
cosh

*u

(a)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

p

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

(b)

0 20 40 60 80 100

Matrix

10
-15

10
-10

10
-5

10
0

R
e

la
ti
v
e

 e
rr

o
r

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

k
cosh

*u

(c)

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

(d)

0 10 20 30 40

Matrix

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

R
e

la
ti
v
e

 e
rr

o
r

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

k
cosh

*u

(e)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

p

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

(f)
Figure 1. Experiment 1: Normwise relative errors for matrix sets 1 (a), 2 (c) and 3 (e) and performance
plots for the same sets (b,d,f).

Figure 2 shows the proportion of matrices, in each set, for which each code provided
the lowest/highest error. It confirms that coshmber_etrf was the most accurate option,
especially taking into account sets 3 and 2, while coshmber_etaf was the least accurate
option for the first set. It also shows that coshmber_atrf and coshmber_ataf were very
similar in terms of accuracy, although the latter seemed to be slightly better.

Mathematics 2023, 11, 520 13 of 22

Lowest relative error rate

20%

15%

32%

33%

Highest relative error rate

27%

35%

21%

17%

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

(a)

Lowest relative error rate

31%

25%

23%

22%

Highest relative error rate

19%

23%

29%

29%

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

(b)
Lowest relative error rate

41%

27%

14%

18%

Highest relative error rate

10%

27%

31%

31%

coshmber_etrf

coshmber_etaf

coshmber_atrf

coshmber_ataf

(c)
Figure 2. Experiment 1: Proportion of matrices for which each code provided the lowest/highest
error for matrix sets 1 (a), 2 (b) and 3 (c).

Table 4 considers the computational costs, in terms of number of matrix products for
all the matrices within a set, of the different codes in experiment 1. We can see that the
codes based on Algorithm 2, which use polynomials containing even-order terms only,
required a lower number of products.

Table 4. Experiment 1: Number of matrix products for all the matrices in a set for each code.

Code Set 1 Set 2 Set 3

coshmber_etrf 1306 1303 424
coshmber_etaf 1276 1273 388
coshmber_atrf 1638 1637 563
coshmber_ataf 1622 1623 527

As a conclusion of experiment 1, coshmber_etrf was identified as the most accurate
code and also as one of the most efficient. It was certainly much more accurate than
coshmber_etaf, which is also based on Algorithm 2. With respect to the two the codes
based on Algorithm 1, they were very similar in terms of accuracy and computational cost,
although coshmber_ataf seemed to be slightly better in both respects.

For completeness, Figure 3 presents box plots of the values of parameters m and
s selected by Algorithm 4 for the tests of experiment 1. In each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th percentile
(q1) and the 75th percentile (q3), respectively. The whiskers extend to the most extreme data
points in the interval of [q1− 1.5(q3− q1), q3 + 1.5(q3− q1)], while the values outside of the
interval were considered outliers and are marked with a ’+’ symbol. Figure 3 shows that the
order m of the polynomials used by coshmber_etrf and coshmber_etaf, corresponding to
expression (12), was lower than that of the other two codes, corresponding to expression
(10). We can also see that for sets 1 and 2, m took the same value within a given method

Mathematics 2023, 11, 520 14 of 22

almost always (m = 30 for coshmber_etrf and coshmber_etaf and m = 49 for the other
two methods). The values of s were similar for all the methods, although slightly lower for
coshmber_etrf and coshmber_etaf, especially in set 2.

coshmber_etrf coshmber_etaf coshmber_atrf coshmber_ataf

15

20

25

30

35

40

45

50

A
p

p
ro

x
im

a
ti
o

n
 p

o
ly

n
o

m
ia

l
o

rd
e

r

(a)

coshmber_etrf coshmber_etaf coshmber_atrf coshmber_ataf

0

1

2

3

4

5

6

S
c
a

lin
g

 p
a

ra
m

e
te

r

(b)

coshmber_etrf coshmber_etaf coshmber_atrf coshmber_ataf

15

20

25

30

35

40

45

50

A
p

p
ro

x
im

a
ti
o

n
 p

o
ly

n
o

m
ia

l
o

rd
e

r

(c)

coshmber_etrf coshmber_etaf coshmber_atrf coshmber_ataf

0

1

2

3

4

5

6

S
c
a
lin

g
 p

a
ra

m
e
te

r

(d)

