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Abstract: Logistic regression is one of statistical methods that used to analyze the correlation between
categorical response variables and predictor variables which are categorical or continuous. Many
studies on logistic regression have been carried out by assuming that the predictor variable and
its logit link function have a linear relationship. However, in several cases it was found that the
relationship was not always linear, but could be quadratic, cubic, or in the form of other curves, so that
the assumption of linearity was incorrect. Therefore, this study will develop a bivariate polynomial
ordinal logistic regression (BPOLR) model which is an extension of ordinal logistic regression, with
two correlated response variables in which the relationship between the continuous predictor variable
and its logit is modeled as a polynomial form. There are commonly two correlated response variables
in scientific research. In this study, each response variable used consisted of three categories. This
study aims to obtain parameter estimators of the BPOLR model using the maximum likelihood
estimation (MLE) method, obtain test statistics of parameters using the maximum likelihood ratio
test (MLRT) method, and obtain algorithms of estimating and hypothesis testing for parameters of
the BPOLR model. The results of the first partial derivatives are not closed-form, thus, a numerical
optimization such as the Berndt-Hall-Hall-Hausman (BHHH) method is needed to obtain the
maximum likelihood estimator. The distribution statistically test is followed the Chi-square limit
distribution, asymptotically.

Keywords: bivariate; ordinal logistic regression; polynomial; scientific research

MSC: 62F03; 62F10

1. Introduction

The logistic regression model is one of statistical methods which is used to analyze
the correlation between categorical response variables and predictor variables that are
categorical or continuous. If the response variable has more than two categories and
there are levels in that category (ordinal scale), then an ordinal logistic regression model
is used [1]. The logistic regression modeling often does not involve only one response
variable because of a phenomenon involving multiple response variables. Logistic regres-
sion involving one response variable is called univariate logistic regression. Meanwhile,
logistic regression that involves two or more response variables and correlates between
response variables is called multivariate logistic regression. Especially for multivariate
logistic regression involving two correlated response variables, it is called the bivariate
logistic regression.

Several studies on ordinal logistic regression have been carried out for bivariate cases.
Dale [2] has studied parameter estimationusing the MLE method. Williamson et al. [3]
used the generalized estimating equation (GEE) method, whereas Enea and Lovison [4]
used penalized MLE for the parameter estimation of bivariate ordinal logistic regression
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models. The previous studies examined logistic regression modeling by assuming that
the continuous predictor variable and its logit link function have a linear relationship.
However, the reality is that in some cases it is found that the relationship is not always
linear, but can be quadratic, cubic, or other curves, so that the assumption of linearity
is incorrect.

Royston and Altman [5] introduced the fractional polynomial approach, which is
one of the development of a polynomial model, to understand the functional form of a
continuous predictor variable. This model involves a more flexible relationship that can
be linear or non-linear and has been used by several researchers [6-9]. In its development,
several studies have examined the use of fractional polynomials in logistic regression
analysis [10-12]. However, these previous studies were limited to univariate binary logistic
regression. Furthermore, the bivariate binary logistic regression has been developed but
limited to the second order [13]. Therefore, we propose an extension of ordinal logistic
regression with two correlated response variables in which the relationship between the
continuous predictor variable and its logit is modeled as a polynomial form. The proposed
model is called the bivariate polynomial ordinal logistic regression (BPOLR) model. This
study aimed to obtain parameter estimators of the BPOLR model using the MLE method,
obtain test statistics of parameters using the MLRT method, and obtain algorithms of
estimating and hypothesis testing for parameters of the BPOLR model.

An example of applying the BPOLR model can be applied to modeling the nutri-
tional status of toddlers. Based on Narendra et al. [14], children from birth to about one
year old have growth that increases rapidly and then decreases slowly as the child gets
older. Therefore, the polynomial approach is more suitable for modeling child growth [15].
Tilling et al. [16] modeled child growth using the fractional polynomial approach and
concluded that the model with the fractional polynomial approach shows a growth rate
that is initially fast and then slows down over time.

The following discussion in this paper is divided into several main topics. In Section 2,
we introduce the BPOLR model followed by parameter estimation using the MLE method
in Section 3. We present simultaneous hypothesis testing in Section 4 to test the significance
of all parameters together using the MLRT method and we present a simulation study in
Section 5. Furthermore, Section 6 contains conclusions.