coshmber_etrf coshmber_etaf coshmber_atrf coshmber_ataf

20

30

40

50

A
p

p
ro

x
im

a
ti
o

n
 p

o
ly

n
o

m
ia

l
o

rd
e

r

(e)

coshmber_etrf coshmber_etaf coshmber_atrf coshmber_ataf

0

5

10

15

S
c
a
lin

g
 p

a
ra

m
e
te

r

(f)
Figure 3. Experiment 1: Values of polynomial degree m for matrix sets 1 (a), 2 (c) and 3 (e) and scaling
parameters s for the same sets (b,d,f).

Experiment 2. In this experiment, we took the best code identified in the previous experiment
(coshmber_etrf) together with the best code based on Algorithm 1 (coshmber_ataf) and com-
pared them with functions coshm_expmber_af and coshm_expmber_rf, corresponding to Algo-
rithm 3, and with other options based on state-of-the-art approaches, such as functions coshm_expm,
funmcosh_nd_inf and funmcosh. Matrix 4 from EMP was excluded from the third matrix set in
this experiment, because funmcosh could not compute its hyperbolic cosine.

Similarly to Experiment 1, Figure 4a,c,e show the normwise relative errors of the
different codes, together with the value of kcoshu given by the solid line. We can see that
funmcosh and funmcosh_nd_inf produced considerably larger errors than the other codes.
This was especially true for some matrices of the third set, where the result produced by
funmcosh was very inaccurate. The other codes presented good stability, with errors below
the solid line for sets 1 and 2 and not far from that line for set 3.

Mathematics 2023, 11, 520 15 of 22

0 20 40 60 80 100

Matrix

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

R
e

la
ti
v
e

 e
rr

o
r

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

cond*u

(a)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

p

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

(b)

0 20 40 60 80 100

Matrix

10
-15

10
-10

10
-5

10
0

R
e
la

ti
v
e
 e

rr
o
r

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

cond*u

(c)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

p

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

(d)

0 5 10 15 20 25 30 35

Matrix

10
-20

10
-15

10
-10

10
-5

10
0

R
e
la

ti
v
e
 e

rr
o
r

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

cond*u

(e)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

p

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

(f)
Figure 4. Experiment 2: Normwise relative errors for matrix sets 1 (a), 2 (c) and 3 (e) and performance
plots for the same sets (b,d,f).

In Figure 4b,d,f, we can see the performance plots for the different codes. It is clear
that funmcosh and funmcosh_nd_inf were the options with the worst performance for any
matrix set, as indicated by the lower values of the profile in the three figures. The next worst
one was coshm_expm. We can also see that coshm_expmber_af and coshm_expmber_rf were
the best options for matrix sets 1 and 2, while for the third set, coshmber_etrf was the best
option, followed by the two previous codes.

Figure 5 shows the proportion of matrices in each set for which each code provided
the lowest/highest error. It confirms that coshm_expmber_af and coshm_expmber_rf were
the best options for matrix sets 1 and 2, while coshmber_etrf was the best option for the
third matrix set. It also shows that funmcosh and funmcosh_nd_inf performed the worst.

Mathematics 2023, 11, 520 16 of 22

Lowest relative error rate

38%

38%

10%

14%
< 1%0%

Highest relative error rate

0%

54%

46%

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

(a)

Lowest relative error rate

36%

35%

6%

15%

8%0%

Highest relative error rate

0%

54%

46%

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

(b)
Lowest relative error rate

19%

21%
37%

17%

4%2%0%

Highest relative error rate

0%6%

8%

31%
54%

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

funmcosh_nd_inf

funmcosh

(c)
Figure 5. Experiment 2: Proportion of matrices for which each code provided the lowest/highest
error for matrix sets 1 (a), 2 (b) and 3 (c).

Table 5 considers the computational costs, in terms of number of matrix products for
all the matrices in each set, of the different codes in this experiment. It should be clarified
that, although function coshm_expm uses the code of function expm, some modifications
were performed to avoid repeating computations common to the exponentials of A and
−A. In particular, the Schur decomposition, and the computation of the scaling parameters
and the order of the Padé approximant were performed only once.

Table 5. Experiment 2: Number of matrix products for all the matrices in a set for each code.

Code Set 1 Set 2 Set 3

coshm_expmber_af 2649 2651 776
coshm_expmber_rf 2697 2693 790
coshmber_etrf 1306 1303 411
coshmber_ataf 1622 1623 497
coshm_expm 2894 2891 645

funmcosh_nd_inf 1433 1433 616
funmcosh 1400–2233 1400–2233 602–917

Function funmcosh does not perform matrix products, being based instead on the
Schur–Parlett algorithm with a computational cost between 28n3 and 1

3 n4 flops [34]. Simi-
larly and according to [40], the cost of function funm_nd_inf, and consequently of function
funmcosh_nd_inf, consists of 28n3 flops using the desired precision plus 2

3 n3 flops using
higher precision. In our case, where n = 128, this can be respectively translated to a number
of matrix products between 14 and 22.33 for funmcosh and 14.33 for funmcosh_nd_inf,
assuming that the cost of a matrix product is 2n3 flops. As we can see, coshmber_etrf was
the code with the lowest computational cost, while coshm_expm and the two codes based
on Algorithm 3 were the most demanding ones, requiring approximately twice the number

Mathematics 2023, 11, 520 17 of 22

of matrix products of coshmber_etrf. This comes from the fact that the codes based on
Algorithm 3 and function coshm_expm need to evaluate the matrix exponential twice.

Figure 6 presents box plots for order m of the polynomials and scaling parameter
s selected by Algorithm 4 in each of the codes of the experiment, except for funmcosh
and funmcosh_nd_inf, for which the parameters were not available. We can see that
coshm_expm generally used lower polynomial orders and higher scaling parameters than
the other codes. Among those other codes, coshm_expm used lower orders, while the value
of s was similar for all them.

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

5

10

15

20

25

30

35

40

45

50

A
p

p
ro

x
im

a
ti
o

n
 p

o
ly

n
o

m
ia

l
o

rd
e

r

(a)

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

0

1

2

3

4

5

6

7

8

9

S
c
a

lin
g

 p
a

ra
m

e
te

r

(b)

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

15

20

25

30

35

40

45

50

A
p
p
ro

x
im

a
ti
o
n
 p

o
ly

n
o
m

ia
l
o
rd

e
r

(c)

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

0

1

2

3

4

5

6

7

8

9
S

c
a
lin

g
 p

a
ra

m
e
te

r

(d)

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

0

10

20

30

40

50

A
p
p
ro

x
im

a
ti
o
n
 p

o
ly

n
o
m

ia
l
o
rd

e
r

(e)

coshm_expmber_af

coshm_expmber_rf

coshmber_etrf

coshmber_ataf

coshm_expm

0

10

20

30

40

50

60

70

80

90

S
c
a
lin

g
 p

a
ra

m
e
te

r

(f)
Figure 6. Experiment 2: Values of polynomial degree m for matrix sets 1 (a), 2 (c) and 3 (e) and scaling
parameters s for the same sets (b,d,f).

In summary, we can conclude that codes coshm_expmber_rf, coshm_expmber_af and
coshmber_etrf are the most accurate ones, clearly outperforming options based on existing

Mathematics 2023, 11, 520 18 of 22

approaches, such as funmcosh, funmcosh_nd_inf or coshm_expm. Code coshmber_etrf is
also the best option from the point of view of computational cost.

4. Conclusions

In this work, we propose and analyze three different algorithms to approximate
the matrix hyperbolic cosine by means of Bernoulli polynomials. Two of the proposed
approximations come from different Bernoulli series expansions of the matrix hyperbolic
cosine. One of them consists of both even- and odd-order terms, while the other contains
only even-order terms. The third proposed approximation comes from the approximation
of the matrix exponential using Bernoulli matrix polynomials.

The selection of polynomial order m and scale parameter s is performed by means
of Algorithm 4, which is an extension of [38]’s Algorithm 4 to consider any type of error,
either absolute or relative, forward or backward. Algorithm 4 uses precomputed values
of Θm as inputs. These values are provided in this paper for the different polynomial
approximations and for absolute and relative forward error types.

By combining the three different approximation algorithms with the two error types
(absolute or relative), we obtained six different computing codes to approximate the matrix
hyperbolic cosine. These codes were compared using a comprehensive testbed of matrices
with different characteristics. We also compared the codes with reference methods based
on current state-of-the-art approaches.