2. The Bivariate Polynomial Ordinal Logistic Regression (BPOLR) Model

The BPOLR model is an expansion of the ordinal logistic regression model when there
are two correlated ordinal response variables and the relationship between the continuous
predictor variable and its logit is modeled as a polynomial form. In this study, the response
variables used each have 3 categories. Let Y1 and Y, be response variables which have a
value of 1; 2; or 3, then Y,, = (Y1=1a,Y,=Db); a,b =1,2,3 are random variables that have
their respective probabilities 7.}, , as presented in Table 1 below.

Table 1. Probabilty of the response variables.

Yo
Y1 Total
1 2 3
1 T T2 3 e
2 1 ) 03 e
3 31 3 33 1— 74— The
Total Tlel Tle2 1— Tte1— Te2 1

Based on Table 1, the random Vectory = [Yll Y12 Y13 Y21 Yzz Y23 Y31 Y32}
have a multinomial distribution so it has a joint probability density function as follows:

3 3

P(Y11=yy, Yi2= yio - Yoo=¥3) = [T T ] ”Zf)b @
a=1b=1
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3 3 3 3
where 0<mp<1; ab = 1,23y,=01 Y Y Yp=1 and } )} mp=1.
a=1b=1 a=1b=1
= P(Y1=a,Yo=Db) is the joint probability of the response variables.

3
Tae = 3y, P(Yi=a Yp,=Db) is the marginal probability for the variable Y; and
b=1

3
Ty, = ;1 P(Y1= a, Y= b) is the marginal probability for the variable Y,.

Tﬁe model that can be used for ordinal logistic regression is the cumulative logit model.
In this study, the BPOLR model has two ordinal-scale response variables that are correlated
with each other and each has 3 categories, so we have the cumulative probability for Y; and
Y, ie,P(Y; <alx);a=1,2and P(Yo <b|x);b=1,2. Let Fhe (x)=P(Y; < alx);a=1,2
is the marginal cumulative probability of variable Y; given x, F,,(x)=P(Y2 <b|x);
b=1,2 is the marginal cumulative probability of variable Y, given x and
Fip(x)=P(Y1 <a,Y, <blx);ab = 1,2is the joint cumulative probability between vari-
ables Y7 and Y, given x, so we have the BPOLR model as follows:

e  The cumulative logit model for Y;

. . Fia(x k §
g1 = logit(P(Y; < 1|x)) = logit(Fie(x)) = ln<1—113§.2x)> =an +]; ﬁlex]-(rj) (2)
. . Fae (X) £ T x
g2 = logit(P(Y1 < 2|x)) = logit(Fe(x)) = ln(l—FQ()()) =ap+ ) By Xi(r,) 3)
[ ]:l
e  The cumulative logit model for Y,
. . Fol(x) K T *
83 = logit(P(Yz < 1[x)) = logit(Fe1(x)) = ln<1 - 1(X)> = a1+ ), Boy X 4)
. j=1
. . POZ(X) K T x
g4 = logit(P(Y, < 2|x)) = logit(Fez(x)) = ln(l—Fz()()) =y + Z B2j Xj(r]-) (5)
. ]:l

e  The odds ratio transformation model for Y; and Y,

55 = nton ) = n( e P LS — ®
3o =92 = n( e RS ) Y
57 = nt# ) = n( B PO LT < s Y
sv = (ot = (G R ) < am vy

where {&1,, p, Agp} ; ,b = 1,2 are the intercept parameters with w17 < &g, and
N1 < &po; ﬁlj’ﬁZj and 7; are vector of parameters for the j-th predictor variable, which

: T T
are symbolized by By, = [Boij Pu1j --- Prjl By = [Booj Broj --- Brjl
Vo= [fyoj Yij o e 'yrj} T x is vector of predictor variable with