From the point of view of accuracy, codes coshm_expmber_rf and coshm_expmber_af
(corresponding to Algorithm 3 with relative and absolute forward error, respectively), and
coshmber_etrf (based on Algorithm 2 with relative error) emerged as the best options. All
of them clearly outperformed the alternatives, such as funmcosh, funmcosh_nd_inf and
coshm_expm, based on state-of-the-art methods. In terms of computational cost, the number
of matrix products of codes coshm_expmber_rf and coshm_expmber_af approximately
doubled that of the less demanding option, coshmber_etrf. Thus, coshmber_etrf is a
good option for applications where the computational cost is an important consideration.

Author Contributions: Conceptualization, E.D. and J.I.; methodology, J.M.A., J.I., E.D. and F.A.;
software, J.M.A. and J.I.; validation, J.M.A. and F.A.; formal analysis, E.D.; writing—original draft
preparation, J.M.A. and F.A.; writing—review and editing, J.I. and E.D.; visualization, J.M.A. and
F.A.; supervision, E.D.; project administration, J.M.A.; funding acquisition, J.M.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Vicerrectorado de Investigación de la Universitat
Politècnica de València (PAID-11-21).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Remark A1. We proof here expression (3). Firstly, we start from formula (24.5.3) of ([29] p. 591).

n−1

∑
k=0

(
n
k

)
Bk = 0, n ≥ 2. (A1)

If we replace the value of n− 1 with m in (A1), we obtain, for m ≥ 1,

m

∑
k=0

(
m + 1

k

)
Bk = 0. (A2)

By developing (A2), we have

m−1

∑
k=0

(
m + 1

k

)
Bk +

(
m + 1

m

)
Bm = 0,

Mathematics 2023, 11, 520 19 of 22

and so

(m + 1)Bm = −
m−1

∑
k=0

(
m + 1

k

)
Bk.

Therefore, for m ≥ 1,

Bm = −
m−1

∑
k=0

(
m + 1

k

)
Bk

m + 1

= −
m−1

∑
k=0

(m + 1)!
k!(m + 1− k)!

Bk
m + 1

= −
m−1

∑
k=0

m!
k!(m− k)!

Bk
m + 1− k

= −
m−1

∑
k=0

(
m
k

)
Bk

m + 1− k
.

By replacing m with n, we finally obtain formula (3).

Remark A2. We proof here expression (8). Using (5) with t = 1 and t = −1, we have

cosh (A) =
1
2

(
eA + e−A

)
=

1
2
(e− 1) ∑

n≥0

Bn(A)

n!
+

1
2

(
1− e−1

)
∑
n≥0

Bn(A)(−1)n

n!

= ∑
n≥0

(
(e− 1) +

(
1− e−1)(−1)n

2

)
Bn(A)

n!
.

By separating even indices from odd indices, we obtain

cosh (A) = ∑
n≥0

(
(e− 1) +

(
1− e−1)

2

)
B2n(A)

(2n)!
+ ∑

n≥0

(
(e− 1)−

(
1− e−1)

2

)
B2n+1(A)

(2n + 1)!

= ∑
n≥0

(
e− e−1

2

)
B2n(A)

(2n)!
+ ∑

n≥0

(
e + e−1 − 2

2

)
B2n+1(A)

(2n + 1)!

= sinh (1) ∑
n≥0

B2n(A)

(2n)!
+ (cosh (1)− 1) ∑

n≥0

B2n+1(A)

(2n + 1)!
,

which corresponds to expression (8).

Remark A3. We now proof expression (9). Equation (5) can be written as

∑
n≥0

Bn(A)tn

n!
=

teAt

et − 1
, |t| < 2π, (A3)

and, by replacing t with −t,

∑
n≥0

Bn(A)(−1)ntn

n!
=
−te−At

e−t − 1
, |t| < 2π. (A4)

By adding (A3) and (A4), we have

∑
n≥0

Bn(A)tn

n!
+ ∑

n≥0

Bn(A)(−1)ntn

n!
=

teAt

et − 1
+
−te−At

e−t − 1
, |t| < 2π. (A5)