T AT
x = [1 Xl oo X;:(,k)} where x]*.‘(rj) = [1 Xj sz x” is vector of the

j-th predictor variable with the r-th degree of polynomial.
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Based on Equations (2)—(5), the marginal cumulative probability of variable Y; and Y>
can be obtained from the following equation:

k
T ox

P(Y; <alx) = Fa.(x) = p ;a=12 (10)
1+exp (0‘121 + ]El 'Blex]’f(rj)>
k T
oxp| a2+ X Fay X
P(Y, < b|x) = Fp(x) = = ;b=1,2 (11)

k
14 exp (tbe + j§1 ﬁijx]?*(r]_)>

Pap (x) is the odds ratio (OR), a measure of association that can indicate a correlation
between the response variables. The OR value is formulated as follows:

P(Y1 <a,Yp <b|[x)P(Y1>a,Yo>b[x)  Fp(x)[1— Fae(x) — Fop(x) + Fap(x)]

Pap(X) = P(Y1>a, Yy <b[x)P(Y1 <a,Yy>b|x)  [Fae(x) — Fap(x)][Fep(x) — Fap(x)] (12)
where F,,(x) can be obtained from:
c—+/c2+d
Fap(x) = { W@ s Pab(x) # 1 -
Fae (X)P.b (X) p #)ab (X): 1

where a,b = 1,2; ¢ = 1+ (i (x) — 1) (Faa (%) + Fap(x)) and d = — 445 (x) ($p(x) — 1)
Fae (x)Fop (x).
Next, the joint probability of the response variables,m,},, can be obtained as follows:
1 = Fii;, ma = Fio — F1; 13 = Fle — Fio; M1 = By — Fii; M2 = Fo — Fip —
By + Fii;mos = Fae — Foo — Fre + Fi2; 31 = Fo1 — 215 732 = Fep — Foo — Fo1 + F21; 33 =
1—Fy — Foo + F.

3. Parameter Estimation of The BPOLR Model

In this study, the parameter estimation of the BPOLR model was carried out using the
maximum likelihood estimation (MLE) method. The principle of the MLE method is to
estimate the parameters of the BPOLR model, namely:

0= (a1 a2 Bour PBir --- PBrk a2 a2 Poar Pt --- Brok
M Mo Dy Dy yor Y11 - vt
(14)
obtained by maximizing the likelihood function. Based on Equation (1), the likelihood
function is obtained as follows:

3

n 3
L(6) = Hngnzggi (15)

=1

To simplify the calculation, an In transformation is carried out on the likelihood
function so that the In-likelihood function is formed as follows:

3

n 3 n
Q=MIL(6) =) ) Y Vapi (i) = Y [yiuln iy +y pIn g+ -+ yagiinmag] (16)
i=la=1b=1 i=1

.

the next step of the In-likelihood function is the first partial derivative of the parameter to
be estimated and then equated with zero. The results of the first partial derivative of the
In-likelihood function with respect to its parameters are as follows:
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2l

9Q _y [(ylz_
aazz_i; TT12i

Yi2i _ Yisi
Tt12i T34

e  The first partial derivative of the In-likelihood function to the parameter a1,
@ _ y21i' n yZZi,)ésni n (ylZi' _ @ B m N y231>(5 bt (ylaz Yosi >}§1-1 17)
T2i 70218 TT22i T2i 703 T2 7023 T3 7023

o  The first partial derivative of the In-likelihood function to the parameter a1,

Yoi _ Y3t Yo ) Sogi + (yzzi _ Yi _ Yamio | Yssi > S+ <]/23z Yasi >] i (18)
Tl2i  T31i  TT32i T02i  T023i  TT32i 7T33z 703  TU33i

o The first partial derivative of the In-likelihood function to the parameter
,Bljr']' = 1,2,...,k

m,eryzz,)(gllﬂL(m,mferyzg,)(gniJr(m,m)}ghix}«mﬁ

Tt12i 7210 Tt22i Tt12i TT13i Tt22i Tt23i TT13i Tt23i (19)
_ Y3 Y32i Y22i _ Y23i _ Y32i Y33i . Y23i _ Y33i ~F
i T 7T321>5 21i (7T22i s T T T )5221 + (7T23i 7T33i) }Cz'lx]'(rj)]

e  The first partial derivative of the In-likelihood function to the parameter apq

m_yzuﬂﬂl)y +(y2”—y22f—~"3“+~"321>y +(y3“ y”i)}a.u (20)

TT12i  T021i 7022 T01i  T22i 731 TT32i 7031;  TU32i

e  The first partial derivative of the In-likelihood function to the parameter ay,