Mathematics 2023, 11, 520 20 of 22

The left side of (A5) is equal to 2 ∑
n≥0

B2n(A)t2n

(2n)!
. Thus,

∑
n≥0

B2n(A)t2n

(2n)!
=

t
2

(
eAt

et − 1
− e−At

e−t − 1

)
, |t| < 2π. (A6)

We now rewrite the expression
t
2

(
cosh ((2A− I)(t/2))

sinh (t/2)

)
in the following way:

t
2

(
cosh ((2A− I)(t/2))

sinh (t/2)

)
=

t
2

2
et/2 − e−t/2

(
e(2A−I)(t/2) + e−(2A−I)(t/2)

2

)

=
t/2

et/2 − e−t/2

(
eAte−t/2 + e−Atet/2

)
=

t/2
et/2 − e−t/2

(
eAte−t/2 + e−Atet/2

) et/2 − e−t/2

et/2 − e−t/2

=
t/2

et − 2 + e−t

(
eAt − eAte−t + e−Atet − e−At

)
=

t/2
2− et − e−t

(
eAte−t − eAt − e−Atet + e−At

)
=

t/2
(et − 1)(e−t − 1)

(
eAt(e−t − 1)− e−At(et − 1)

)
=

t
2

(
eAt

et − 1
− e−At

e−t − 1

)
.

By substituting into (A6)

∑
n≥0

B2n(A)t2n

(2n)!
=

t
2

(
cosh ((2A− I)(t/2))

sinh (t/2)

)
, |t| < 2π,

and rearranging the terms, we obtain

cosh ((2A− I)(t/2)) =
sinh (t/2)

t/2 ∑
n≥0

B2n(A)t2n

(2n)!
, |t| < 2π.

By defining variables u = t/2 and C = 2A− I, we have

cosh (Cu) =
sinh u

u ∑
n≥0

B2n(
1
2 (C + I))(2u)2n

(2n)!
, |u| < π,

and by taking u = 1, we obtain

cosh C = sinh (1) ∑
n≥0

22nB2n(
1
2 (C + I))

(2n)!
,

which corresponds to expression (9).

References
1. Druskin, V.; Mamonov, A.V.; Zaslavsky, M. Multiscale S-fraction reduced-order models for massive wavefield simulations.

Multiscale Model. Simul. 2017, 15, 445–475. [CrossRef]
2. Frommer, A.; Simoncini, V. Matrix Functions. In Model Order Reduction: Theory, Research Aspects and Applications. Mathematics

in Industry. The European Consortium for Mathematics in Industry; Springer: Berlin/Heidelberg, Germany, 2008; Volume 13,
pp. 275–303.

3. May, V.; Keller, Y.; Sharon, N.; Shkolnisky, Y. An algorithm for improving non-local means operators via low-rank approximation.
IEEE Trans. Image Process. 2016, 25, 1340–1353. [CrossRef]

http://doi.org/10.1137/16M1072103
http://dx.doi.org/10.1109/TIP.2016.2518805

Mathematics 2023, 11, 520 21 of 22

4. Levie, R.; Monti, F.; Bresson, X.; Bronstein, M.M. Cayleynets: Graph convolutional neural networks with complex rational spectral
filters. IEEE Trans. Signal Process. 2018, 67, 97–109. [CrossRef]

5. Higham, N.J. Functions of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics: Philadelphia,
PA, USA, 2008.

6. Defez, E.; Sastre, J.; Ibánez, J.; Peinado, J.; Tung, M.M. On the computation of the hyperbolic sine and cosine matrix functions.
Model. Eng. Hum. Behav. 2013, 2013, 46.

7. Defez, E.; Sastre, J.; Ibáñez, J.; Peinado, J.; Tung, M.M. A method to approximate the hyperbolic sine of a matrix. Int. J. Complex
Syst. Sci. 2014, 4, 41–45.

8. Defez, E.; Sastre, J.; Ibáñez, J.; Ruiz, P. Computing hyperbolic matrix functions using orthogonal matrix polynomials. In Progress
in Industrial Mathematics at ECMI 2012. Mathematics in Industry. The European Consortium for Mathematics in Industry; Springer
International Publishing: Cham, Switzerland, 2014; Volume 19, pp. 403–407.