R e |

7113 7122 723 7022 723 7T32i 7133} 7T32i 7133

e The first partial derivative of the In-likelihood function to the parameter
ﬁzj,’j = 1,2,.. .,k

g (2 2 - B e (3 3 o

Ushli 701§ T2i 70214 T4 7314 TT32i Tt31i TT32i

(22)

_ Yi  Yosi Yooi  Yasi Yoo Yssi Y3oi __ Y3si x*
T 7T23: )‘u 12 (7T22i T3 T3 7T331 ) Hazi + (7'[321‘ 7T33i> }6'21)(1 (fj)]

e  The first partial derivative of the In-likelihood function to the parameter Ay

0Q i[(ylli _ Yo yni | Yoi >Z11 lpn} 23)
- 1 1
i=1

dA1q T i Tl 7T221

o  The first partial derivative of the In-likelihood function to the parameter Ay

0Q nor ( Yi2i Y13 Y22 ]/231 >
oz i Mz i z 24
Ao l; \ 7t s i 7T23z 1zzlPlzz (24)

e  The first partial derivative of the In-likelihood function to the parameter Ay;

Py nor , ; .
o0 _ )y (”l _ Yo YU Yo )zﬂzwmz (25)

T01;  TU22i 731 TT32i

e  The first partial derivative of the In-likelihood function to the parameter Ay
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0Q _ [(y2i Yo Y | Ysi
A Y = — =+ 2 i (26)
22 L\ 7t22i  TT23;  T32i 7133
e The first partial derivative of the In-likelihood function to the parameter 7;;
i=12,...,k
Q _ v Yyui _ Yi2i _ Yaui o Yoo Dy Yioi _ Y13 _ Y22  Y2si A
g = LHGEE -2 = 2+ 2 )i + (52 — 7 — e + o )212i12it
Do vy Voi _ Yni _ Yai | ¥ @7)
Youi _ Yooi Yoy YS2iYy apo o1 (Y220 Y23 Ys2io oy Yssiyapo oy
(7T21i Tpi  Tal | T3 )z21iP21i + (ﬂzm‘ T a2 | Ta3i )22 92 Xj (Vj)}

where d,p = 3{1 = Sap ™' [1+ab (Fas — Fab) = Fas — Fap]}; prab = 3{1 = Sab ™" [1+¢an (Fep
_FaO) - Fa- - Fob]}

Sab = [[1+(¢ab - 1)(Fao + Fob)]z - 4lpab(¢ab - 1)FacFob} ; Cae = Fao(l - Fao)?
‘:ob:Fob<1_Fob) .

Zab = [2(¢ab - 1)25ab} {1 —Sap + (lpab - 1>[Fao + Fop — ZFaoFob]}'

The result of the first partial derivatives are not closed-form, thus, a numerical opti-

mization such as the Berndt-Hall-Hall-Hausman (BHHH) method is needed to obtain the
maximum likelihood estimators and the BHHH algorithm is as follows:

Nl—

e  Step 1. Determine the initial value for

0) — 0 0 0 0 0 0 0 0 0 0
6()_[“51) "‘52) ﬁ((n)l /551)1 /3() W) /35)2)1 .352)1 5()

Mk %21 % 2k
T
0 0 0 0 0 0 0
Agl) Agz) A£1) Agz) 'Y((n) 'Yil) 7£k)]

obtained from the parameter estimator of the ordinal logistic regression model on each
response variable.

e  Step 2. Calculate the gradient vector elements obtained from the first partial derivative
of the In-likelihood function for each parameter

(8) = 0Q 0@  90Q Q Q0@ 00  9Q oQ 2Q
q dagp dagp dforn IBi1 T OBk dapy dap 9Boar 9P T 9Bk
00 90 Q0 90 90 90 20 17
dA;;  dAp 9Dy dDyp  dyer 9y T vk

e Step 3. Calculate the Hessian matrix H(0) that can be obtained from the
following formula

e  Step 4. Start the BHHH iteration process with the following formula

A(t)
é<t+1>=é<‘>_H1(é“))q<e ) fort =0,1,2,...