9. Defez, E.; Sastre, J.; Ibáñez, J.; Peinado, J. Solving engineering models using hyperbolic matrix functions. Appl. Math. Model. 2016,
40, 2837–2844. [CrossRef]

10. Defez, E.; Ibáñez, J.; Peinado, J.; Alonso-Jordá, P.; Alonso, J.M. New Hermite series expansion for computing the matrix hyperbolic
cosine. J. Comput. Appl. Math. 2022, 408, 114084. [CrossRef]

11. Bahşi, M.; Solak, S. On the hyperbolic Fibonacci matrix functions. Twms J. Appl. Eng. Math. 2018, 8, 454–465.
12. Bahşi, M.; Mersin, E.Ö. On the hyperbolic Horadam matrix functions. Hacet. J. Math. Stat. 2022, 51, 1550–1562. [CrossRef]
13. Estrada, E.; Higham, D.J.; Hatano, N. Communicability and multipartite structures in complex networks at negative absolute

temperatures. Phys. Rev. E 2008, 78, 026102. [CrossRef]
14. Tseng, C.C.; Lee, S.L. Identification of Station Importance of Taipei Metro Network Using Subgraph Centrality. In Proceedings of

the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Hualien, Taiwan,
16–19 November 2021; pp. 1–2.

15. Jódar, L.; Navarro, E.; Martin, J.A. Exact and analytic-numerical solutions of strongly coupled mixed diffusion problems.
Proc. Edinb. Math. Soc. 2000, 43, 269–293. [CrossRef]

16. Jódar, L.; Navarro, E.; Posso, A.; Casabán, M. Constructive solution of strongly coupled continuous hyperbolic mixed problems.
Appl. Numer. Math. 2003, 47, 477–492. [CrossRef]

17. Aprahamian, M.; Higham, N.J. Matrix inverse trigonometric and inverse hyperbolic functions: Theory and algorithms. SIAM J.
Matrix Anal. Appl. 2016, 37, 1453–1477. [CrossRef]

18. Higham, N.J.; Kandolf, P. Computing the action of trigonometric and hyperbolic matrix functions. SIAM J. Sci. Comput. 2017,
39, A613–A627. [CrossRef]

19. Al-Mohy, A.H. A Truncated Taylor Series Algorithm for Computing the Action of Trigonometric and Hyperbolic Matrix Functions.
SIAM J. Sci. Comput. 2018, 40, A1696–A1713. [CrossRef]

20. Ibáñez, J.; Alonso, J.M.; Sastre, J.; Defez, E.; Alonso-Jordá, P. Advances in the Approximation of the Matrix Hyperbolic Tangent.
Mathematics 2021, 9, 1219. [CrossRef]

21. Efimov, G.V.; Von Waldenfels, W.; Wehrse, R. Analytical solution of the non-discretized radiative transfer equation for a slab of
finite optical depth. J. Quant. Spectrosc. Radiat. Transf. 1995, 53, 59–74. [CrossRef]

22. Lehtinen, A. Analytical Treatment of Heat Sinks Cooled by Forced Convection. Ph.D. Thesis, Tampere University of Technology,
Tampere, Finland, 2005.

23. Lampio, K. Optimization of Fin Arrays Cooled by Forced or Natural Convection. Ph.D. Thesis, Tampere University of Technology,
Tampere, Finland, 2018.

24. Hilscher, R.; Zemánek, P. Trigonometric and hyperbolic systems on time scales. Dyn. Syst. Appl. 2009, 18, 483.
25. Zemánek, P. New Results in Theory of Symplectic Systems on Time Scales. Ph.D. Thesis, Masarykova Univerzita, Brno, Czech

Republic, 2011.
26. Estrada, E.; Silver, G. Accounting for the role of long walks on networks via a new matrix function. J. Math. Anal. Appl. 2017,

449, 1581–1600. [CrossRef]
27. Cieśliński, J.L. Locally exact modifications of numerical schemes. Comput. Math. Appl. 2013, 65, 1920–1938. [CrossRef]
28. Cieśliński, J.L.; Kobus, A. Locally Exact Integrators for the Duffing Equation. Mathematics 2020, 8, 231. [CrossRef]
29. Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions Hardback and CD-ROM; Cambridge

University Press: Cambridge, UK, 2010.
30. Defez, E.; Ibáñez, J.; Alonso-Jordá, P.; Alonso, J.M.; Peinado, J. On Bernoulli matrix polynomials and matrix exponential

approximation. J. Comput. Appl. Math. 2022, 404, 113207. [CrossRef]
31. Higham, N.J. The Scaling and Squaring Method for the Matrix Exponential Revisited; Technical Report 452; Manchester Centre for

Computational Mathematics: Manchester, UK, 2004.
32. Al-Mohy, A.H.; Higham, N.J. A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM J. Matrix Anal. Appl.