A (t+1) 7é(t) ’

e  Step 5. The iteration will stop if H 0 ‘ < g, where ¢ is a very small positive

number. The last iteration produces an estimator value for each parameter.
Furthermore, the best model in this study is determined using the criteria of Akaike

information criterion corrected (AICc), Bayesian information criterion (BIC), and deviance
which are defined as follows:

2K(K+1)

AICc = —2InL(0) + 2K + -

(28)

BIC = —2InL(f) +Klnn (29)
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Deviance = —2In L(8) (30)

where L (@) is the likelihood value of the parameter’s estimate,K is the number of covariates,
and n is the sample size. The best model is the BPOLR model, which has the smallest
values of AICc, BIC, and deviance.

4. Hypothesis Testing of The BPOLR Model

The simultaneous hypothesis testing of the BPOLR model aims to determine the
influence of the predictor variable on the response variable simultaneously or to discover
at least one predictor variable which has a significant effect against the response variable.
The hypothesis used is as follows:

Ho:Bprg=Bpq=r1pq=0;p=12,...,19;9=12,...,k (31)

Hy : atleastone By # 0 or By # 0or 7y # 0

In this study, we used the MLRT method to obtain the test statistics by calculating
the ratio between the maximum value of the likelihood function under Hy, L(w), with the
maximum value of the likelihood function under population, L((2).

The first step to obtaining the maximum value of L(w) is to define the parameter space un-

der Hy, w = {a11, &12, 021, 222, A1, Mz, Ao1, A, Botis - - - » Botks Bo21s - - - » Bozks Y01/ - - - » Yok }-
The likelihood function under Hj is:

3 3
L) = TTTT T T (" )
Let Qo = In L(w), then the log-likelihood function under Hy is

n
Qo = Z(]/lli In 71"{“ + Y12i In 7(1(21' + ...+ Y33 In 7(;:,51') (33)

—_

Furthermore, we can obtain the estimated value of the maximum log-likelihood
function under Hy:

™=

Qo = ) (y11iIn ALy + y1oi In Ay, + .. + Y33 In 7235 (34)

i=1

where
Ak fx oAk ok % . A% X . oAk X fx .
1 = Frii 5 T = Foi — Fag s = Fei — Fow 7210 = oy — B
Ax o i i fx L ax P ik % % oA ok fix
Tgni = Fooi = Fipi — F1i + Fp1i 5 Tosi = Fpei — Fei — Fopi + Frois 31 = Fo1i — Foiis
Ak vk ok ok oAk ok fik ook
i = Faoi — By — B3y + By 733 = 1= By — Flpi + By

with

ok P3 — /P33

~ ~ Ak Ak ~ ~
Fabi = m/ Yap # 1; P3z= 1+(1J)ab_1) (Faoi+Fobi); 9z = 4y, (wab_l)FanFom
. ko Ko
exp| 1a + X Boyj exp | dop + X Booj
B j=1 B j=1 & nygi(nogingzi+ngpi4ngs;)
aei — 7L ebi — s Y11 — ) ) ) )
) ko A k (n12i+n13;) (N215+n31;)
exp| &ia + 21 Poij exp | &b + ) Bozj
j= j=
- (nq1i+nyo;) (No3i+n3zi) - (nq1i+1915) (N3 4+1335) - (nq1i-F010i 1015 +N01 )N33;

22 —

- 0 =
ny3i (N1 +N2i+N31i+n321) (ny2i+n3i+ngpi+1np3i )n315” (n13i+m23;) (N315-+n32:)



Mathematics 2023, 11, 579 8 of 12

Furthermore, to obtain the maximum value of L(() is to define the parameter space under popu-
laﬁon, Q = {alll ‘leI “21/ ‘XZZI Alll Aer AZ]/ AZZ/ ,Bplq/ ,szq/ ')’pqrp = 0/ 1/ 2-/ crcy T’q/q = 1/ 2/ ceey k}
Then, the likelihood function under population is

n 3 3
=T1I1 ljll(nabi)yabi (35)

i=la=

Let Qq = InL(QY), then the log-likelihood function under population is

n

Qo = Y (yiiln 7wy 4 yani In 7y, + . .. + Y33 In 7135;) (36)

[y

Furthermore, we can obtain the estimated value of the maximum log-likelihood
function under population, that is:

=

Qa = ) (ynilnfyy; +yioiIn frpp; + .o 4 Y33 In 7igs;) (37)

I
—

The test statistic using MLRT method is obtained by

— 9In L(w)
G? = 21 (L(())

) =2(Qa —Qa) (38)

where Q4 and Qg are given in Equations (36) and (39), respectively. Furthermore, the test
statistic in Equation (38) can be expressed as follows

)+]/1211n< 12’_)+ +}/3311n< 33’.))}

:sz nmuln(u%)) +i§1(nﬁ12i1n(1+%)) S Z (717T3311n(1+a”331))}

12i 33

Based on the Taylor expansion of In (1 +
it will be proved that hm G? =G*.

@) witha,b=1,2,3andi =1,2,...,n

abi

Q
|

N7t

(”ﬁni_”ﬁﬁi)z + Y ("ﬁlzi_”ﬁfzi)z 4.+ i (”ﬁ33;_”7%§3i)2
=1

i

Ml M=

i ("ﬁabi*”ﬁ;bi) (39)

M= L=
2
e T
<
e T
—
=
£
=
Eﬁ ?‘:‘
<
:_/

Il
—_
S
Il
—_
S
Il
=
2
SN

The test statistic in Equation (39) has an asymptotic Chi-square limit distribution with
v degree of freedom, where v is the difference between the number of parameters in the

j=1
is the 1 — & quantile from a Chi-

k k
BPOLR model under population and Hy, v = <8 +3 ( Yri+ k> ) —(8+3k) =31 r;.
j=1

Therefore, reject Hy when G2 > X%U 1—a)’

square distribution (x?) with v degree of freedom.

where X%U/Pa)

5. Simulation Study

In this section, we outline a simulation study for the present performance of parameter
estimation of the BPOLR model based on the BHHH algorithm. The simulation was
constructed by two ordinal response variables that each have three categories and three
predictor variables. In this paper, the simulation is carried out for one example of the
BPOLR model, i.e., the BPOLR model with degree polynomial (1,2,1). The simulation
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was carried out for 100 replications with different sample sizes, i.e., n = 100, n = 200, and
n = 300. The simulation scenarios are decided as follows:

e  Generate three predictor variables (X1, X, and X3) that are constructed from a standard
uniform distribution
e  Set the initial coefficients of the BPOLR model as follows:

K11 — 0.05; K1y —

Bin = —2; P12z

0.5;B111 = —1;B112=05; Bo12 = 2; B113 = 1.5; 201 = 0.25; app = 1.25;

=2;Pon=2;P123=2;011 =01;A12=015; A2 =0.25; A =03;

Y11 =-15;712=2;72=3;713=2

e  Generate two ordinal response variables (Y; and Y;) with the following steps:

. Determine the cumulative logit model for Y; and Y; as in Equations (2)—-(5) and
the odds ratio transformation model, as in Equations (6)—(9)
Determine the marginal cumulative probability for Y; and Y; as in Equations (10)
and (11) and the joint cumulative probability as in Equation (13).
Determine the joint probability of Y1 and Y,
Generate two ordinal response variables based on the joint probabilty obtained

e Examine the independence of the response variables using the Mantel-Haenszel test
to fulfill the assumption of dependence between the response variables in the bivariate
model. If the response variable is independent, then the data generation process is
repeated until the dependent response variable is obtained.

Estimate the parameters of the BPOLR model based on the BHHH algorithm
Repeat the process for up to 100 replications for each sample size
Calculate the mean of parameter estimated and its standard error (SE)

The results and comments regarding the simulation study are given in the following
tables and figures below. The mean of the estimated parameters and their corresponding
standard error (SE) for different sample sizes are presented in Table 2. The results show that
the estimated parameters approach their true coefficient on average and the corresponding
standard errors also decrease as the sample size increases.

Furthermore,

the suitability of the estimated parameter with the true coefficients for

each sample size can be presented in Figure 1 below:

@ True
® n=100
& n=200
6 A n=300
= 4
c
2
4=
b=
S 2
V]
L
o & ]
\\

4
[ ]

n ‘ °

A A m

'y g e ] o

]
\ * n A
‘ H
5 6 7 8 9 10 M 12 13 14 15 16 17 18 19 20

Parameter number

Figure 1. Mean of the true and estimated parameter coefficients for different sample sizes, i.e n = 100,

n =200 and n = 300.
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Table 2. Mean of the estimated parameter and the corresponding standard errors of the BPOLR
model for different sample sizes.