2009, 31, 970–989. [CrossRef]
33. Higham, N.J.; Hopkins, E. A Catalogue of Software for Matrix Functions; Version 3.0; MIMS EPrint 2020.7; Manchester Institute for

Mathematical Sciences, The University of Manchester: Manchester, UK, 2020.
34. Davies, P.I.; Higham, N.J. A Schur–Parlett Algorithm for Computing Matrix Functions. SIAM J. Matrix Anal. Appl. 2003,

25, 464–485. [CrossRef]

http://dx.doi.org/10.1109/TSP.2018.2879624
http://dx.doi.org/10.1016/j.apm.2015.09.050
http://dx.doi.org/10.1016/j.cam.2022.114084
http://dx.doi.org/10.15672/hujms.1092305
http://dx.doi.org/10.1103/PhysRevE.78.026102
http://dx.doi.org/10.1017/S0013091500020927
http://dx.doi.org/10.1016/S0168-9274(03)00073-4
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/16M1084225
http://dx.doi.org/10.1137/17M1145227
http://dx.doi.org/10.3390/math9111219
http://dx.doi.org/10.1016/0022-4073(94)00101-C
http://dx.doi.org/10.1016/j.jmaa.2016.12.062
http://dx.doi.org/10.1016/j.camwa.2013.04.015
http://dx.doi.org/10.3390/math8020231
http://dx.doi.org/10.1016/j.cam.2020.113207
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/S0895479802410815

Mathematics 2023, 11, 520 22 of 22

35. Paterson, M.S.; Stockmeyer, L.J. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM J.
Comput. 1973, 2, 60–66. [CrossRef]

36. Sastre, J. Efficient evaluation of matrix polynomials. Linear Algebra Appl. 2018, 539, 229–250. [CrossRef]
37. Sastre, J.; Ibáñez, J.; Ruiz, P.; Defez, E. Accurate and efficient matrix exponential computation. Int. J. Comput. Math. 2013,

91, 97–112. [CrossRef]
38. Defez, E.; Ibáñez, J.; Alonso, J.M.; Alonso-Jordá, P. On Bernoulli series approximation for the matrix cosine. Math. Methods Appl.

Sci. 2022, 45, 3239–3253. [CrossRef]
39. Higham, N.J. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 2005, 26, 1179–1193.

[CrossRef]
40. Higham, N.J.; Liu, X. A multiprecision derivative-free Schur– algorithm for computing matrix functions. SIAM J. Matrix Anal.

Appl. 2021, 42, 1401–1422. [CrossRef]
41. Higham, N.J. The Matrix Computation Toolbox. 2002. Available online: http://www.ma.man.ac.uk/~higham/mctoolbox

(accessed on 16 January 2023).
42. Wright, T.G. Eigtool, Version 2.1. 2009. Available online: http://www.comlab.ox.ac.uk/pseudospectra/eigtool (accessed on

16 January 2023).
43. Higham, N.J. The Matrix Function Toolbox. Available online: http://www.ma.man.ac.uk/~higham/mftoolbox (accessed on

16 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1016/j.laa.2017.11.010
http://dx.doi.org/10.1080/00207160.2013.791392
http://dx.doi.org/10.1002/mma.7041
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/20M1365326
http://www.ma.man.ac.uk/~higham/mctoolbox
http://www.comlab.ox.ac.uk/pseudospectra/eigtool
http://www.ma.man.ac.uk/~higham/mftoolbox

	Introduction
	The Proposed Algorithms
	Algorithms Based on the Bernoulli Series of the Matrix Hyperbolic Cosine
	Algorithm Based on the Bernoulli Series of the Matrix Exponential
	Selecting the Order of Polynomials and the Scaling Factor

	Computational Experiments
	Conclusions
	Appendix A
	References