Mean of the est. Parameter Standard Error
No. Parameter  True Coeff.
n =100 n =200 n =300 n =100 n =200 n =300
1 11 0.05 0.138 0.097 0.005 1.193 0.662 0.519
2 &1 0.5 0.615 0.549 0.474 1.195 0.666 0.521
3 B111 -1 —1.069 —1.176 —0.96 1.144 0.632 0.501
4 B112 0.5 —0.005 0.679 0.283 4.856 2.566 2.004
5 Ba12 2 3.213 1.949 2.418 5.492 2.762 2.169
6 B113 1.5 1.607 1.604 1.582 1.159 0.652 0.516
7 a1 0.25 0.382 0.337 0.236 1.556 0.777 0.604
8 Ny 1.25 1.35 1.349 1.282 1.573 0.789 0.614
9 Bi21 —2 —2.34 —2.216 —2.032 1.546 0.826 0.625
10 B2z 2 1.119 1.686 1.873 6.949 3417 2.513
11 B 2 4.466 2.928 247 9.294 4.291 3
12 B123 2 2.442 2.115 2.094 1.565 0.823 0.638
13 A 0.1 0.636 0.44 0.155 5.038 1.941 1.354
14 Ap 0.15 0.677 0.414 0.269 5.101 1.98 1.387
15 Arq 0.25 0.587 0.461 0.25 5.047 1.952 1.354
16 Apo 0.3 0.671 0.455 0.351 5.145 1.978 1.383
17 m ~15 ~1.926 —1.585 —1.662 5.088 1.992 1.396
18 Y12 2 0.475 0.226 0.929 26.556 9.533 6.397
19 722 3 7.729 6.204 5.216 40.777 13.805 8.713
20 Y13 2 2.33 2.134 2.273 5.22 2.008 1.447

Based on Figure 1, the results show that the greater of samples size, the closer the
estimated parameter values get to the true coefficient values. This can be seen from the
movement of the estimated parameter coefficients for n = 300, which are closest to the
true coefficients, and for n = 100, the coefficients which are farthest for each parameter. In
addition, the standard error range values from parameter estimation was also investigated
for different samples in the form of boxplots. When the sample size increases, the standard
error values of the model parameter estimation becomes less, as presented in Figure 2
as follows:

40

30

20

Standard Error (SE)

n=100 n=200 n=300

Figure 2. Boxplot of Standard Error (SE) for different sample sizes.
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6. Conclusions

We developed ordinal logistic regression with two correlated response variables in
which the relationship between the continuous predictor variable and its logit is modeled
as a polynomial form, called the BPOLR model. The proposed BPOLR model contributes
to the development of statistical science that can be used as an alternative solution in
statistical modeling related to the bivariate ordinal logistic regression, where the relation-
ship between continuous predictor variables and their logit links is assumed to be not
always linear, so that it is more flexible. Therefore, the advantage of the BPOLR model can
accommodate linear, quadratic, cubic or other relationships between continuous predictor
variables and their logit links in a model. We used the MLE method to obtain parameter
estimators of the BPOLR model. The first partial derivatives are not closed-form, thus, a
numerical optimization such as the method of BHHH is needed to obtain the maximum
likelihood estimators. We used the MLRT method to obtain test statistics of parameters.
The simultaneous test was used to make the simultaneous of the parameters significantly.
The statistical test distribution has a Chi-square limit that, asymptotically with the degree
of freedom, is the difference between the parameter effective number in the reduced and
full models. The optimal degree value for each predictor variable is obtained when the
value of AICc, BIC, and deviance are minimum. Based on the simulation study results, the
estimated parameters approach their true coefficient on average and the corresponding
standard errors also decrease as the sample size increases.
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Nomenclature

AlCc Akaike’s Information Criterion Correcction
BHHH  Berndt-Hall-Hall-Hausman

BIC Bayesian Information Criterion

BPOLR Bivariate Polynomial Ordinal Logistic Regression
MLE Maximum Likelihood Estimation

MLRT Maximum Likelihood Ratio Test.
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